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Abstract- In this paper an estimation 
technique for the data hiding capacity in 
biometric images is presented. We consider the 
QSWT algorithm for data hiding in biometric 
images and investigate the effect of message 
strength in increasing capacity in the presence 
of different types of attacks. 

Keywords- data hiding, image watermarking, 
DWT, QSWT, channel capacity. 

 
1- Introduction 

 
Data hiding refers to embedding 
information within a host data such as 
text, audio, image or video. In 
watermarking applications, the hidden 
data represents authorship information, 
a time stamp or copyright information 
[1]. Data hiding in biometric images 
has been proposed to make the 
biometric systems secure and resilient 
to deliberate manipulations and 
attacks. 
 
Data hiding capacity is a measure of 
the amount of information that can be 
hidden in a digital image while 
satisfying requirements such as 
robustness and invisibility. Estimating 
the capacity can set an upper-bound to 
the amount of data that can be hidden 
in an image, therefore it can help in the 
design of efficient data hiding 
algorithms. There has been ongoing 
research in data hiding capacity 
estimation in recent years. In [2], each 
pixel is considered as an independent 
channel and the capacity is calculated 

based on the theory of parallel 
Gaussian channels. Reference [3] 
presents an information theoretic 
model for data hiding and studies the 
capacity problem under several types 
of attacks. In [4], zero-error 
information hiding capacity in JPEG-
compressed domain is presented. 
Reference [5], presents an analysis of 
watermarking capacity based on the 
content of wavelet subbands and uses 
the concept of wavelet quantization 
matrix and Noise Visibility Function. 
 
The factors determining data hiding 
capacity include (1) the statistical 
model used for the host image, (2) the 
distortion constraints placed on the 
data hider and the attacker, and (3) the 
information available to the data hider, 
attacker and decoder. In fact, the 
content of an image has great influence 
on its data hiding capacity. Data hiding 
capacity can also be influenced by the 
watermark strength, but high strength 
does not necessarily imply high 
capacity, as will be shown in 
simulation results. In previous works 
[2-5], capacity is estimated for data 
hiding in wavelet domain. In those 
works, the watermark strength is 
constrained based on the content of 
wavelet subbands.  
 
In this paper, a framework for 
estimating the capacity of data hiding 
in biometric images based on QSWT 
algorithm is presented. Automated 
biometrics can provide accurate and 
reliable user authentication method. 



Watermarking biometric images can 
guarantee secure transmission of 
acquired images from intelligence 
agencies to a central image data base 
[6]. We assume that these watermarked 
biometric images are used for 
automatic user recognition and 
authentication. Since authentication 
will be done automatically, 
considerations of Human Visual 
System in watermarking can be 
ignored to some extent. In other words, 
in this proposed scheme, watermark 
(message) strength can be distributed 
equally among different wavelet 
subbands, regardless of their frequency 
contents. 
 
Also in this paper, we compare the 
data hiding capacity in the presence of 
different attacks and discuss the effect 
of increased watermark strength on the 
capacity.  
 
This paper is organized as follows. In 
section 2, a mathematical model used 
for image watermarking is presented. 
Section 3 describes the QSWT 
approach for data hiding. Section 4 
gives capacity results for Gaussian 
channels. In section 5, simulation 
results for biometric images are 
presented. 
 

2- Mathematical model for data 
hiding 

 
In data hiding schemes, a host image is  
 

Fig 2. Data hiding channel [9] 
considered as a communication 
channel for transmitting messages.  
Therefore, watermarking capacity can 
be estimated using traditional 
information theory. Fig. 1 shows a 
common model for watermarking in 
transform domain. In this model, the 
forward transform block decomposes 
the image into its coefficients of L 
bands. This forward transform can be 
either discrete cosine transform (DCT)  
or discrete wavelet transform (DWT). 
Then, a watermark (message) is added 
to each band. The watermarked image 
is reconstructed using an inverse 
transform block. This image undergoes 
some certain type of processing (such 
as compression, addition of noise, 
median filtering) to yield the image. At 
the receiving end, watermark is 
extracted by decomposing this image 
into its L bands (using the same 
forward transform block) and the 
hidden message is extracted from each 
band. In this paper, we aim to estimate 
the capacity of such communication 
channel which is used to hide 
messages in biometric images such as 
fingerprint and iris images. In [9] a 
model for data hiding channel is 
presented, as shown in Fig.2 where, 
S is a watermark (message) to be 
transmitted through the channel. The 
channel noise is modeled as a 
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combination of two sources: I  the 
noise due to the host image and P , the 
noise due to processing. In this paper, 
we estimate the capacity for the case 
that image undergoes median filtering, 
JPEG compression, Gaussian filtering, 
sharpening and addition of Gaussian 
noise. 
 

 
3- Channel Specification 

 
In the above model for data hiding, we 
assume that the data hiding channel is 
a combination of L  parallel sub-
channels. The decomposition of the 
image is performed by applying a 
forward DWT transform. DWT 
transform is identical to a hierarchical 
subband system where the subbands 
are logarithmically spaced in 
frequency domain. The image is first 
decomposed into 4 parts of high, 
middle and low frequencies (LL1, 
HL1, LH1, HH1). The subbands LH1, 
HL1 and HH1 are the finest scale 
wavelet coefficients. Subband LL1 is 
further decomposed and this process is 
repeated several times. In some data 
hiding schemes, the watermark 
message is hidden in these subbands 
according to the magnitude of their 
coefficients. So each subband of the 
wavelet decomposition can be 
considered as one of the sub-channels 
defined in our model. 
 
In some schemes, the coefficient 
selection method is based on the 
Qualified Significant Wavelet Tree 
(QSWT) [7]. This method takes the 
relationships of DWT coefficients and 
spatial information into consideration 
and thus achieves more robustness. 
The principles of QSWT are as 
follows: 
 
A parent-child relationship can be 
defined between wavelet coefficients 
at different scales corresponding to the 

same location. Excluding the highest 
frequency subbands, every coefficient 
at a given scale can be related to a set 
of coefficients at the next finer scale of 
similar orientation. The coefficient at 
the coarse scale is called the parent, 
and all coefficients corresponding to 
the same spatial location at the finer 
scales are called children. In other 
words, a family tree is constructed by 
grouping n levels of wavelet 
coefficients in the same spatial 
direction. The parent is a wavelet 
coefficient in one of the three highest 
frequency subbands HLn, LHn or HHn   
and its children are the ones located 
along the same orientation in the next 
higher scales [8]. For a given parent, 
the set of all coefficients of all finer 
scales corresponding to the same 
orientation are called descendants.  In 
Fig. 3 a wavelet tree consisting of all 
descendants of one coefficient in LH3 
is shown. 

Fig. 3.  DWT decomposition and all descendents of one 
coefficient in LH3.  

 
Choosing an appropriate coefficient as 
a parent for data hiding is done based 
on some amplitude thresholds. If a 
wavelet coefficient Djixn ∈),( , where 
D  is a subband labeled HLn, LHn, 
HHn, at the coarsest scale is  a parent 
of ),(1 qpxn− , satisfying 1),( Tjixn 〉  , 

21 ),( Tqpxn 〉−  and, ,2,...,12 iip −=  
jjq 2,...,12 −= , 1,, 〉jin , for a given 



threshold 1T  and 2T , then ),( jixn  and 
its children are called a QSWT [7].  
 
So in this case the elements of each 
sub-channel are the coefficients of the 
QSWT.  
 
In this paper, we will show the effect 
of appropriate data hiding schemes in 
increasing the data hiding capacity. As 
will be shown in section 5, we have 
estimated the data hiding capacity for 
two cases and compared estimated 
capacities. 
 

4- Channel capacity 
 

The capacity of an AWGN channel can 
be calculated according to  

)1(log 22
2 nxWC σσ+=     (1)  

in which W  is the channel bandwidth , 
2
xσ  is the variance of the message 

signal to be transmitted and 2
nσ  

denotes the noise variance . In this 
work we assume that message is 
transmitted through L bands of 
transformed (DWT) image. So in an 

NM ×  pixel image, we have 
LNM /)( ×  coefficients. According to 

the Nyquist sampling theory, sampling 
points should be W2 , so the bandwidth 

of an image will be
L

NM
2
×  [5]. 

 
The decomposition of an image into L  
subbands results in L  parallel sub 
channels with two noise sources in 
each sub-channel. Since we have no 
knowledge about the distribution of 
these noises, we assume the worst 
Gaussian distribution [10]; we assume 
that these two noises are Gaussian and 
independent. So the channel noise can 
be replaced by one noise with 
variance 22

pi σσ +  where 2
iσ  is the 

variance of image noise and 2
pσ  is the 

variance of processing noise. Thus the 

total capacity of  L  parallel channels is 
given by [9]: 
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In most watermarking applications, 
2
xσ  is calculated according to 

perceptibility requirements. For 
instance in [9] 2

jxσ  is replaced by the 
visual threshold of band j . In other 
words, 2

jxσ  is the maximum message 
signal energy permitted in band j  
based on its perceptual quality effects. 
This parameter also depends on the 
magnitude of the particular coefficient. 
Due to the properties of human visual 
system, a coefficient with larger 
magnitude can be altered to a larger 
extent than a coefficient with smaller 
magnitude.  Our goal is to have an 
estimate of the average energy that can 
be added to a particular band. Since the 
human visual system is more sensitive 
to lower frequency bands than higher 
ones, and lower frequency bands have 
higher variance, a reasonable model 
for the visual threshold can be [9] 

ασσ 22
jj ix k=    (2) 

where 10 ≤≤ α , and 
jik σ〈〈 , and 

jiσ  is 
the variance of the coefficients in band 
j . 

In some scenarios such as automatic 
biometric user authentication, where 
recognition is done automatically, 
human perception will be of less 
importance. In these cases, the energy 
of message signal can be distributed 
equally among different bands 
regardless of their variances. In this 
paper, we set 0=α  and calculate the 
capacity for different values of k . 
 
Channel noise is the sum of two noise 
sources, image noise with variance 2

iσ  
and processing noise with variance 2

pσ . 
In order to model the image noise, we 



assume that )( jI if
j

 is the distribution 
of the jth subband of the host image. 
The image noise is split into its 
components in L subbands which are 
modeled as random variables with 
variance 2

jiσ . The next step is to obtain 
their entropy equivalent Gaussian 
variances (or the Gaussian random 
variable that has the same entropy as 
these random variables). This is 
achieved by plotting a histogram of the 
coefficients of each band and 
calculating the entropy. If x∆  is the 
width of n  bins of the histogram 

nmmgi ,...,2,1),( =  and p  is the total 
number of coefficients in band j , the 
entropy and the equivalent Gaussian 
variance 2

jiσ  are obtained as 
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Thus the image noise in subband j  
can be replaced by a Gaussian noise of 
variance 2

jiσ [9]. Note that this noise 
source can be omitted in non-blind 
approaches, since the image noise can 
be subtracted from the received image. 
Therefore, we expect such schemes to 
have higher capacity than blind 
watermarking approaches. 
 
The processing noise is estimated as 
the variance of an equivalent additive 
noise which substitutes the actual 
(nonlinear) processing noise sources 
[9], such as JPEG compression and 
gamma correction. We define 
processing noise as the equivalent 
additive noise which accounts for the 
reduction in correlation between the 
transform coefficients of the original 
image and the transform coefficients of 
the image obtained after processing. 
We assume the processing noise in 

each subband as Lj
jp ,...,1,2 =σ . In 

order to obtain this variance, we apply 
the processing to in  test images and 
decompose both the original and 
processed images into L  subbands. 

Thus we will obtain L
MNni  samples 

for each subband. Let 
LMNnkc ijk

/)(,...,1, =  be the 
coefficients of band j of test images 
and  LMNnkc ijk

/)(,...,1,~ =  be the 
corresponding coefficients of the 
images subjected to processing. The 
variance of processing noise is 
obtained as follows: 
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In the next section, image noise and 
processing noise are estimated for 
fingerprint and iris images based on 
the above equations by means of 
simulations. 
 

5- Experimental results 
 
We estimate data hiding capacity for 
two databases of fingerprint images 
(364×328 pixels) and iris images 
(576×768 pixels). The images were 
decomposed into L=10 subbands by 
applying two dimensional wavelet 
transform. We used 4-tab Daubechies 
filters for wavelet decomposition of 
images. We have assumed that the 
watermarked image may be subjected 
to different types of attacks including 
median filtering, JPEG compression, 
Gaussian filtering, sharpening and 
addition of Gaussian noise. We 
estimated the noise due to these attacks 
and figured out that in order for the 
images to resist these attacks how 
many bits can be hidden in them. In 
other words, acceptable capacities for 



these images were estimated in order 
to be robust against different attacks. 
Since we have focused on data hiding 
for automatic user authentication 
schemes, we are able to eliminate the 
effect of human visual system on 
designing watermarking algorithms. 
Thus we choose 0=α  in Equation (2) 
so that message energy is distributed 
equally among different subbands. The 
constant k  is chosen to be smaller than 
the variance of the coefficients of each 
subbands. 
 
Also since we are targeting user 
authentication applications, we use 
non-blind data-hiding, as a result we 
have omitted the variance of image 
noise 2

iσ . The variance of processing 
noise 2

pσ  is estimated according to 
Equaion (4). So the capacity of data 
hiding channel is given by 
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The estimated capacity for different 
values of k in the presence of different 
kind of attacks is shown in Fig.4 and 
Fig.5 for the following two cases: 

• Case A:  We have assumed that 
all coefficients of each subband 
can be used for data hiding. 

• Case B: We have assumed only 
the coefficients of QSWT are 
considered as data hiding 
channels.  

 
It is shown that in the first case, 
fingerprint images provide more 
capacity for data hiding in comparison 
with iris images. In our simulations, 
constant k  indicates the energy of the 
message to be hidden. It is shown that 
increasing k  has no effect in 
increasing capacity in the presence of 
sharpening attacks. In other words, 
increasing message energy is not 
appropriate for achieving higher 

capacity in these cases. This is true 
because sharpening is a kind of high 
pass filtering and we assumed that the 
data is hidden in mid and high 
frequency bands. Also by using QSWT 
algorithm, the total capacity will 
increase. This is more obvious for iris 
images. 

 

 
(a) 

(b) 
 

Fig 4. Capacity estimates (case A) a) fingerprint images, b) 
iris images 

 
6- Conclusion 

 
We have presented a technique for 
estimating the data hiding capacity of  
biometric images for user 
authentication applications. Since 
human perception is of less importance 
in such scenarios, the message energy 
can be distributed equally among 
different subbands of wavelet 
transform. Our experimental results 
show that increasing message energy 
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will increase data hiding capacity, 
although other properties such as 
visual perception may decrease. Also it 
was shown that the QSWT algorithm 
will increase the capacity. 

 
(a) 

 
(b) 

 
Fig. 5. Capacity estimates (case B) for a) fingerprint image  

b) iris image 

 
Also increasing message energy in the 
presence of compression and Gaussian 
noise will cause a significant increase 
in the capacity but in the case of 
sharpening and filtering message 
energy does not have any significant 
effect on data hiding capacity.  
 

 
7- References 

 
[1] P. Moulin, M. K. Mihcak, "A framework 
for evaluating the data-hiding capacity of 

image sources", IEEE Trans. Image 
Processing, Vol. 11,  No. 9, September 2002. 
 
[2] S. D. Servetto, C. I. Podilchunk, K. 
Ramchandran, "Capacity issues in digital 
image watermarking", IEEE Intl. Conf. on 
Image processing, 1998, volume 1. 
 
[3] P. Moulin, M. K. Mihcak, "A framework 
for evaluating the data hiding capacity of 
image sources", IEEE Trans. Image 
processing, vol. 11, no. 9, 2002. 
 
[4] C. Y. Lin, S. F. Chang, "Zero-error 
information hiding capacity of digital images", 
IEEE Intl. conf. on image processing, vol.3 
2001. 
 
[5] Z. Fan, Z. Hongbin, "Wavelet domain 
watermarking capacity analysis", proc. SPIE 
Vol. 5637, 2005. 
 
[6] N. K. Ratha, J. H. Connel, R. M. Bolle, 
"Enhancing security and privacy in biometric-
based authentication systems", IBM Systems 
Journal, Vol. 40, No. 3, 2001. 
 
[7] M. Hsieh, D. Tseng, Y. Huang, "Hiding 
digital watermarks using multiresolution 
wavelet transform", IEEE Trans. On industrial 
electronics, vol. 48, No. 5, Oct 2001. 
 
[8] B. McKinnon, X. Qi, "Adaptive wavelet-
based family tree quantization for digital 
image watermarking", 
 
[9] M. Ramkumar, A. N. Akansu, "Capacity 
estimates for data hiding in compressed 
images", IEEE Trans. Image Processing, Vol. 
10, No. 8, August 2001. 
 
[10] T. M. Cover, J. A. Thomas, Elements of 
Information Theory, 2nd, Ed. New York, 
Wiley, 1991. 

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

k (visual threshold)

ca
pa

ci
ty

 (
bi

t/
pi

xe
l)

capacity for fingerprint image with QSWT algorithm

gaussian filtering
jpeg compression
median filtering
gaussian noise
sharpening

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
0

2

4

6

8

10

12

14

k (visual threshold)

ca
pa

ci
ty

 (
bi

t/
pi

xe
l)

capacity for iris image with QSWT algorithm

gaussian filtering
jpeg compression
median filtering
gaussian noise
sharpening


