

 A differential model for solving an optimization problem with interval-valued objective function
Sohrab Effati 
, Morteza Pakdaman

Department of mathematics, Tarbiat Moallem University of Sabzevar, Sabzevar, Iran

Abstract:

  In this paper we apply a differential model (neural network model) for solving an optimization problem with interval valued objective function. To construct the differential model, here we used Karush-Kuhn-Tucker optimality conditions.
1. Model definition
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 and we have the following operations in 
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Where k is a real number. We define the following Hausdorff metric in 
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Also a function 
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 is called an interval-valued function, i.e. for each 
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   Proposition1. 1.  ([see [1]) If  f  be an interval valued function , then f  is continuous at 
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   Definition1. 1.  Let  X  be an open set in R . An interval valued function  f    with 
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 is called weakly differentiable at 
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. Also we write 
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   Proposition1. 2  ([see [1]) f   is LU-convex at    x if and only if  
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 are convex at x.

   Consider the following optimization problem ( with interval valued objective function):
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Where 
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 is the feasible set which is a convex subset of 
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  The meaning of minimization in (2) follows from the partial ordering
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    Definition1. 2.  Let  
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    Theorem1. 1. (see [1]) Suppose that the objective function 
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Then  
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 is a type1 solution of problem (2).
2. Solving Method
   Wu (see [1]) proved the KKT optimality conditions for problem (2) (theorem 1.1). Using these conditions we propose the following differential model for solving problem (2):
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     Theorem1.2. If the dynamical system (3) converges to a stable state x(.)  and  y(.) then the state x(.)  is convergent to the optimal solution ( type1 solution) of problem (3).
    Proof. (The proof is similar to [3]).
3. Conclusions 

Here using KKT optimality conditions we proposed a differential system which is convergent to type1 solution. The proof of it’s convergence ( proof of theorem 1.2)  is similar to the proof of theorem 1 from [3]. 
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