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ABSTRACT. This paper is an investigation of factorable operators, Riesz bases and
Weyl-Heisenberg frames on G with respect to a function-valued inner product, the
so called ¢-bracket product, on L?(G) where G is a locally compact abelian group
and ¢ is a topological isomorphism on (7. We investigate p-factorable operators
on L?(G) and extend Riesz Representation Theorems for these operators. Also we
introduce o-Riesz bases and obtain a characterization of them in L?(G). Finally
we show that several well known theorems for Weyl-Heisenberg frames in L?(RR)
remain valid in L?(G), and they are unified under the aspects of group theory,
in connection with the p-bracket product.

1. INTRODUCTION AND PRELIMINARIES

Tn [12] we have defined the @-bracket product as a function-valued inner product
on L*(G), where (G is a locally compact abelian (LCA) group and ¢ is a topological
isomorphism on G. The ¢-bracket product as a new inner product on L2*(G) is
applicable to extend many ideas and constructions from the theory of factorable
operators and Weyl-Heisenberg frames on R™, to the setting of LCA groups in a more
general and different way. Utilizing factorable operators we can define and investigate
Riesz bases in this new setting. Whereas [12] was devoted to basic properties of the
p-bracket product and -bases, this paper deals with characterizing ¢-Riesz bases
and -factorable operators on L2((G). We continue our investigation indepedently of
[12], following the line of approach worked by Casazza and Lammers [4], but in a
more general setting, using various tools in abstract harmonic analysis. We define
and investigate ¢-factorable operators and -Riesz bases in L?(G). We then study
Weyl-Heigsenberg frames on LCA groups, in connection with the ¢-bracket product.
Our results generalize some of the results appearing in the literature on Riesz bases
and Weyl-Heisenberg frames. Such a unified approach is useful, since it determines
the basic features of them, and includes most of the special cases. Also it leads to the
interesting question of how to formulate related topics (such as frames) in the LCA
group setting.

Here we give some of the basics regarding LCA groups. For a comprehensive
account of LCA groups we refer to [7, 10]. Suppose 7 is a LCA group with the Haar
measure dx. A subgroup L of G is called a uniform lattice if it is discrete and co-
compact (i.e G/L is compact). Let ¢ be a topological isomorphism on G. If L is a
uniform lattice in G, then so is p(L). Indeed, obviously (L) is discrete. Also by [10,
Theorem 5.34] G/¢(L) is topologically isomorphic to G/L and so it is compact. Tn
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this paper we always assume that G/p(L) is normalized i.e. |G/p(L)| = 1. Denote
by @(L)% the annihilator of (L) in G, i.e. @(L): = {y € G; v(p(L)) = {1}}, which
is a uniform lattice in G (see [13, 14, 15]).

Let I, be a uniform lattice in G. Choosing the counting measure on L, a relation
between the Haar measures dz on G and di on G/p(L) is given by the following
special case of Weil’s formula [7]:

For f € LY(G), we have 3, ., fze(k™")) € L' (G/p(L)) and

(1.1) [ f@as= [ S gk ) ds,
“ GIel) p(k=1)ep(L)
where & = z@(L).
Let f,g € L%(G). The @-bracket product of f,g is defined by
(1.2) £, 9o (&) = D falwp(k)),
kel
for all z € G. We define the p-norm of f as ||f|l,(¢) = ([f, flo(£))'/2. Tn the sequel
we collect several basic properties of the p-bracket product which follow by easy direct
computations. The reader who does not want to check the details is referred to [12].
Let f, g € L*(G). Then |[f,9)s| < Ifllollglle (Cauchy Schwartz Inequality). Also
obviously (1.1) implies fG/w(L)[f, gl (®)dt =< f,g9 >12(q). Fory € G, denote by M.,
the modulation operator on L*(G), i.e. M, f(z) = y(z)f(x), for all f € L?*(G). Then
for f,g € L*>(G) and v € o(L)"* we have the following relation between the ¢-bracket
product and the usnal inner product in L*(G):

e

(1.3) [fs9le(y) =< f, Mg >r2a) -

We say g € L*(G) is p-bounded if there exists M > 0 so that ||g||, < M a.e.. For
f,9 € L*(G) the function [f, g],g need not generally be in L*(G). But we have

Proposition 1.1. If f,g,h € L*(G) and g, h are p-bounded then [f,g],h € L*(G).

n #m € Nand |lgn|l, = 1 for all n € N. Let f € L*(G) and (gn)nen be a -
orthonormal sequence in L?(G). An extension of [4, Theorem 4.13] from R to the

A sequence (gn)nen C L2*(G) is called @-orthonormal if [gn,gm], = 0, for all

setting of a LCA group gives Bessel’s Inequality for ¢-bracket products as follows:
(1.4) Do galo @ < NIFIEE), for ace. & € G/o(L).

neN
A p-orthonormal sequence (g, )nen is called a @-orthonormal basis if [f,gn], =0
a.e. for all n € N, implies f = 0 a.e. Let (gn)nen be a p-orthonormal sequence.
It is not difficult to mimic the standard proofs for a usual orthonormal sequence
in a Hilbert space to obtain equivalent conditions for (g,)neny C L?(G) to be a -
orthonormal basis.

Proposition 1.2. If (g, )nen is a p-orthonormal sequence in L*(G), the following
are equivalent.

(1) (gn)nen s a mazimal @-orthonormal sequence, i.e. (gn)nen i not contained
in any other w-orthonormal set.

(2) (gn)nen is a p-orthonormal basis.
(3) For each f € L*(G), f =3 ,cnlf> 9nlogn a.e.
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4) |If112 =X nen 1> gnlol? a-e. for all f € L*(G) (Parseval Identity).
(5) {Mygn}nenyep)r @5 an orthonormal basis for L*(G).

Thanks to Zorn’s Lemma and Proposition 1.2, L?(G) admits a ¢-orthonormal
basis.

The rest of this paper is organized as follows. In Section 2 we introduce a ¢-
factorable operator as an extension of the analogous one in [4]. We show that most
of the authors’ results on R, especially the Riesz Representation Theorems remain
valid for a LCA group. Tn Section 3 we define a y-Riesz basis in L?(G) and establish
equivalent conditions for a sequence to be a @-Riesz basis.

Over the last ten years, there have been a lot of researches about frame theory in
general and Weyl-Heisenberg frame theory in particular. While most of them are on
the Euclidian space, just a few generalizations to LCA groups have been presented
[14, 16, 11, 6]. Our main goal in Section 4 is to represent Weyl-Heisenberg frame
identity and the frame operator of a Weyl-Heisenberg frame in terms of the -bracket
product and to extend some of the results in this theory from R to an LCA group.

2. @-FACTORABLE OPERATORS

Throughout this paper we always assume that G is a second countable LCA group,
 is a topological isomorphism on G and the notation are as in Section 2.

A function h € L*™(@) is said to be @-periodic if h(zp(k)) = h{z) for every
kel x€dG.

Definition 2.1. We say an operator U : L2(G) — LP(E), 1 < p < 00, is @-factorable
if U(hf) = RU(f) for all f € L?(G) and all p-periodic h € L*°(G), where F is a
subgroup of G or G/¢(L).

A bounded operator U is p-factorable if and only if it commutes with modulations.
More precisely:

Lemma 2.2. Let U be a bounded operator from L*(G) to L?(E), where E is a sub-
group of G or G/p(L). U is p-factorable if and only if

(2.1) U(M,g) = M,U(g) for all g € L*(G), v € p(L)".

Proof. If U is ¢-factorable and v € (L) (C G C L°°(@®)) then since v is p-periodic,
(2.1) obviously holds. Conversely, assume (2.1). Then U is ¢-factorable using the facts
that (L)' (= m)) is an orthonormal basis for L*(G/¢(L)) and L®(G/p(L)) C
L?(G/p(L)). Note that there is a one-to-one correspondence between L™ (G/p(L))

and the set of all p-periodic h € L>=(G). O

Our main goal in this section is to characterize (-factorable operators U : L?(G) —
LP(G/p(L)), forp=1and p=2.

Clearly the operator U defined by U(f) = [f,g], for f € L*(G), is ¢-factorable.
We will also show that every p-factorable operator U : L*(G) — L'(G /(L)) is of this
form. First we establish a lemma in which we show that two ¢-factorable operators
are equal on L?(G) if and only if their integrals over G/p(L) are the same.

Lemma 2.3. Let Uy, Us : L*(G) = L*(G /(L)) be two @-factorable operators. Then

Uy = Us if and only if fG/w(L) Ur(f)(z)di = fG/w(L) Us(f)(x)dz, for every f €
(@),
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Proof. The necessity is obvious. For the converse, by [7, Theorem 4.33] it is enough

e

to show that Uy (f) = (Z(?) for all f € L?(G). Let £ € p(L)* and f € L%(G). Since

¢ as a function in L*°(@) is ¢-periodic we obtain
TiAE) = Joyo V(@) di
= fG/<p(L) Ur(€71.f)(a)dz
fg/<p(L) Us (€71 f)(@)di

= U2(f)(9).
Hence U; = Us. O

Now we have the following Riesz Representation Theorem which characterizes all
@-factorable operators from L?(G) to L' (G /¢(L)).

Theorem 2.4. A bounded operator U : L*(G) — LY (G/p(L)) is @-factorable if
and only if there exists g € L*(G) such that U(f) = [f, 9], a-e. for all f € L*(G).
Moreover ||U|| = |g]l.

Proof. Let U : L*(G) = L*(G/p(L)) be a bounded ¢-factorable operator. Define the
linear functional 1 : L2(G) — C by ¢(f) = fG/w(L) U(f)(¢)dz. By the standard Riesz
Representation Theorem [8, Theorem 5.25], there exists g € L>(G) such that ¢(f) =<
f29 >12(¢) for all f € L*(G). Thus fG/w(L) Ulf)(@)de = (f) =< f,9 >r2(y=
fG/cp(L)[f, gl (@)da. By Lemma 2.3, U(f) = [f, g, a.e. for all f € L*(G). Moreover,
for any f € L*(G),

NWU(HIh = fG/w(L) |[f> gl (2)|d

< oo 1o (@llglo (2)ds

< Uiy IFIZER2 ([ o g% () ) 2

= [Ifllllgll2-
TOHIIUII < llgllo- Also |[Uglls = fy,,p) llgalo(@)dé = llgll3. Therefore U] =
gll2- O

The following theorem characterizes p-factorable operators from L?(G) to L2(G/@(L)).

Theorem 2.5. A bounded operator U : L*(G) — L*(G/p(L)) is p-factorable if and
only if there exists a p-bounded g € L*(G) such that U(f) = [f,gl, a.e. for all
[ € L*(G). Moreover ||U|* = ess supsec/ow)llgll} ().

Proof. Let U(f) = [f, 9], a.e. for some p-bounded g € L?(G). Then obviously U is
p-factorable and by Cauchy Shwartz Inequality we have

0N arowy = Jayow VD@ di
= Jojo [ 9lo(3)?d2
S iy P12 @) lg12 (8) i

< ess supiea /o |95 @ 720

(2.2)

IA

Letting f = g above we get ||U|| = ess supsca;o(n)llgllo(2).

For the converse, let U be a @-factorable operator from L2(G) to L*(G/p(L)).
Since G/y¢(L) is compact, L*(G/p(L)) C L'(G/p(L)) and so by Theorem 2.4, there
exists g € L*(G) such that U(f) = [f,g], ae. for all f € L*(G). But also g is



WEYL-HEISENBERG FRAMES AND ¢-FACTORABLE OPERATORS ON LCA GROUPS 5

¢-bounded. To show this observe that |U(g)(%)| < ||U|lllgll,(Z) for a.e. & € G/p(L).
In fact, for every y-periodic h € L®(G) we have

Jo o) IR P|U (9)(2) P di Joy oty U (hg) (@) 2 di
= U726/
< U fg |hg(@)?dz
= U fozy Zotmrepisy Iho(molk) Pdi
= NUI2 [y W@ oy lo@o(k=0)) 2di
= NP fo)pny BNl )
that is [U(g) ()] < [|U||llgll¢(2) for a.e. & € G/p(L). So we get ||g||% (%) = |U(g)(2)] <

1Ugllx(&) for a.e. & € G/p(L). Hence ||g||,(£) < ||U|| a.e. That is g is ¢-bounded.
d

Next we show that every bounded ¢-factorable operator on L2(G) is adjointable.

Proposition 2.6. Let U : L*>(G) — L*(G) be a bounded p-factorable operator and
U* be its adjoint. Then U* is p-factorable. Moreover,

(2.3) [U(f),9l, =1, U"(9)ly, a-e. forall f,g€ L*(G).

Proof. Clearly U* is p-factorable. Indeed, for f,g € L?(G) and g-periodic h € L>(Q)
we have
<U*(hf),g>120) = <hf,U(g) >r2
hU (g)

- (
= <hU*(f).9 >120) -
Moreover, given f,g € L*(G) we have
Joro) U gle(@)de = <U(f), g >120
= < f,U"(9) >120)

= fG/w(L)[-ﬂ U*(g) w(i)dia
which implies (2.3). O

Example 2.7. For applications the most important class of LCA groups is the class
of compactly generated LCA Lie groups. By the Structure Theorem for compactly
generated LCA Lie groups, these groups are of the form R? x Z9 x T" x F, where
p,q,7 € Ng and F is a finite abelian group (see [10]). Let G = R* xZ"XT" x Z,, for n €
N, where Z,, is the finite abelian group {0, 1,2, ...,n — 1} of residues modulo n. Then
L = Z"xZ" x {1} X Z,, is a uniform lattice in G. Let 4 be an invertible nxn real matrix
and fix | € Z". Define ¢ : G — G by p(z,m,t,p) = (Az,l + m,t,p), for every z €
R, m € Z", t € T", p € Zy. Then for g € L?(G), the operator U given by U(f) =
[f,9]y, where [f, gl (z,m,t,p) = ZkEZ",nGZ",qEZn fgle — Ak,m —1l+n,t—1,p—q),
is a p-factorable operator from L*(G) to L' (G/o(L)) (= L'(T™ x {1} x T x {1}).

Example 2.8. Fix a prime p. Let A, denote the group of p-adic integers as defined
in [10, Definition 10.2]. Consider the LCA group G = R x A, and let L be the
subgroup {(n,nu)},ez of R x A,, where u = (1,0,0,...). Then I. is a uniform lattice
in R x A, (obviously L is discrete and by [10, Theorem 10.13], R x A,/L is compact).
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Let a := (1/p,0,0,...) € A,. Then the mapping ¢ : R x A, = R x A, defined for
(z,v) € Rx A, by p(z,v) = (2z,av), is a topological automorphism on R x A,,. For
g € L*(R x A,), the operator U given by U(f)(z,v) = Yo fg(x — 2k, v — kau) is
a @-factorable operator from L*(R x A,) to LY (R x A,/L).

Example 2.9. Consider the subgroup of the upper triangular 3 x 3-matrices of the

1 a b
foorm | 0 1 —a |, wherea,b€ R. This group can be identified with R? equipped
0 0 1

with the product (a;,b1) o (a2, b2) = (a1 + as, by + by — ajas). Then G = (R2,0) is an
LCA group with the identity e = (0,0) and (a,b)~! = (—a, —b — a?). Clearly T, = Z?
is a uniform lattice in G. The mapping ¢ : G — G defined by ¢(a,b) = (2a,4b), is a
topological isomorphism on G. For g € L?(G), the operator U given by U(f)(a,b) =
S kyeze fala —2k,b— 4l — 4k + 2ka) is a p-factorable operator.

Our goal in the next section is to define and investigate ¢-Riesz bases in L2(G),
applying ¢-factorable operators.

3. ¢-RIESZ BASES IN L2(G)

Riesz bases in L?(R) have several equivalent definitions (see [5, 9, 17]). This section
sets out equivalent conditions for a sequence in L?(G) to be a y-Riesz basis, where G
is a second countable LCA group and ¢ is a topological isomorphism on G. We start
with the definition.

Definition 3.1. A sequence (f,)nen in L?(G) is said to be a ¢-Riesz basis if there
exists a @-orthonormal basis (g, )nen and a ¢-factorable operator U : L2(G) — L?(G),
which is a topological isomorphism and U(g,) = f,, for every n € N,

We introduce a @-complete (¢-total) sequence in L2(G) as follows:

Definition 3.2. Given a sequence (f,)neny C L2(G), by spanllle (f,) = L2(G) we
mean that for every f € L?(G) there exists a sequence {h,tneny C L®(G/p(L))
with 37 |hn(2)]? < oo a.e., such that f = 37| hnfa, a.e. We say a sequence

(fr)nen C L2(G) is p-complete (p-total) in L2(@), if spamllle (f,) = L2(G).
The following lemma will be needed in the proof of Theorem 3.4.

Lemma 3.3. Suppose U is a bounded o-factorable operator on L%(G). For every
f € L*(G), we have |[Uflly, < Ul flly a-e.

Proof. For every p-periodic h € L*®(G), we have

fg/w(L) |h(l’)|2||U(f)||fo(x)dx = fG/w(L) ZkeL |U(f)($§0(k7_1 )|2|h(I¢(k_1))|2dj:
Jooiny Ser [0 ok~ ) di

NU(hAI3

WU Rf113

1UI? Jo |hf(z)[*dz

lels fGM(L) > kel |hf(xp(k—"))?dE

= HUH2 fg/<p(L) |h(x)‘2‘|f‘|2<p(x)dx’
which obviously completes the proof. |

A
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Theorem 3.4. Let (fu)nen be a sequence in L?(G). The following are equivalent.

()

(fa)nen C L%(G) is p-complete, and there exist positive constants A and B
such that for any sequence {hy}nen in L°(G/o(L)) with Y oo | [hn()]* < 0o

a.e. one has

A bl <UD Bnfalla < B Y hal? ace.
n=1 n=1 n=1

(fn)nen is a p-Riesz basis.
(M, fr)vew(r)t nen s a Riesz basis in L*(G).

Proof. (1)= (2) Let (en)nen be a g-orthonormal basis in L2(G). Then
by Theorem 1.2 (3), spanlllc(e,) = L*(G). Define U : spanlle(e,) —
L*(G) by U320, hnen) = S o hufn, where {hy, }nen C L®(G/p(L)) with

n=1
oo |hn()]? < 0o a.e. Then U is bounded. Tn fact, by (3.1)
UGS ey, = 12205 b fall?

S Bz;l.ozl |h’n|2
BISZ, hneall?, ace,
and so

HU(ZZOZ1 hnen)“% = fG/w(L) “U(ZZO:1 hnen)Hi(i)dj:
< Bf(;/w(L) 12201 Imenll (2)dE
= BT, hneald,
for any {hy, tnen € L®(G/p(L)) with 3°°7 | |h,(2)|* < oo a.e. Thatis, [|U]] <
VB. Now define S : L*(G)(= spanllle (£,)) — L*(G) by S(3°0, hnfs) =
> hnen, where {h,}nen C L¥(G/p(L)) and > 07 |ha(2)]* < oo ae.

n=1
Hence by (3.1) we get
IS hafdllz = 12205 hnenll
= fozl |hn|2
< VAL hafallf, ace.

This implies that S is bounded on L?(G) and ||S|| < \/1/A. Also obviously,
SU =T and US = I on L?(G). Hence U is a topological isomorphism, which
is clearly p-factorable and Ule,) = f, for every n € N.

(2)= (3) Choose a ¢-orthonormal basis (g,)nen for L2(G) and the cor-
responding topological isomorphism U which is a @-factorable operator and
U(gn) = fn, for every n € N, as in the Definition 3.1. By Theorem 1.2
(M, fr)vew(1)t nen is an orthonormal basis for L*(G), and since U is ¢-
factorable U(M,g,) = M U(gn) = M, f,, for every n € N, vy € p(L)". So
(M fr)yew(L)+ nen is a Riesz basis.

(3)= (2) Let S,(r) be a fundamental domain for ¢(L) (for the definition
of a fundamental domain and a proof of existence see [14]). By [14, Theo-
rem 3.1.7], the system (M, T, (k) XS, 1, JkeL,yeo(r)t 18 an orthonormal basis for
L2(G). Define U7 : L*(G) = L*(G) by U(My,, Ty(k,)XSp0,) = Mo, fr, myn €
N. Using Lemma 2.2, U is a @-factorable operator. Moreover, by Proposi-
tion 1.2, (Ty(x) X5, .z, JkeL is a @-orthonormal basis for L?(G), and obviously
U(T(k,)XSpiry) = fny for every n € N. Finally since (M fn)ycpr)t nen is @
Riesz basis, U is a topological isomorphism.
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(2)= (1) Suppose (en)nen is a @-orthonormal basis and U is the cor-
responding topological isomorphism which is a @-factorable operator and
Ulen) = fn, for every n € N, as in the Definition 3.1. Let {h,},en be a
sequence in L>®(G/p(L)) with 307 | |hn(2)]? < oo for ae. @ € G/p(L).
Then using Lemma 3.3

I s nfully, = 12200 AnU(en)ll
= UGS haen)lls
IUIPI 02 Anenll,

HUH2ZZO:1|hn|27 a.e.
On the other hand
Yo [hal? = 11200 haenll,
= UTTUCGSL, haen)ll?,
NUHPNT (0L, Bnen) 12,

NP0 b Sl ace
So (3.1) holds. Moreover (f,,)nen is ¢-complete. Indeed, given any f € L2(G),

there exists a unique g € L?(G) with U(g) = f (since U is one-to-one and
onto). Write g = > oo ;[g,€n]p€n as in Theorem 1.2. Then h, = [g,e,], €
L>(G/p(L)) for every n € N and by Bessel’s Inequality > oo, |hn(2)]?
Ifllo(2) < oo for ae. 4 € GJo(L). Also f = U(g) = U(X o, hnen)
S haU(en) = 50 hyfn, showing that spanlle(f,) = L*(G). This
completes the proof.

IA

A

A

O

The next section is devoted to an application of the y-bracket product to Weyl
Heisenberg systems.

4. APPLICATIONS TO WEYL- HEISENBERG FRAMES

In this section we investigate Weyl Heisenberg frames with regard to the y-bracket
product. For general references on Weyl Heisenberg frames on R we refer to the
survey articles [1, 2].

Suppose L; and L, are two uniform lattices in G, g € L*(G) and T,g is
the translation of g by (k). We call (MyTyk)9)vce(Ls)* ke, @ Weyl Heisen-
berg system (Gabor system). 1If this system is a frame in L?(G) we call it a Weyl
Heisenberg frame. In this case the frame operator associated with it is defined as
S() = Xepra)r 2rer, < [+ MyTpyg > MyTypyg. We would like to consider
Weyl-Heisenberg frame Identity and the frame operator of a Weyl-Heisenberg frame
in terms of the w-bracket product. The following proposition is an extension of Weyl-
Heisenberg frame Identity with regard to the ¢-bracket product; see [5, 11, 4].

Proposition 4.1. Let L1 and Lo be two uniform lattices in G. Let g € LQ(G) be
p-bounded. Then for every f € L2(G) which is bounded and compactly supported we

have:

(4.1)

Z Z | < faM o(k)d > | Z / (l—l)fv f]%Ll ($>[97T¢(1—1)g]¢,L1 (m)dx,
k€L1 yep(La)* 1eLy 7 G/l Ll

where [f,9lo.L: (&) = Yper, fol@e(k™1), i =1,2.
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Proof. For k € Ly, using The Plancherel Theorem we have
Yooyt | < I My Tpuyg > I
= Loepteat | o @) My Ty g(@)dal?
=2 yep(Ls)” | fa/w(Lz) 2 wep(La) Flap)g(zek=")7(x)ds|?
=Y ezt 1FEMP
= W 7z
= 1Fell 26022y

where Fi(2) = 5y (1) S (@0 ()(ol6™). S0 we gt
Yokers 2vepna)t | < I MyTpiyg > 2
= Dker, fc/w(Lz) | Y oyewins) Fe)glze(k™"))*ds
= Dker Jaso(ns) 2o e ?( (D)9 (@e(lk™) Xy imyep(rs) f(@e(m))a(zo(mk™))ds
(put m = nl)
= ZkeLl fG/w(L2 Zw(z)@p( Ly) Flao())g(ze(lk™)) ng(n)E(p(Lz) flxp(nl))g(ep(nlk—"))di
= Yorer, Jo T@g@o(E™) Xomyep(r. Flap(n))glap(nk™"))dz
= Yoners Jo F@) [ (@o(n) Xyep, 9(zo(k™)g(zo(nk™))dz
=Y rer, Jo F@) f@o(m)lg, Tom-1)9lp,r, (z)dz
= S ver e ot Sowenion F@oU) Tpm ) F@pl)lg, Toon glours (@)di
= Yoners Jasonn Lo 1> floin (@9, Tpn—1)9lo.L, (&) di.

The ideas in the proof of Proposition 4.1 can be used to modify [11, Theorem 3.6],
which leads to the following corollary; (see also [3]).

Corollary 4.2. Let L1 and Ly be two uniform lattices in G. Let g € L*(G) such that

B = SUPcG /(L) ZkzeL2 |[g7T<p(k2)g]tp Ly ($)| < 0, and

(4.2)
A=infiecionlllglso, (@) = Xig shaers 19 Totha) 9o, (2)]] > 0.

Then (MyT (k)@ ke, yep(Ls)t 45 a Weyl-Heisenberg frame with bounds A, B.

Tt is useful to note also that the Weyl Heisenberg system has the following property.

Proposition 4.3. Let L and Ly be two uniform lattices in G. If f,g € L*(G) and
g 1s p-bounded then

(4.3) Z Z | < f, My Typyg > = Z ILfs Towy9lonrall 2206 o (L)) -

vye@p(Lo)L k€L kel

Proof. Using The Plancherel Theorem we have the following calculations which proves
(4.3).
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ZyEgp(Lz)L ZkGLl | < f’ M’YTgO(k)g > |2
= ZW@(LZ\)L ZkeLl |fG f(ff)Tgo(k)g(ﬂfW(@dﬂz)

= Z’yecp(Lz)L Zkeh | fc/w(Lz) Zw(z)@p@z) f(mgp(l))Tw(k)g(axp(l))ﬁ(w)djzp
= nyega(Lz)i ZkeLl |fG/<p(L2)[f7 Tcp(k)g]%Lz (.T)V(I)d.’EP

= Z'yego(Lz)L ZkeLl I/, T‘P(k")gho,Lg(’Y)P
_ = 2
- Zkeh HU’ Tw(k)g}waL2HL2(G//<p_E2))

= ZkeLl Mfa Tw(k)g}w,Lz H%?(G/@(Lg)y
O

Tn the sequel we will identify the frame operator of a Weyl-Heisenberg frame. For
this we need a couple of lemmas.

Lemma 4.4. Suppose g € L*(G) is p-bounded and p-periodic. Let T, be a uniform
lattice in G. Then

(4.4) Y. <[Myg>Mg=[fgleg ae foralfeL*G),
yEP(L)+
where the series converges in L*(G). In particular, if ||g|l, = 1 a.e. and P is the

orthogonal projection onto span{ Mg} c,Lyr, then Pf =[f,glyg a.e.

Proof. Let f € L2(G). By (1.3) we have

Z'ye(p(L)i < f,Myg > y(E) = Z’yG(p(L)i [f:9le (V@) = [f,9lp(2), for ae. @ €
G/p(L). Hence (4.4) holds, where the convergence of the series in L2(G) follows from
Proposition 1.1. In particular, if ||g[|, = 1 then (M,g), ¢zt is an orthonormal basis

for span{M,g},cpor)r- S0 Pf =32 copyr < f,My9> M,g =[f,gl,9 ae. O

Lemma 4.5. Let Ly and Lo be two uniform lattices in G, g € L*(G/p(L1)) and
(M Tp(1)9)vep(L1) " keL, be a Bessel sequence with bound B in L*(G). Then ||g||?, 1, <
B.

Proof. Let f € L*(G) be w-periodic and k € Lo. Then f - T, g € L*(G/e(L1)).
Since (L) is an orthonormal basis for L?(G/p(L1)) we have
Yveomnt | < T Towyg, My > > = |f: Tgo(k)§|‘%2(a/<p(h))

= Josown 1F@)Plg(ze(k~1))Pdi.
So

(4.5)
Yoy tmers | <EMTomg > 1P = Xocomntmer, | <f - Towd My > |?
- fG/w(Ln |f(2)]? Y okels lg(zp(k—")|?d
Ja o [F@PlIgl2 1, (x)di.

On the other hand

(4'6) Z | </ M'yTgo(k)g > |2 < BHfH2L2(G/<p(L1))'
yEp(L1)L,keLo
Hence (4.5) and (4.6) imply that ||g|| ;, < B, a.e. O

Whence the frame operator of a Weyl-Heisenberg frame is given by the following
theorem.
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Theorem 4.6. Let Ly and Lo be two uniform lattices in G and g € L™(G/p(L1)).
Suppose (M~ T y1)9)vep(L1),heL, 15 6 Weyl-Heisenberg frame with the frame operator
S. Then S has the form

(47) S(f) = Z [.f7 Tcp(k)g}ip,LlT@(k)ga
k€L

where the series converges unconditionally in L*(G).

Proof. By Lemma 4.5, Ty,(1y9 is p-bounded, so we can use Lemma 4.4 to obtain
S = Xyeowntwers <5 MyTpng > MyTo09
= ZkGLz[f’Tﬁo(k)g]%Lngo(k)g'
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