The study of milk ultrafiltration performance as a function of membrane molecular wieght cut off

Mohamed A. Razavi *a,

Poster presentation

^aDepartment of Food Science and Technology, University of Ferdowsi,

Mashad PO Box:91775-1163, Iran.

Abstract

The effect of membrane melecular weight cut off (MWCO) at three levels (10, 20 & 50 kD) on dynamic behaviour of permeate $flux(J_P)$, hydraulic resistances(total hydraulic resistance, R_T ; reversible fouling resistance, R_{ff} ; irreversible fouling resistance, R_{ff} and membrane hydraulic resistance, R_{ff}) and milk solutes rejection (protein, R_P ; fat, R_F ; lactose, R_L ; minerals, R_M and total solids, R_{TS}) have been studied. Experiments were carried out using the pilot plant UF membrane system equipped to a spiral wound module and a polysulfoneamide membrane. A three-stage strategy based on an resistance-in-series model (boundary layer-adsorption) was used to determine the different hydraulic resistances.

The results showed that the J_P decreases greatly with increasing process time, but the J_P values for 20 kD obtained considerably higher than 10 & 50 kD during whole process. R_T increased during operation at all levels of MWCO, but the hyraulic resistances values for 50 kD was significantly greater than 10 & 20 kD. The milk solutes rejection results also showed that the R_P and R_F were almost constant with process time at the corresponding MWCO, whereas the R_L , R_M and R_{TS} significantly increased.

^{*}Corresponding author: Tel.: +98 511 8795618; fax: +98 511 8787430; email: S.Razavi@UM.ac.Ir