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ABSTRACT: In this paper, supercavitation and partial cavitation over axisymmetric bodies have been 
solved, using the Boundary Element Method (BEM), based on potential. In this method, the cavity and the 
wetted surface of the body will be estimated by some panels. Then, the cavitation will be modeled, by 
means of Green's third identity integral. For this purpose, the rings of the sources are distributed on the 
cavity surface, and the ring of the dipoles is distributed on the body and the cavity surface. The high 
velocity and also proper accuracy in calculating the geometry of the cavity and the drag coefficient are 
considerable advantages of this method. 

 
1. INTRODUCTION  

Cavitation is recognized as an inadvisable problem in most phenomena, but in some circumstances, 
cavitation is remarked as a beneficial problem. The most important example is the submerged projectiles, 
in which cavitation is desired because of intense decrease in drag force. The dimensionless parameter 
which is represented for introducing cavitation is the cavitation number, which is defined as below: 
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Where ∞p is atmosphere pressure, νp is vapor pressure, ρ is the fluid density, and ∞V is the fluid 
velocity. If bodies move with relatively high velocities inside fluids, cavitation starts at a point in which 
its local pressure reaches fluid vapor pressure. In low velocities or in high cavitation numbers, cavity is 
closed over the body and is called partial cavitation. With increase in velocity and decrease in cavitation 
number, cavity grows and covers all the body, which is called supercavitation.  

Early studies of cavitation were performed by Efors and Tulin, using theoretical methods. Cavitation 
stream can also be solved with boundary element method (BEM). In this method, a distribution of 
potential flow elements (vortex, source, sink, doublet and dipole) is located over the boundary of the 
flow. In 1993, Fine and Kinnas devised a nonlinear boundary element method based on potential for 
solving partial cavitation flow over a hydrofoil [2]. Partial cavitation flow over torpedoes was conducted 
by Uhlman et al [2], using BEM method, and source and dipole distribution over body surface and cavity 
in 2003. All of the performed studies are limited to the specific geometrics, but in this paper, partial 
cavitation and supercavitation have been studied, using the boundary element method on the different 
bodies. 

 
2. GOVERNING EQUATIONS 

 All of the parameters have become non – dimensional, by the fluid density, the diameter of the 
cavitator and the velocity of the free stream. Governing equation on the field of the flow is the Laplace 
equation: 

02 =∇ Φ  (2) 

The total potential ( )Φ  is the sum of the disturbance potential ( )ϕ  and the free stream potential.  
ϕΦ += x  (3) 

The disturbance potential satisfies the Laplace equation, and also Green's third identity integral. 
Therefore, the potential in any points on the body surface and the cavity is obtained from the following 
equation: 
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( )R,;r,xG ξ  Is the potential function related to the fluid sources distributed along a ring of radius R 
located on the axis at ζ=x .This equation states that the potential flow on any surface can be shown by 
means of the ring distribution of sources and dipoles. For this purpose, the rings of the sources is 
distributed on the cavity surface, and also the rings of the dipoles is distributed on the body and the cavity 
surface (Fig.1) 

 

 
Figure 1. Applying superposition of the free stream, with distributions of the dipoles and sources rings on the 

interface of the body and the cavity to solve cavitation. 
 

 
3. BOUNDARY CONDITIONS 

Applying Bernoulli equation, the relation between the total velocity on the cavity surface, and the 
cavitation number can be obtained: 

 

σ+= 1Uc  (5) 

This is called the dynamic boundary condition. The kinematic boundary condition states that the flow 
does not have any vertical component on the body and the cavity surfaces. 
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4. B.E.M BASED on POTENTIAL 

In this method, the body and the cavity surfaces are respectively estimated by cN  and bN  number of 
the elements, which totally form N elements on the aforementioned surfaces. 

By discretization the equation (4), and applying it on the surfaces of the body and the cavity, N number 
of the algebraic equation is obtained. The unknowns include: bN number of dipole strengths on the body 

surface, cN  number of source strengths on the cavity surface, and a cavitation number of σ+1 . 
Therefore, the numbers of the unknowns are N+1, which is one more than the number of the equations. 

In order to resolve this problem and also solving the system of equations, an auxiliary equation is needed. 
To obtain this equation, the definition which states that the algebraic sum of the sources powers on the 
cavity surface must be equal to zero, is used. The integrated form of this equation is as the following: 
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5. RESULTS 

In figure (2), the supercavitation behind of a disk cavitator with the cavity length of 6 (nondimensional 
length) is shown. To investigate the accuracy of the boundary element method in modeling the cavitation, 
the Dimensionless cavity length, drag coefficient and Dimensionless cavity diameter   versus the cavitation 
number is compared with the experimental results of the reference [3], and Uhlman boundary element 
results [2] in figure(3) up to (5). It can be seen that the boundary element method predicts the length of 
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the cavity region with good accuracy. As it was mentioned, one of the advantages of the cavitation is 
decreasing the drag coefficient. As it is shown in figure (5), the drag coefficient reduces by decreasing the 
cavitations number or increasing the cavity length, and also the results of the boundary element method 
have a good coincidence with the experimental results. In figure (6), the supercavitation behind of a 
conical cavitator with the cavity length of 6 (nondimensional length) is shown. In figure (7) the drag 
coefficient versus cavitation number for conical cavitator is compare with the experimental data [4]. To 
represent the capability of boundary element method in modeling the cavitation over more complex 
geometries, the partial cavitation over a type of torpedo in the non – dimensional length of 40 is shown in 
figure (8) and (9). 
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Figure 2. Supercavitation behind the disk 
cavitator, 6D/l diskcav =  , 235.0=σ  

 

Figure 3. Dimensionless cavity length versus the cavitations 
number for a disk cavitator. 
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Figure 4. The drag coefficient versus the cavitations number 
for a disk cavitator 

Figure 5. Dimensionless cavity diameter  versus the cavitations 
number for a disk cavitator 
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Figure 6. Supercavitation behind the conical  cavitator, cone 
angle=30°,° 6=diskcav D/l  , 10.=σ  

Figure 7. The drag coefficient versus the cavitations number for 
a conical cavitator with cone angle=30°.  

  
Figure 8. The partial cavitation over the torpedo in non – 

dimensional length of 20 and 075.0=σ  
Figure 9. The partial cavitation over the torpedo in non – 

dimensional length of 30 and 0550.=σ  
 
 

6. CONCLUSIONS 
The results state the preciseness of the boundary element method in modeling supercavitation, and also 
show relatively good results for the partial cavitations around the axisymmetric bodies. The high velocity 
and proper accuracy in calculating the cavity geometry and the drag coefficient are the considerable 
advantages of this method. 

 
REFERENCES 
[1] Alberta K.R., and Ceccio S.L. Partial cavity flows. Part1. Cavities forming on models without span 

wise variation", J. fluid Mech., 2001, Vol.431, pp. 1-41. 
[2] Varghese A.Y., Uhlman J.S., and Kirschner I.N., High – speed bodies in cavitating axisymmetric 

flow", 5th International Symposium on Cavitation, CAV03-OS-7-016, Osaka, Japan, 2003. 
[3] Franc J.P., and Michel J.M., , Fundamentals of cavitation, Kluwer Academic Publisher, 

Netherlands, 2004. 
[4] Uhlman J.S., “A note on the development of a nonlinear axisymmetric reentrant jet cavitation 

model”, Engineering Technology Center, Anteon Corp., 2002. 

  
 

4/4


