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Abstract 

A computational study of partial cavitation over 

axisymmetric bodies is presented using two numerical 

methods. The first method is based on the VOF 

technique where transient Navier-Stokes equations are 

solved along with an equation to track the cavity 

interface. Next, the steady boundary element method 

(BEM) based on potential flow theory is presented. The 

results of the two methods for a disk cavitator are 

compared with each other and with those of the 

available experiments and analytical relations. The two 

methods are then used to predict the partial cavity over 

an axisymmetric body consisting of a disk cavitator 

followed by a conical section and ending in a 

cylindrical shape. The effects of various parameters 

such as cone length, cone angle, cavitator radius and 

cylinder diameter are investigated. Shortcomings and 

limitations of each method are discussed.  

 

Keywords: “cavitation”, “VOF method”, “boundary 

element Method” 

 

Introduction  

The cavitation phenomenon is known as liquid 

vaporization that occurs whenever the liquid pressure 

falls bellow its vapor pressure. This phenomenon is 

categorized by a nondimensional parameter called 

cavitation number defined as: 
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where Pv is the vapor pressure, ρ the liquid density, and 

P∞, V∞ are the ambient pressure and inflow velocity, 

respectively. The cavitation regimes are classified to 

incipient-, shear-, cloud-, partial- and super-cavitation 

depending on the cavitation number [1]. The cavitation 

occurs around axisymmetric bodies at points where the 

local pressure drops to the environment vapor pressure. 

Any sudden change in the body shape may cause a 

pressure rise or fall and, therefore, may be an inception 

point for cavitation. Although super-cavitation 

decreases drag forces extensively, but when 

maneuvering of the vehicle is necessary, partial 

cavitation is more preferable [2]. Also, partial cavities 

are widely used in ventilated systems [2, 3]. 

During the last decades, numerous studies have been 

performed in cavitation using various methods [1]. 

Cavitation models based on the Navier-Stokes 

equations emerged in early 1990’s. These models are 

divided into two main categories: interface tracking 

method and homogeneous equilibrium flow [1, 4]. In 

interface tracking method, a constant pressure (vapor 

pressure) is assumed for the cavity region and a wake 

model is used to predict the shape of the cavity in 

adaptive grids. In the second category, used in this 

study, the density field is estimated by various models 

from which the method based on single-fluid modeling 

has been shown to be more accurate [1]. In this 

approach, an advection equation for liquid (or vapor) 

volume fraction is solved and the density is computed 

according to the volume fraction of the two phases. 

This approach has been widely applied to simulate 

cavitation. The selection of an appropriate mass transfer 

model and an algorithm for advection equation are the 

main issues. Yuan et al. [5] suggested a cavitation 

model based on Rayleigh relation. Singhal et al. [6], 

Merkle et al. [7] and Kunz et al. [8] have used different 

mass transfer models based on semi-analytical 

equations. A well-known method to solve the advection 

of a free-surface such as a cavity interface is VOF 

technique. Frobenius and Schilling [9] and Wiesche 

[10] used this technique to simulate cavitation over 

hydrofoils and pump impellers. A review of the 

reported literature reveals that VOF method can 

accurately capture cavity shape and characteristics. In 

this study, a modified VOF technique based on Youngs’ 

PLIC algorithm [11] is combined with a mass transfer 

model of Kunz et al. [8] to simulate cavitation.  

A different type of model used by many researchers 

for studying cavitation is Boundary Element Method 

(BEM). Early researches based on this technique in 

partial-cavitation flows were performed by Varghese, et 

al. [2], but using BEM to solve potential flow about 

arbitrary bodies were developed after Hess and Smith’s 

paper [12]. Nonlinear BEM method were developed for 

cavitating flows around hydrofoils by Uhlman [13, 14], 

and Kinnas and Fine [15, 16]. They distributed sources 

and normal dipoles along the solid body-cavity 

interface. The unknown values of these sources and 

dipoles were determined by imposing the dynamic 

condition on an assumed cavity boundary. The 

kinematic boundary condition was then used to update 

the cavity shape. Beginning in 1994, two numerical 

hydrodynamics models were developed for 

axisymmetric supercavitating high-speed bodies: a 
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slender-body theory model (Varghese, et al, [17]) and a 

BEM method (Kirschner, et al, [18]; Uhlman, et al, 

[19]). The results of both the slender-body theory and 

the BEM method have been shown to compare well 

with other numerical and experimental results. These 

models can predict the shape and length of cavity, 

accurately. The BEM method was employed to examine 

supercavitating flows past disk, cone and sigma-shaped 

cavitators where good agreement with experimental and 

analytical results have been reported [20]. 

In this paper, partial cavitation for water flows over 

axisymmetric bodies is studied using two general types 

of models mentioned above. For the VOF method, a 

modified Youngs’ PLIC algorithm is used to advect the 

interface between the two phases (cavity). For the BEM 

method, sources and normal dipoles are distributed 

along the body-cavity surface. The unknown values of 

the source and dipole strengths are then obtained using 

the mixed Fredholm integral equation that results from 

the application of Green’s third identity. 

 
Governing Equations 

The two methods of VOF and BEM are briefly 

discussed in this section. The VOF method is based on 

the solution of the full Navier-Stokes equations along 

with an equation for the advection of cavity interface. 

The BEM method, however, is based on the concept of 

potential flow theory.  

 

1. Volume-of-Fluid Method (VOF) 

In this method, the advection of the cavity interface is 

simulated based on the Volume-of-Fluid (VOF) 

technique along with a cavitation model for mass 

transfer between the two phases of liquid and vapor. 

 

1.1. VOF Algorithm 

The governing equations for the 2D/axisymmetic 

incompressible fluid flow are 
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where V
v
is the velocity vector, P indicates the pressure, 

Fb is body force acting on fluid, g
v
 is the acceleration 

due to gravity and τ  represents Newtonian viscous 
stress tensor. In VOF method, the phase change 

boundary is simulated by a scalar field f  whose value 

is equal to zero in the vapor phase and one in the liquid. 

When a cell is partially filled with liquid, f  has a value 

between zero and one. The discontinuity in f  is 

propagating through the computational domain 

according to: 
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where S is the cavitation mass transfer sink term. This 

equation with different mass transfer models can be 

used to simulate many physical phenomena such as 

cavitation, vaporization, and condensation. The Hirt-

Nichols [21] and Young PLIC [11] methods are widely 

used for the advection of the volume fraction f  in Eq. 

4. Although the Hirt-Nichols has been used in most 

cavity simulations, in this study a more accurate method 

of Young is employed. To begin the advection using 

Eq. 4, an intermediate value of f  is introduced as:  
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and “divergence correction” completes the scheme: 
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This scheme initiates the distribution of f  for 

velocity and pressure calculations in each time step. 

Because a single set of equations is solved for both 

phases, mixture properties are used as: 
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where subscripts l and v denote the liquid and vapor, 

respectively. Two-step time projection method is 

employed for the solution of momentum equations. 

First an intermediate velocity is calculated based on the 

terms related to advection, viscosity and body forces: 
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Continuum Surface Force (CSF) method [22] is used 

to treat the surface tension in interfacial cells as a body 

force. Pressure field is obtained by Poisson equation as: 
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Finally, the pressure field is used to compute the new 

time velocities: 
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An Incomplete Cholesky Conjugate Gradient 

Decomposition (ICCG) solver is employed for solving 

Eq. 9. Having calculated the new time level pressures, 

the velocities are updated using Eq. 9. 

 

1.2. Cavitation Model 

Several cavitation mass transfer models can be used 

to replace S in Eq. 4. Among the more recommended 

models we have the Rayleigh equation and semi-

analytical schemes [1]. Many semi-analytical schemes 

are based on the modified Rayleigh theory or a mass-

momentum interaction model around the cavity 

interface [23]. In current study, the semi-analytical 

model of Kunz is used to treat S in Eq. 4:  
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where 5109×=destC and 4103×=prodC  are numerical-

experimental weighting coefficients. The flow 

characteristic time, ∞t , is defined as the ratio of the 

maximum solid-body diameter to the main flow 

velocity. The second term in the right hand side of Eq. 

11 is for the condensation that occurs near the cavity 

closure region. This phenomenon causes small vapor 
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structures to detach from the end of the cavity.  The 

Kunz model assumes a moderate rate of constant 

condensation; therefore, it reconstructs the cavity region 

more accurately than the other models [1, 23]. 

 

2. Boundary Element Method (BEM) 

This section explains the BEM cavitation model based 

on the potential flow theory.  

 

2.1 Mathematical Formulation 

The potential flow model presented here is based on 

Green’s third identity formulation [15]. Applying this 

formulation to the axisymmetric disturbance velocity 

potential, ϕ, results in: 
( )
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where n is the normal vector directed outward from the 

solid-body surface and the cavity interface, s is the 

arclength along a meridian, and x and r are the 

components of the axisymmetric coordinate system. 

( )RrxG ,;, ξ  is the potential function related to the fluid 

sources distributed along a ring of radius R located on 

the axis at ζ=x (see Fig 1). The potential function is 

defined as: 
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The total and disturbance potentials are related by: 

ϕφ += x                                     (15) 

where all quantities have been made dimensionless with 

respect to ρ, U∞ and d . The boundary conditions are 

kinematic condition on the solid-body surface, and both 

the kinematic and dynamic conditions on the cavity 

interface. These conditions are mathematically 

formulated as: 
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where Sb and Sc are the areas of the solid-body surface 

and the cavity interface, respectively. These boundary 

conditions are equal to: 
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where n and s are unit vectors normal and tangent to the 

solid-body/cavity boundary, respectively. The last 

boundary condition may be integrated to yield 

( ) ( )000 1 xxss −−−++= σϕϕ  on 
cS         (20) 

where 0ϕ , is the potential at the detachment point of the 

cavity on the solid body. 

 

2.2 Governing Integral Equation 

Placing the unknowns on the left-hand side and the 

knowns on the right-hand side, Green’s third identity is 

written as: 
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on the wetted portion of the solid-body/cavity boundary 

and on the cavity interface: 
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Implementing the above boundary conditions Eq. (21) 

can be written as: 
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on the solid body and Eq. (22) becomes 
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on the cavity interface. 

In addition to these equations, an auxiliary condition 

is required for which we impose the condition that the 

net source strength is equal to the flux through the jet, 

which may be expressed as: 
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Results and Discussion  

Two methods described above, were used to 

investigate various effects associated with an 

axisymmetric body consisting of a disk cavitator 

followed by a conical section and ending in a 

cylindrical shape (Fig. 2). The geometry parameters 

shown in Fig. 2 are nondimensionalized based on the 

cavitator diameter.  

To validate the models, the results of the two methods 

are compared with each other and with those of the 

available experiments in the literature. Water properties 

at 25
o
C are considered in this study. 

 

1. Model Validation  

Although cavitation is a complex two-phase 

phenomenon, analytical solutions of super-cavitation 

behind simple obstacles such as a disk or a sphere are 

available. Reichardt analytical relation [24] for super-

cavitation behind axisymmetric cavitator is given by: 
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where lcavity,max and dcavity,max  are the maximum length 

and diameter of the cavity, respectively, and Dcavitator 

represents the maximum diameter of cavitator.  

Palset and Schaffer proposed following analytical 

equation for the drag coefficient of a disk cavitator for 

cavitation numbers less than 1.5 [25]: 

)028.01(
2

0
σσ ++= DD CC                    (28)  

where 
0D

C is equal to 0.8053.  

The cavitation behind a disk cavitator for several 

cavitation numbers are simulated using both VOF and 

BEM methods. The results of the two methods are 

compared with each other and with those of analytical 

relations given by Eqs. 26, 27 and 28. Figure 3 

compares the results of the two methods with those of 

the available experiments [1] and Reichardt relation 

(Eq. 27). As observed from the figure, the results of 

both models agree well with those of the experiments 

and the theory for high cavitation numbers (σ > 0.15). 
For lower cavitation numbers, while the VOF method 

predictions are in good agreement with Reichardt 

relation, the BEM method slightly overpredicts the 

experimental measurements. 

The results from different methods and experiments 

for dimensionless cavity diameter versus cavitation 

number are shown in Figure 4. The VOF method gives 

a better prediction compared to that of Reichardt 

relation (the difference being less than 3.3%). The 

results of the BEM technique, however, is closer to 

those of the experiments. The comparison between the 

two methods, experiments, and Palset-Schaffer equation 

(Eq. 28) for the drag coefficient is displayed in Fig. 5. 

While the VOF model well predicts the experimental 

results, the BEM method underpredicts the 

measurements.  

 

2. Partial Cavitation over an Axisymmetric Body 

In this section, we study the partial cavitation over the 

axisymmetric body under consideration (Fig. 2). The 

effects of various parameters (cone length, cone angle, 

and cylinder diameter) on the shape of the cavity for 

different cavitation numbers are investigated. 

The results of VOF model for a base case is shown in 

Fig. 6 for a cavitation number of σ = 0.0698. For this 

case: Rc=0.25, the cone angle is α=7.407°, and the 

cylinder radius is Rcyl= 0.9. In VOF method, the full 

Navier-Stokes equations are solved, therefore, all 

information regarding the flow are obtained. Figure 6 

displays the shape of the cavity along with flow 

velocity and pressure distributions. The velocity 

magnitude is seen to be related to the phase of the flow, 

in the vapor phase the velocity has a smaller magnitude. 

The reentrant jet at the cavity closure region and the 

backward flow within the cavity is visible in the figure. 

The pressure in the vapor phase is seen to be constant 

and equal to that of the vapor pressure.  

To investigate the effects of different geometric 

parameters, while one parameter is changed from that 

of the base case, other parameters are held constant. 

The results for each case are first presented using the 

VOF method. Then, a quantitative comparison is 

performed between the two methods of VOF and BEM. 

2.1 Effect of Cone Length 

To study the effect of cone length, the cone angle at 

α=7.407° and the cylinder diameter at Rcyl=0.9 were 

held constant. Then, by varying Rc (Fig. 2), different 

cone lengths (Lcone) were produced. Three different 

values of Rc were considered for this study. Figure 7 

shows the results obtained from the VOF method for 

two values of Rc equal to 0.167 and 0.5. For the base 

case shown in Fig. 6 Rc was equal to 0.25. A 

comparison between Fig. 6 and the two images of Fig. 7 

reveals that as the cone length is increased the cavity 

region covers a larger space; i.e. the cavity length and 

radius are increased. The case with Rc=0.5 needs extra 

attention because in this case, the cone length is 

decreased to the extent that no longer a cavitator exist 

in front of the body. 

To see the effect of cone length more clearly, the 

dimensionless cavity length vs. cavitation number for 

different cone lengths (by varying Rc) are shown in Fig. 

8 where the results of both VOF and BEM methods are 

displayed. No experimental or analytical results were 

available for this case. However, to show the difference 

between supercavitation behind a disk cavitator (no 

cylinder) and partial cavitation behind the axisymmetric 

body under consideration, the results of supercavitiaon 

behind a disk are also displayed in Fig. 8. Therefore, the 

VOF and BEM results in the figure should not be 

compared with experimental points and analytical curve 

shown in the figure. As seen from Fig. 8, while in the 

BEM method, the cone length makes no difference in 

the cavity shape, the VOF method predicts a smaller 

cavity when the cone length is decreased. As the cavity 

length is related to the inverse of the cavitation number, 

when cavitation number is increased (i.e. less 
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cavitation) the VOF and BEM results are nearing each 

other as seen in Fig. 8.  

2.2 Effect of Cylinder Radius 

The results of the VOF method for the shape of the 

cavity for four different Rcyl (nondimensional cylinder 

radius) are plotted in Fig. 9. For the case considered 

here, the cone angle α  was  7.407o, Rc  was  0.25  and  

Lcyl+Lcone = 40 (see Fig. 2). The cylinder radius was 

Rcyl=0.5, 0.7, 0.9, 1.1. As seen from Fig. 9, the cylinder 

radius has no significant effect on cavity length. The 

cavity diameter, however, is decreased when the 

cylinder had a larger radius. The cavity detachment 

from the cylinder is also expected to occur in a cylinder 

with smaller radius.  

 The dimensionless cavitation length vs. cavitation 

number for two different cylinder radii is plotted in Fig. 

10. The results of experiments and theory for 

supercavitation behind a disk cavitator with radius Rdisk 

(i.e. with no cone and cylinder body) are also shown. 

For low cavitation numbers, discrepancies are observed 

between the results of the two methods (VOF and 

BEM). The two results, however, agree well when 

cavitation number increases (σ>0.2). It can be seen from 
both methods that when Rcyl is decreased, the shape of 

the cavity is nearing that of the supercavity behind a 

disk cavitator.  

2.3 Effect of Cone Angle  

The last effect considered is that of cone angle for a 

cylinder with Lcyl+Lcone = 40 and Lcone=5 where Rc was 

0.25. Three cone angles of 4
o
, 6.3

o
, and 10.75

o
 were 

considered.  Figure 11 displays the results of the VOF 

method for these cases. Reducing the cone angle 

increases both the length and diameter of the cavity 

region.  

Figure 12 shows the dimensionless cavity length vs. 

cavitation number for two different cone angles. Similar 

to the previous figures, the experimental and theoretical 

results for supercavitation behind a disk cavitator are 

also plotted in the figure. As observed, the cavity length 

decreased when the cone angle increased in the same 

cavitation number. Differences between the two 

methods of VOF and BEM are seen at low cavitation 

numbers. However, when σ is greater than 0.2, the two 
results are nearing each other.  

Conclusion  

In this paper, the partial cavitation over axisymmetric 

bodies is studied using two numerical methods: the 

VOF technique based on the solution of the Navier-

Stokes equations along with an equation for liquid 

volume fraction, and boundary element method (BEM) 

based on the potential flow theory. The results of the 

two models agree well with each other and with those 

of the experiments and theory for a disk cavitator. For 

an axisymmetric body with a front cavitator, while the 

two results are in good agreement for large cavitation 

numbers, discrepancies are seen for σ<0.2. The effect 
of different geometric parameters of a general shape of 

an axisymmetric body is also investigated using the two 

methods. 

Figures 

 

 

Fig. 1 Source ring in a cylindrical coordinate. 

 

 

Fig. 2 Schematic of the axisymmetric body.  
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Fig. 3 Dimensionless cavity length vs. cavitation number for a 

disk cavitator. 
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Fig. 4 Dimensionless cavity diameter vs. cavitation number 

for a disk cavitator. 
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Fig. 5 Drag coefficient vs. cavitation number for a disk 

cavitator. 

 

Fig. 6 The results of VOF model for a base case with Rc=0.25 

and Rcyl= 0.9 for a cavitation number of σ = 0.0698. 

The image contains cavity shape, and velocity and 

pressure distributions. Pressures shown in this and all 

following figures are in Pascal.  

 

Fig. 7 The VOF method results for the effect of cone length 

(i.e. varying Rc at a constant Rcyl and cone angle) on 

the characteristics of cavitation for a cavitation number 

of 0.0698. 

 

Fig. 8 Dimensionless cavity length vs. cavitation number for 

different cone length (by varying Rc). The results are 

shown using both VOF and BEM methods. The displayed 

experimental and analytical results should not be 

compared with those of the two methods (refer to the text 

in section 2.1). 

 
Fig. 9 The VOF method results for the effect of cylinder 

radius (at constant cone angle and Rc) on the 

characteristics of cavitation for a cavitation number of 

nearly 0.09.  
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Fig. 10 Dimensionless cavitation length vs. cavitation number 

(Rcyl=0.5, 1.1). The displayed experimental and 

analytical results should not be compared with those of 

the two methods (refer to the text in section 2.1). 

 

Fig. 11 The VOF method results for the effect of cone angle 

(at constant Rc) on the characteristics of cavitation for 

a cavitation number of nearly 0.09. 

 

Fig. 12 Dimensionless cavitation length vs. cavitation number 

(α=4º, 6.3º , 10.75º or Rcyl = 0.6, 0.8, 1.2); Rc was held 

constant. The displayed experimental and analytical 

results should not be compared with those of the two 

methods (refer to the text in section 2.1). 
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