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Abstract-Gastpar and Vetterli named the ad-hoc networks with one randomly selected source-destination pair as
relay networks and they suggested using arbitrary network coding in order to increase the overall efficiency Here, the
relay network is investigated with two relays and no interference and a new achievable rate is obtained using a new
network coding (decode-and-broadcast). The obtained achievable rate (i) gives the lower bound for general relay
channel, obtained by Cover and EI Gamal, but with slight difference due to no interference assumption at the receiver
(ii) includes the one relay rates of a two-level relay channel studied by Gupta and Kumar using point to point coding,
(iii) includes the rates of two relay Aref network and other special two relay networks, (iv) meets the max-flow min-cut
upper bound under certain additional assumptions resulting in certain capacity theorems which include the related
previous capacities, (v) is validated by its consistency with previous results relevant to special cases of broadcast
channels.
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I. INTRODUCTION

Recently there has been much interest in studying relay networks and wireless relay communication
scenarios [1], [2].Wireless networks with base stations (cell networks) are relatively well understood by
considering the multiple access and the broadcast channels. However, the networks without base stations ( ad-hoc
networks) in which any node can act both as a terminal and as a relay for other transmissions are less well
understood and have many open problems. Ad-hoc networks was studied in [3],[4] as networks having n nodes
communicating with each other and multiple source-destination pairs to obtain an achievable rate region using
point to point coding. In [5] mobile ad-hoc networks have been studied. In [6], ad-hoc networks with one
randomly selected source-destination pair was named as relay networks. Also, in [6] arbitrary network coding was
suggested to increase the overall efficiency and was used to obtain achievable rates and to derive upper bounds
from max-flow min-cut theorem. Various problems of wireless ad-hoc networks have been studied in [32]-[38].

Here we consider the relay network introduced in [6] with two relays and no interference. This two relay
network was studied in [7] with deterministic links and in [29] with one random link. Now we study the two relay
network with randomness for all links to obtain a new achievable rate using a new network coding (decode-and-
broadcast).In other words, we investigate the two-level relay channel studied in [4,Fig.1] using a new network
coding instead of point to point coding.The obtained achievable rate gives the lower bound for the general relay
channel obtained by Cover and EI Gamal with slight difference due to no interference assumption at the receiver ,
includes the one relay rates of a two-level relay channel studied by Gupta and Kumar using point to point coding,
includes the rates of two relay Aref network and other special two relay networks, meets the max-flow min-cut
upper bound under certain additional assumptions resulting in certain capacity theorem which includes the related
previous capacities and is validated by its consistency with previous results relevant to special cases of broadcast
channels.

At first, in this section we recall some definitions, define the network model considered, describe the
network coding, remember previous studies of the model and then we list our new results.

A. Some definitions

Relay network [6] : A relay network is a wireless network having one source-destination pair and some
relays where the relays act as terminals (transmitters and receivers or cooperative nodes).

Stochastic (deterministic) relay network with no interference [7],[8],[29] : Stochastic (deterministic) relay
network with no interference is a network where the output of every link is some stochastic (deterministic)
function of only the input of that link.

So, a stochastic (deterministic) relay network with no interference is a special case of relay network
introduced in [6]. Deterministic relay networks introduced in [7] have been named as Aref networks in [8].

Remarks: 1. The assumption of no interference is applicable only for broadcast channels and does not apply
to multiple access channels. For this reason, we will use decode-and-broadcast coding (namely, the source and the
relays act as broadcast channels).

1



2. In [9],[10], the relay networks have been studied with a more general definition of determinism ( approximately
Gaussian determinism).

3. In deterministic wired network with independent channels [11], we don’t have broadcasting while in a
stochastic (deterministic) relay network with no interference and in other wireless networks such as wireless
erasure networks [12] we have broadcasting.

B. Network model :

Here, as mentioned in the introduction, we consider a stochastic two relay network with no interference
(Fig.1) consisting of one source (Xg), one destination (ys), two relays (x; and x,) and seven stochastic links: the
link between the source and the destination (yos3), two links between the relays (v, , y21), two links between the
source and the relays ( yo1, Vo2 ) and two links between the relays and the destination ( y;3,V,3 ). Actually, we
treat a special case of general relay network introduced in [6].

The above two relay network consists of a source input alphabet X, relay input alphabets X; , X, and output
alphabets Yo1,Yo2 Yoz » Y12,Y21,Y13,Y,3 - The network is characterized by the probability distribution
PWVo1, Yoz » Vo3 » Y1z » Y21 V13 » Ya3lXo X1 x3) = p(- | -), where x,,x; and x, indicate the source input, the first
relay input and the second relay input, respectively and yo1 , Vo2 » Yo3 » V12 » Y21, V13 » Y23 indicate the outputs.

We assume that the network is memoryless, i.e, the present outputs depend on the messages, the previous
inputs, and the previous outputs only through the present inputs.

We use x and y to represent the input vectors (x, ,--, x,) and the output vectors(y, ,-:-,y,), respectively,

such thatin Fig.1 y; = (201221) Y2 = (onzn) Y3 = (203213223) yXo = (X1, Xon) » X1 = (11,7, X10)
X, = (X91,*,X25,) and as in general multi-terminal networks [23, ch.14.10] xq; = fo;(W), xy; = fli(y{‘l) =

friQa, - yri-0) and xp; = fi(¥i") = foiQzz 0 Yaic1) i = 1,0,
The message w with the rate R is the new message to be sent in each transmission block. The destination
computes its message estimate w as a function of y; . Suppose that w has B,, bits. The capacity C is the

supremum of rates R = BTW at which the destination’s message estimate W can be made to satisfy Pr(w # w) < &

for any positive € . An upper bound for capacity is the max-flow min-cut upper bound [23, theorem 14.10.1].

Fig.2 illustrates the network model where the message w is sent and ultimately i is estimated at the receiver.

C. The network coding (decode-and-broadcast) :

We apply a new technique (decode-and-broadcast) established from the combination of superposition
encoding [14]-[17] and random binning [19]-[22]. This technique is a generalization of the coding scheme used in
[17, theorem 7, special case by ¥; = @,V = X, — X;] to two relays, but with the addition of the cooperation
between the relays (or adding the links y,, ,y,,) . Therefore, at first we split the message w (as in [17], theorem
7) into w = (W, , Wy, , Wy3) and secondly we allow the relays to broadcast for cooperating with each other and
the receiver.

Suppose that B — 2 block messages w, ,w, , -, w;, -, wg_, , €ach block i of nR bits and the message
w; = (Wo1i , Woai »Wo3i) , are transmitted from the source x, to the destination y; during nB transmissions.

Therefore, the total effective single rate R from the source x, to the destination y; in Fig.1 equals @

B—o

— R = Ry; + Ry, + Ry3 . Also, the same codebook is used in each block of transmission.

The assumption of no interference has been applied in the literature for reliable communication channels
between nodes in models of ad-hoc wireless networks based on the geometric disc abstraction .For example, in
[37] the outer bounds for the capacity have been determined with this assumption. Here we apply this assumption
to the broadcast channels in the network (Fig.1). So, we use decode and broadcast coding, i.e., the relays (x; and
X,) act as transmitters for the broadcast channels and they broadcast what they decode from the source and the
messages to each other, to the receiver and each other through x; and x, . In other words, two relays while
cooperating with each other, cooperate with the transmitter to increase the total rate of transmission. The source
(xo) also acts as a transmitter for the receivers y,; and y,, and meanwhile it superimposes its message wys
intended only to the destination y; on its messages wy; , Wy, intended for y,,y,, . The messages wyq, wy, are
decoded by the first relay and the second relay respectively and then by the receiver, but the message wy; is
decoded only by the receiver (y3) .

For Dbroadcasting source and relays, it is necessary to use auxiliary random variables
Uy, V1 ,Uy,V,,Uyand vy in relation with input random variables x,,x; and x, and to choose an appropriate
joint distribution ( distribution (A) in main theorem, section I1).

D. The previous studies of the network model in Fig.1 :

The network in Fig.1 has been studied in :



D, . [7] when all of the links are deterministic and its capacity has been determined using deterministic broadcast
channels [26], [27] and max-flow min-cut upper bound [23],

D, . [4] as two level relay channel by point to point coding without the link y,; in Fig.1,

D; . [6] with additive white Gaussian regime,

D, . [13] in a diamond topology, without the links 15, V41, Yo3 -

Y1 Xa
You yzj,"‘ Y13
1
1
1
Xo Yos L > Y3
‘\
\
\ Y12
Yo2 \ Y23
Y2 X2
Fig.1 Two Relay Network
Yo1, Y21
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> |
w Xo Y13, Y23,Y03 ] w
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< |
X2
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Fig.2 Network Model

E. New results :

The new achievable rate we have obtained (section I, main theorem) for the two relay network in Fig.1:
E; . Gives a lower bound for the general relay channel the same as obtained by Cover and ElI Gamal
[17,theorm7,special case] , but with slight difference due to no interference assumption at the receiver and
includes the one relay rates of a two-level relay channel studied by Gupta and Kumar using point to point coding,
E, . Includes the rate of deterministic two relay network [7] and other special two relay networks,
E; . Meets max-flow min-cut upper bound [23] under additional assumptions and
E, . Is validated by its consistency with previous results related to special cases of broadcast channels [24],[25].

The remainder of the paper is organized as follows. In section Il, the main theorem is stated. In section 11,
the main theorem’s corollaries are derived and explained. In section IV, we prove the theorems and section V
prepares a conclusion.

Il. MAIN THEOREM

Consider again the stochastic two relay network with no interference (Fig.1) where the source (x,) and the
relays (x; and x,) act as broadcast channels and all of the links are stochastic.

Regarding the network (Fig.1), for every cut-set bound achieving capacity theorem, the converse can be
proved from general upper-bound at least under special cases and only the achievability proof is of importance.

Therefore, by using binning method [19]-[22], superposition encoding [14]-[17] and combining all of the
known coding techniques, we establish the decode-and-broadcast strategy and in order to apply this strategy we
choose the appropriate distribution (the distribution (A) in the main theorem). By noting to the fact that the new
message to be sent to the receiver in block i is w; = (Wgq; , Wi , Wos;) With the rate R = Ry + Rgy + Ry3 , We
first introduce an achievable rate (main theorem) for R and then derive its special cases, e.g., some certain
capacity theorems in section IlI.

Main Theorem : For the stochastic network (Fig.1) with no interference, the following rate is achievable:

R* = sup min {R;,R;, R., R.,}

where Rz, = [(Ug; Yo |X1) + 1(V3; Yo3) + 1(Up; Yo1) — I(Up; Vy) + H(Y 03V 13 331X X2) — H(Y 3V 13Y 231 X0 X1 X5),

R:, =1(V; Yool Xy) + I(V1;Y13) + 1(Uy; Y1p) — I(U1; Vy) + H(Y3Y13Y 531X 1 X5) — H(Yo3Y 13 231X X1 X)),
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Re, =1(V;Y13) +1(Vy; Yo3) + H(Yo3Y 13V 3| X1 X,) — H(Y3Y13Y 23X X1 X5),
R, = H(Yo3Y13Y 53V UolX1X5) — H(Yo3Y 13V 231X X1 X5) — H(Uo|X1Y 1) — H(VlX,Y o2),
and supremum is taken over the joint distribution of the form :
P (Uy V1 U, V3 UV X0 X1 X2, Vo3V13Y23Y12Y21Y01Y02) =
p (U v1Uzv5) p(xq Uy vy) PO [upvR)p (g [x)p (W |22 0 (X0 [Uo Vo X1 %2) P (Vo3 V13Y23Y12Y21 Y0102 X0X1X2), (A)

A-1 A-2
A-1 and A-2 represent input and random output distributions, respectively. A-1 satisfies :
X, =X = Uy, Uy = X =V, XUV 2 UV, = X, (B)

Proof: See section IV.

Cut-set interpretation of the rates R, , i = 1,2,3,4 in R
RZ,, R:, R, R;, are the achievable rates through the cut-sets (v,3,¥21,Y03Y01) » (V13 Y12, Y03, Yo2)

cq’

(V13) Y23, Yo3) » (Vo1 Yoz, Yo3) in Fig.1, respectively.
I1l. MAIN THEOREM’S COROLLARIES
Now, we give some of the main theorem’s corollaries (three corollaries).
Corollary 1: A lower bound for general relay channel and about the two-level relay channel
A lower bound for general relay channel
By Yy, =X, =Y, =Y,; =Y,5 = @, Fig.1 reduces to a relay channel [17] and from R*(V, =@ ,U, = U, =
vV, =0,V, = X;), we obtain the following lower bound:

Ry = supp(xoxyu,) Min {I(Uoi Yo11X1) + 1(Xo; Yo3Y131X1Uo) , 1(Xy; Yi3) + [ (Xo; Y03Y13|X1)},
@® )]
where (1) is the minimum of the first and the fourth terms in R* (U, — XX, X, — Yy3Yi3Y53in A — 2) and (2) is
obtained from the second or the third terms in R* .
R; is slightly different, due to no interference assumption at the receiver, from the lower bound below [17,
theorem7, Y, =0,V =X, > X, ,U > UpX,,Y; — Yo;,Y = (Yo3Y13)]:

R, = SUPp (xox1u0) min yl(Uoi Yo11X1) + 1(Xo; Yo3Y13|X1Uo) , 1(XoXy; Y03Y13)},
©)) (€))
where (1) = (3) and (2) < (4) .

Remarks :

4-A special case of our main theorem (Y;, = Y,; = @) is a generalization of R; to two relays. In other words,
we have generalized the lower bound R, to two relays, but with the addition of the cooperation between the relays
by the links y;,,v,1.

5-R, gives the capacity —defining rates of the relay channels with known capacity (degraded: U, = X,,
reversely degraded: U, = @, full feedback: U, = X, and Y,3Y;3 — Yy3Y;5Y,1, Semi-deterministic: U, = Y,; and
orthogonal relay channels[28]: U, = X , X, = (XgXp) ), but with no interference at the receiver. Therefore, our
main theorem is a generalization of these channels to two relays, but with additional links y;,,y,; and no
interference condition at the receiver.

6-R; = R, when the no interference condition (X; — Y;3 — Y,3) is applied.

About the two-level relay channel [4] :

Point to point coding used in [4] for the two-level relay channel gives the rates of degraded and reversely
degraded relay channels for a relay channel, but our new coding strategy gives a general lower bound for it.

Corollary 2: The rate of two relay Aref network and the rate regions for special broadcast channels :

We can validate the main theorem by its consistency with previous results in [7],[19],[25],[30],[31]. Here we
choose the relevancy to two relay Aref network[7] and special broadcast channels [19],[25].

First, we assume that all of the links but y,5; in Fig.1 are deterministic and determine the following
achievable rate Rj(theorem 1). Then we derive from R the rate of two relay Aref network and explain its
consistency with known results.

Theorem 1: For the network (Fig.1) with no interference, random y,; and assuming all other links to be
deterministic, the following rate is achievable:

H(Yz3 Yz1) + H(Yo11X1) + H(Yo3lX1X2) — H(Yo31XoX1X2),

H(Y13 Y12) + H(Yo21X3) + H(Yo31X1X5) — H(Yo31 X0 X1 X3),

H(Y13) + H(Y,3) + H(Yo31X1X3) — H(Yo31X0X1X2),

H(Y01Y02Y03 |X1X2) - H(Y03 |X0X1X2)

Where  yo1 = fo1(xo %1), Yoz = fo2 (x0%2), Y12 = f12(x1), Y21 = f21(x2), Y13 = fi13(x1), 23 = fa3(x2),

R} = sup min



and supremum is taken over the joint distribution of the form : p(xX1X2Y01V02Y03V12V21V13Y23) =
P(V12Y13Y23Y21) P4 |Y12Y13) P(2|Y23Y21) DVo1lX0) 0 o2 l%2) (X0l Y01Y02X1%2) P(VoslXox12) (A1)
A1 A2

A;-1 and A;-2 represent equivalent input and random output distributions, respectively. A;-1 satisfies :
Xy = X1 = Yo, YouXis = X = Yo, , XiVipYiz = VY3 — X, (B1),
and the distribution (A;) has been obtained from the distribution (A) in the main theorem by u; =y, ,v; =
Vi3, Uz = Y21, V2 = Ya3,Ug = Yo1,Vo = Yoz aNd ¥o1 = fo1(Xo X1), Yoz = fo2 (Xox2).
Proof: See section 1V.

Special cases of theorem 1:

(a) The rate of two relay Aref network [7] :

If we consider the network in Fig.l with yo1 = fo10x0 X1),¥02 = fo2(X0X2), 12 = f12(%1), Y21 =
fa1(x2), ¥13 = f13(x1), Y23 = f23(x2) and yo3 = fo3(xo) ,we have the distribution:
P(x0X1%2Y01Y02) = (A1) = p(x1%2) P(X0Y01Y021%1%2) ©),
that is, (B;) conditions hold and the inputs are dependent, however, the dependence of x, on x,x, is through
Yo1Yoz - If we change yo1 = fo1(X0x1), Y02 = foz(X0X2) IO ¥o1 = fo1(X0) , Yoz = fo2(x0), then, all links
become deterministic as in [7,sec.3.5], however, according to (C) the inputs still remain dependent and (B;)
conditions hold. Thus, theorem 1 for two relay Aref network [7] with dependent inputs and (B;) conditions is as
follows:

H(Y13 Y12) + H(Yo,|X5) + H(Yo3|X1X>),
H(Y13) + H(Y3) + H(Yo31X1X3),
H (Yor Yoo Yo3 X, X,) )

(b) We can validate the theorem 1 by its consistency with the previous results [19],[24],[25]:

If X, =X, = (Yo, =)Yo5 = Y153 =Y, =Y;, = 0, then Fig.1 is reduced to broadcast channels with degraded
messages, two (three) components and one random component[25],[24],[19] the achievable rate regions of which
can be established from the terms in theorem 1(the details are omitted).

Corollary 3: Certain capacity result

The rate R] in theorem 1 coincides with max-flow min-cut upper bound under additional assumptions and
results in a certain capacity theorem. More generally, in the main theorem, if we impose the condition ( X; X, —
Yi3Y,3 — Yy3, (co-1) ) on the random channels distribution A-2 , we will have the following capacity theorem for
the network with three random links.(Imposing this condition on A, adds the accompanying condition: (Yy,Y;, —
X1X, — Yo3Yi3Ys5 , (c0-2) ). Of course, the conditions (co-1,2) can be replaced by equivalent conditions resulting
from the no interference assumption.

Theorem 2: For the special case (X;X, — Y,53Y,; — Y,3) the capacity of the network (Fig. 1, Y;, =Y, =
@) with no interference, random y; s, V.3, Vo3 and assuming other links to be deterministic, is given by :

(H(Y23) + H(Yo11X1) + H(Y131X1) + H(Yo31Y13Y23) — H(Y03Y13Y23|X0X1X2)'\
C = sup min iH(YB) + H(Yp2|X) + H(Yz31X5) + H(Yo3|Y15Y23) — H(Y03Y13Y23|X0X1X2),}

H(Yy3 Y1) + H(Yp11X,) + H(Y03|X1Xz)l

* .
R; = sup min

H(Y13) + H(Yz3) + H(Yo31Y13Y23) — H(Yo3Y13Y31X0 X1 X5),
H(Y51Y02Y03Y13Y23|X1X5) — H(Yo3Y13Y231 X0 X1 X5)

Where  yo1 = fo1(xo %1), Yoz = fo2 (x0x2),
and supremum is taken over the joint distribution of the form : p(xoX1X2Y01Y02Y03Y13Y23) =

p(x1x2) P(Vo1lxX)p (Vo2 1%2) P(XolYo1Yo2x1%2) P(Vo3Y13Y2slXox1X2) (A2)

Ay—1 Ay—2
A,-1 and A,-2 represent equivalent input and random output distributions, respectively. A,-1 satisfies :
X, =X =Y, YouXs = Xp = Yo (B2)

Proof: See section 1V.
Special cases of theorem 2:
(a) When all of the links are deterministic, using (co-1,2) and the independence of the inputs, theorem 2
gives the capacity of deterministic two relay network as in [7,sec.3.5 by Y,; or Y;, = @].
(b) If X, =Yy, = Y,5 = @, it is readily obtained that theorem 2 gives the capacity of semi-deterministic relay
channel in [18].
IV. THE PROOF OF THEOREMS
The proof of the main theorem
Outline of the proof:
As mentioned and explained in subsections B-C in the introduction, we apply decode-and-broadcast strategy.
The source x, sends the message splits wy, , wy, (sends the corresponding sequences located in bins of wy; , wy,)
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to the first relay and the second relay, respectively and meanwhile superimposes the message split w5 intended
for only the receiver over wy, ,wy, . The relays decode what they receive from the source and each other and
broadcast the result to the receiver and each other in an appropriate way. The receiver decodes first the messages
from the relays and then from the source as will be explained in detail below.

Random Codebook Generation:

The input probability distribution, network transition distribution p(- | -), € > 0 and n > 1 are given. Fix the
joint ribution (A) in the main theorem. The idea is to send w = (wy3 , Wg; , Wy,) to the receiver.

G1

(G1-a) Generate 2™ (U1Y12) ¢-typical independent and identically distribution (i.i.d.) n-sequences u; € U7} ,
each with probability :

1
_ ,  u € ANU)
p(w) = {142WI| S
0 ) oth.
where || - || indicates the cardinality. Throw randomly the sequences u, into 2"™Riz hins; index the bins

B, »Myp € [1,2™R12] Ry, < 1(Uy; Yyy) .
(G1-b) Generate 2™ (113) e-typical i.i.d. n-sequences v, € VJ* , each with probability :
1
n
p(w)={Tazoor 0 L eAW
0 , oth.
and throw them randomly into 2™*12 bins; index the bins B,,, . ,m;3 € [1,2"%13] ,Ry3 < I(Vy;Y33) .
(G1-c) We can find jointly e-typical pairs (ul,gl) such that :
(gl(kl),gl(jl)) € (Bm,, X Bm,,) NAX(Uy,V;) |, ky € By, ,j1 € B, ; then for each jointly e-typical pair
(gl,gl), generate one e-typical conditionally independent n-sequence x; € X7 that is jointly e-typical with that
pair, with probability:
1
n
p(x) = { A2 vl » B EAGR)
0 ) oth.
and index it as x; (Mq5, My3) = x1(51) , Riy + Ry3 < I(Uy; Yyp) +1(Vy;Y3) — I(U; VL) .
Now, we state briefly the remaining steps of codebook generation and also random partitioning.
(G2-a,b,c) Generate similarly n-sequences u,, v,, with the bins of m,, € 2"R21,m,, € 2™R23 | respectively
and x, (M1, My3) = x,(52), Roy < I(Uz;Y21) s Rog < 1(Vy; Ya3) , Roq + Ryg < 1(Up; Yoq) + 1(Vo; Ya3) — I(Uy; V)
(G3-a,b,c) Generate, for each x;(m,,,my3) = x;(s;), 2MWoYorlX) 40+ for each x,(my;, my3) = x,(s,),
2™ VoiYo2lX2) 350 with the bins of wy, € 2"Ro1,w, € 2™Ro2 | respectively, Ry; < I(Ug; Yo11X1) , Roz < I(Vo; Yoz |X2);
for each jointly e-typical pair (go,go) (the total number of these pairs is 2"% ,R = H(U,V,|X,X,) —
H(Uq|X1Yo1) = HVo|X;Y52) > Ro1 + Roz) 27R03 xo(Wo3|Wo1Wo25152). ] )
Random Partitions: Randomly partition u, sequences into 2"f12 x 2Ry sequences into 2"Rz1 x 2"Rz
(u , 1) pairs into 2m(Ro1+Ro2) disjoint cells; R, = Ro; — Ryz , R, = Ry — Ryy.Therefore, V ug € B, — wo; =
(81,m45), 81 € [1,2™%1] and not vice versa. Similarly, V vy € B,,,, — wo, = ($2,my1), $; € [1,2™%2] and not

ViCE versa. And aISO, m13 = (él’ ulz) ,S’l € [1, Znél] ,ulz € [1, ZnRulz] ,R13 = Rl + Ru12 ) Rulz = (X(Rlz +
Ry1),0 S @ < 1,my3 = ($5,u51) ,$7 € [1,27R2],up; € [1,2™ua1] ,Ryy = Ry + Ry, , Ryy, = @Ry +
Riz), @ =1-a,(up upy) = (Myz, myy).
The figures (3-a,b) illustrate the above partitions of [1, 2 (VoiYo11X1)] and [1, 27 (Voitoz1X2)]
5’1,:— £, o2 S:l 2R 5’2,:— 5’2,2 Tt "':_": Rz
Mz 2 Maa 2 |-
TMlaz 2 Mloa 2
Ty 2 Raz - N -_ L o |- 1 Ttlgq o Rog

@)y .
Fig3.Random Partitions (a) for u, sequences (b) for v, sequences
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Encoding:

Letw; = (w03_i , Wo1i :Woz,i) be the message to be sent in block i and assume that at the end of block i — 1 :
The first relay has decoded wy; ;—; ,m,1 ;-1 and knows my,;_, . The second relay has decoded wg, ;1 ,mM5;-1
and knows m,q ;4 . Therefore, either relays know (my,; 4 ,m,1,_1) and can send this common information to
the receiver time-sharingly, that is, the first relay sends u,,; and the second relay sends u,,; , thereby, the
reCeiver can decode (ulzri ,u21'i) = (mlzli_l ,le’i_l) y R = a(Rlz + Rzl) y 0 <a< 1 y Ru21 = a(R21 +
RIZ) ,a = 1 —a.

Hence, at the beginning of block i : The first relay sends &(mlz_i ,mm) =x (su), the second relay sends
x, (mars mys;) = x, (s3,), the transmitter sends Eo(W03ri|W01i Wi rS1i152):
Decoding and probability of error analysis: We defer the details of decoding and probability of error analysis to
the Appendix. The analysis shows that if the rate R* is as in the statement of the main theorem, the reliable
communication is possible.

The proof of theorem 1:

Assuming that the transmitter knows the first symbols of x; and x, sequences and noting to the deterministic
functions: yo1; = fo1 (Xoi, X11) » Yoz2i = fo2 (Xoi X2:) » Y121 = fra(%11) » V21i = f21(%20) , yazi = fis(xai)
Va3i = fa3(X21) , X1 = f1i(Y(l)Il'J’§Il) = f1i(}’o11,3’o1z; 5 Yo1,i-15 Y211 ""3’21,1'—1) y Xoi = fzi(Y(l)El'y:El
= fzi(y()Zl, e ,yoz‘i_l; y121, e 'y12,i—1) ) i = 1, e, n, we COﬂC'Ude that the transmltter knOWS
Yo1,Yoz Y12, Y21, Y13 and y,5 , hence, these sequences can be generated at the transmitter or can be treated as
equivalent input random variables. Therefore,by putting Uy = Yy, Vo = Yo2, Uy = Yar, Uy = Vi3, Vo, = Yo3, V) = Y5
in the main theorem ([19,theorem 3],[26],[27]) and noting to deterministic functions, R; is obtained from R* . &

The proof of theorem 2:

Achievability : As explained in the proof of theorem 1, in this case, we can put in the main theorem
UO = YOIIVO = Yoz,Vz =X2,V1 =X1,Y12 = Y21 = Ul = UZ = @ f and have

(i) The first term in R* —

H(Yo11X1) + I;I(st) — H(Yy31X3) + H(Yy3Y15Ys31X1X5) — H(Yy3Y15Yo3]X0 X, X5)
= I]:I(Y01|X1) + H(Y,3) + H(Y131X1) + H(Yo31Y13Y23) — H(Yo3Y13Y23] X0 X1 X5)
(i) The second term in R* > H (Yy,|X,) + H(Y13) + H(Yy3|X,) + H(Yy3|Yi3Ys3) — H(Yy3Yi3Yas]| X0 X1 X5),
(iii) The third term in R* 5 H(Y,3) + H(Y,3) + H(Yy3|Y13Ye3) — H(Yy3Y13Ya31 X0 X1 X5)

(iv) The fourth term in R* L H(Yy3Y13Y23Y01 Yoo | X1 Xp) — H(Yy3Y13Yo51 X0 X1 X5)

where e,f, and g follow from the intropy relations, the conditional independence of Y;5Y,5 and the assumption
X1X, — Y13Y,3 — Y3 intheorem 2, h follows from U, = Yy, = fo; (XoX1) and Vy = Yy, = fon (X X5).
Converse : Using max flow-min cut upper bound in [23] for Fig.1 and (a) entropy and information relations
(H(X,Y) =HX)+ H(Y|X),H(A|B,C) < H(A|B),I(X;Y) = H(Y) — H(Y|X)), (b) deterministic functions
Yo1 = fo1(X0X1), Yoz = fo2(x0x2), we can p(ro)VQ:

a),(b a

(i) 1(XoX2; Yo1Yo3Y23Y131X1) “L.. < H(Yo11X1) + H(Yz3) + H(Yy51X1) + H(Yo31Y13Y23) —
H(Yo3Y13Ya3|X0 X1 X5) -
Similarly, the other three conditions are proved (for brevity, the details are omitted):

(i) 1(XoXy; Yoo Yo3Y13Y23lX5) < - =
H(Y13) + H(Yoz|X2) + H(Ya31X5) + H(Yos|Y13Y23) — H(Yo3Y13Y23] X0 X1 X5),

(i) (XoX1X5; Yo3Y13Ya3) = -+ < H(Yi3) + H(Yy3) + H(Yo3(|Y13Ys3) — H(Yo3Y13Y3]X0 X1 X)),

(iV)I(XO; Y01Y03Y02Y13Y23|X1X2) == H(Y01Y02Y03Y13Y23|X1X2) - H(Y03Y13Y23|X0X1X2) .

The above proof completes the converse. B

V. CONCLUSION

A new achievable rate as a main theorem for a stochastic two relay network with no interference was established
which gives the lower bound for the general relay channel obtained by Cover and EI Gamal with slight difference
due to no interference assumption at the receiver , includes the one relay rates of a two-level relay channel studied
by Gupta and Kumar using point to point coding, includes the rates of two relay Aref network and other special
two relay networks, meets the max-flow min-cut upper bound under certain additional assumptions resulting in
certain capacity theorem which includes the related previous capacities and is validated by its consistency with
previous results relevant to special cases of broadcast channels. The theorems might be generalized to networks
having more than two relays.
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APPENDIX
Decoding and Probability of Error Analysis

(D-1) The first relay, knowing sy ; and upon receiving yo, , finds uo : (o, Yo1 ) € AZ and then finds the bin of u,,
that i, Wo, ; and declares with small probability of error: W, ; = oy ; iff n is sufficiently large and : [19],[20],[21]
Ro1 < 1(Uo; Yo11X1) (1-a)
And the second relay, knowing s, ; and upon receiving Yoz finds v, : (20,202) € A% and then finds the bin

of vy, thatis, Wy,; and declares with small probability of error: Wy, ; = wy,; iff n is sufficiently large and
Rz < 1(Vy; Yo1X2) (1-b)
And there are unique (Wo;; , Woz,;) = (Wo1,i » Woz,:) iff:

4
Ro1 + Roz < 1(Ug; Yo11X1) + 1(Vy; YoolX2) — 1(Ug; Vol X1X2) = H(UoVolX,X2) — H(UglX1 Y1) —
HVolX;Yo2)  (1-¢)
(D-2) The second relay and the receiver act as two receivers for broadcasted x, .The receiver, upon receiving y;;

and flndlng 21: (21,y13) € A? f and the bln Of zl,that |S, 7?113“' ’ dec|al’es 7;\7113‘1' = m13‘l' (§1,i = él,i ,ﬁlz'i = ulz'i)

and the second relay, upon receiving Y12 and finding uy: (21,212) € AY and its bin number m,,; , declares
My, = My, , all with small probability of error iff n is sufficiently large and: [19],[20],[21]

Riz =R’y +a(Ryz + Rpy) <1(Vy;Yi3) a € [0,1] (2-a)
Rz <I(Uy; Y1) — 1(Uy; V1) (2-b)
(D-3) The first relay and the receiver act as two receivers for broadcasted x, . The receiver, upon receiving y,s;

and finding v,: (gz,zzg) € AT, and the bin of vy that is, Mys; , declares Mys; = Mys; ($2; = $2,0,Uar; = Uary)

and the second relay, upon receiving Y21 and finding EZ:(EZ'XM) € AY and its bin number 7, ; , declares
Mp1; = Myq, , all with small probability of error iff n is sufficiently large and: [19],[20],[21]

Ry3 = Ry + @(Ry1 + Ryp) <1(Vo;Ya3) a=1-a (3-a)

R,y < I(Uy;Yyy) — I(Uy; V) (3-b)

~ ~

(D-4) The receiver, upon receiving y,3 and having received (y13,y23), found @51, fp1 41,8161, 8261
a1, a1, and hence knowing &, ;_; ,$,,_, , finds jointly typical pair
(wo,v) €L (X03,i—2 »Y13,i-2 1X23,i—2) N (4; X By) N AZ (UpVy|X,X2) and then (V‘z/m,i—z :‘7?702,1'—2) with small

probability of error iff n is sufficiently large and (see random partition) :

R < Roy + Ry + 1(UgVy; Yo3Y13Y31X1 X5) 4)
Where

L (Xo3,i—2 1 Y13,i-2 :223,1'—2) = {(Eo :Zo): (Eo » Yo, X1,X2,Y03,)13 '223) € A?} )
4y ={uguo € $14,,, NS | NAZWUolX: X)), By = {voiv, € Sp4,., NS N AZ(Vo1X, X,)}

(D-5) The receiver, upon receiving Yo3 and having found jointly typical pair (go ,go) or (@01_1-_2 ,V'AVoz,i-z) and

12,7 21,Ma1,i—1

knowing (x;,x5) , (3’13»3’23) finds x, such that (Eo Y03, Y13,Y23, %1, X2, U 120) € A¢ and declares Woz;—, =
Wo3,i—2 With small probability of error iff n is sufficiently large and :
Roz < 1(Xo; Yo3Y13Y231 X1 X2 U Vo) ®)

Now, we are able to find bounds on the total rate R for the message w = (wWy; ,Wgz , Wp3). From code
construction and (G-3) in codebook generation , we have:

R = R01 + ROZ + R03 < R, + R03 (6)
(4,5,6) = R < Rgy + Rop + H(Yp3Y13Y231X1 X5) — H(Yy3Y13Y231 X0 X1 X5) (7
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(B-1)

(2'a) + (3'3) = R’l + R12 + R,Z + R21 < 1(V1, Y13) + I(Vz, Y23), 0<a<l1 (8)
(B-2)
(2—a,b)
Ri+ Ry =Ri+aR,+aRy, < I(Vy;Yi3) +1(UgYep) —1(U V), a=0 (9-a)
(3-a,b)
Ry + Ry =R+ aRy +aRyy < 1(Vy5Yo3) +1(Up; Va1) — [(Up; V), a=1 (9-b)
— N——
(B-3) From random coding and random partitioning, we have:
Ry +Riz =Ry (10-a)
R,Z + R21 = R02 (10'b)
R = H(UoVolX1X2) — H(UylX1Yo1) — H(V5|X2Y52) (10-c)
(B-4)
(7),(1,10-a),(9-b)
< 1(Ug; Yo11X1) + 1(Vy; Yo3) + 1(Uz; Yaq) — I(Uy; Vo) + H(Yo3Y13Y231 X1 X5) —
H(Yy3Y13Y231X0X1X2) = R, (11-a),
and

(7),(1,10-b),(9-a)
[(Vo; Yoo X2) + 1(V4; Yi3) + 1(Us; Yiz) = I(U; Vi) + H(YosYi3Y231 X1 X5) —

H(Yo3Y13Y231X0X1X2) = R¢, (11-b),
and

(7).(8)
R < 1(Vy;Yi3) +1(Vy; Yaz) + H(YosY13Ya3|X1X2) — H(Yo3Y13Ya3|Xo X1 X2) = R;3 (11-c),
and

(5),(10-¢)
R < H(Yo3Y13Ya3VoUpl X1 X5) — H(YosYi3Yasl Xo X1 Xp) — H(UolX1Yo1) — H(Vo|X2Yo2) = RZ4 (11-d),
We know that:
The average probability of error is small arbitrarily & decoding steps (D-1) — (D-5) and the corresponding
bounds are satisfied = the bounds (11-a, b, ¢, d) are satisfied, or equivalently:
At least one of the bounds (11-a, b, c, d) is not satisfied = at least one of the decoding steps is not satisfied <
the average probability of error is not small arbitrarily.

So, The bounds (11-a, b, ¢, d) complete the proof of the main theorem.m
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