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Abstract-Gastpar and Vetterli named the ad-hoc networks with one randomly selected source-destination pair as 

relay networks and they suggested using arbitrary network coding in order to increase the overall efficiency Here, the 
relay network is investigated with two relays and no interference and a new achievable rate is obtained using a new 
network coding (decode-and-broadcast). The obtained achievable rate (i) gives the lower bound for general relay 
channel, obtained by Cover and El Gamal, but with slight difference due to no interference assumption at the receiver 
(ii) includes the one relay rates of a two-level relay channel studied by Gupta and Kumar using point to point coding, 
(iii) includes the rates of two relay Aref network and other special two relay networks, (iv) meets the max-flow min-cut 
upper bound under certain additional assumptions resulting in certain capacity theorems which include the related 
previous capacities, (v) is validated by its consistency with previous results relevant to special cases of broadcast 
channels. 

Key Words: stochastic (deterministic) two relay network, network coding 
I.  INTRODUCTION 

Recently there has been much interest in studying relay networks and wireless relay communication 
scenarios [1], [2].Wireless networks with base stations (cell networks) are relatively well understood by 
considering the multiple access and the broadcast channels. However, the networks without base stations ( ad-hoc 
networks) in which any node can act both as a terminal and as a relay for other transmissions are less well 
understood and have many open problems. Ad-hoc networks was studied in [3],[4] as networks having n nodes 
communicating with each other and multiple source-destination pairs to obtain an achievable rate region using 
point to point coding. In [5] mobile ad-hoc networks have been studied. In [6], ad-hoc networks with one 
randomly selected source-destination pair was named as relay networks. Also, in [6] arbitrary network coding was 
suggested to increase the overall efficiency and was used to obtain achievable rates and to derive upper bounds 
from max-flow min-cut theorem. Various problems of wireless ad-hoc networks have been studied in [32]-[38]. 

Here we consider the relay network introduced in [6] with two relays and no interference. This two relay 
network was studied in [7] with deterministic links and in [29] with one random link. Now we study the two relay 
network with randomness for all links to obtain a new achievable rate using a new network coding (decode-and-
broadcast).In other words, we investigate the two-level relay channel studied in [4,Fig.1] using a new network 
coding instead of point to point coding.The obtained achievable rate gives the lower bound for  the general relay 
channel obtained by Cover and El Gamal with slight difference due to no interference assumption at the receiver , 
includes the one relay rates of a two-level relay channel studied by Gupta and Kumar using point to point coding, 
includes the rates of two relay Aref network and other special two relay networks, meets the max-flow min-cut 
upper bound under certain additional assumptions resulting in certain capacity theorem which includes the related 
previous capacities and is validated by its consistency with previous results relevant to special cases of broadcast 
channels.  

At first, in this section we recall some definitions, define the network model considered, describe the 
network coding, remember previous studies of the model and then we list our new results.  

A. Some definitions 
Relay network [6] : A relay network is a wireless network having one source-destination pair and some 

relays where the relays act as terminals (transmitters and receivers or cooperative nodes). 
Stochastic (deterministic) relay network with no interference [7],[8],[29] : Stochastic (deterministic) relay 

network with no interference is a network where the output of every link is some stochastic (deterministic) 
function of only the input of that link.  

So, a stochastic (deterministic) relay network with no interference is a special case of relay network 
introduced in [6]. Deterministic relay networks introduced in [7] have been named as Aref networks in [8]. 

Remarks: 1. The assumption of no interference is applicable only for broadcast channels and does not apply 
to multiple access channels. For this reason, we will use decode-and-broadcast coding (namely, the source and the 
relays act as broadcast channels). 
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2. In [9],[10], the relay networks have been studied with a more general definition of determinism ( approximately 
Gaussian determinism).  
3. In deterministic wired network with independent channels [11], we don’t have broadcasting while in a 
stochastic (deterministic) relay network with no interference and in other wireless networks such as wireless 
erasure networks [12] we have broadcasting. 

B. Network model :  
Here, as mentioned in the introduction, we consider a stochastic two relay network with no interference 

(Fig.1) consisting of one source (x0), one destination (y3), two relays (x1 and x2) and seven stochastic links: the 
link between the source and the destination (y03), two links between the relays (ݕଵଶ , ݕଶଵ), two links between the 
source and the relays ( ݕ଴ଵ , , ଵଷݕ ) ଴ଶ ) and two links between the relays and the destinationݕ  ଶଷ ). Actually, weݕ
treat a special case of general relay network introduced in [6]. 

The above two relay network consists of a source input alphabet ଴ࣲ, relay input alphabets ଵࣲ , ଶࣲ and output 
alphabets ࣳ଴ଵ , ࣳ଴ଶ , ࣳ଴ଷ , ଵࣳଶ , ࣳଶଵ , ଵࣳଷ , ࣳଶଷ . The network is characterized by the probability distribution 
, ଴ଵݕሺ݌ , ଴ଶݕ , ଴ଷݕ , ଵଶݕ , ଶଵݕ , ଵଷݕ ଶሻݔ ଵݔ ଴ݔ|ଶଷݕ ൌ ·ሺ݌ | ·ሻ, where ݔ଴ ,  ଶ indicate the source input, the firstݔ  ଵ andݔ
relay input and the second relay input, respectively and ݕ଴ଵ , , ଴ଶݕ , ଴ଷݕ , ଵଶݕ , ଶଵݕ , ଵଷݕ   .ଶଷ indicate the outputsݕ

We assume that the network is memoryless, i.e, the present outputs depend on the messages, the previous 
inputs, and the previous outputs only through the present inputs.  

We use ݔ and ݕ to represent the input vectors ሺݔଵ , ڮ , , ଵݕ௡ሻ and the output vectorsሺݔ ڮ ,  ,௡ሻ, respectivelyݕ

such that in Fig.1 ݕଵ ൌ ቀݕ଴ଵݕଶଵቁ , ଶݕ ൌ ቀݕ଴ଶݕଵଶቁ , ଷݕ ൌ ቀݕ଴ଷݕଵଷݕଶଷቁ , ଴ݔ ൌ ሺݔ଴ଵ , ڮ , , ଴௡ሻݔ ଵݔ  ൌ ሺݔଵଵ , ڮ ,   , ଵ௡ሻݔ
ଶݔ ൌ ሺݔଶଵ , ڮ , ଴௜ݔ ଶ௡ሻ and as in general multi-terminal networks [23, ch.14.10]ݔ ൌ ଴݂௜ሺݓሻ , ଵ௜ݔ ൌ ଵ݂௜൫ݕଵ

௜ିଵ൯ ൌ
ଵ݂௜ሺݕଵଵ , ڮ , ଶ௜ݔ ଵ௜ିଵሻ andݕ ൌ ଶ݂௜൫ݕଶ

௜ିଵ൯ ൌ ଶ݂௜ሺݕଶଶ , ڮ , , ଶ௜ିଵሻݕ ݅ ൌ 1, ڮ , ݊ .  
The message ݓ with the rate ܴ is the new message to be sent in each transmission block. The destination 

computes its message estimate ݓෝ  as a function of ݕଷ . Suppose that ݓ has ܤ௪ bits. The capacity ܥ is the 

supremum of rates ܴ ൌ ஻ೢ
௡

 at which the destination’s message estimate ݓෝ  can be made to satisfy ܲݎሺݓෝ ് ሻݓ ൏  ߝ
for any positive ߝ . An upper bound for capacity is the max-flow min-cut upper bound [23, theorem 14.10.1]. 

Fig.2 illustrates the network model where the message ݓ is sent and ultimately  ݓෝ  is estimated at the receiver. 
C. The network coding (decode-and-broadcast) :  
We apply a new technique (decode-and-broadcast) established from the combination of superposition 

encoding [14]-[17] and random binning [19]-[22]. This technique is a generalization of the coding scheme used in 
[17, theorem 7, special case by ෠ܻଵ ൌ , ׎ ܸ ൌ ܺଶ ื ଵܺ] to two relays, but with the addition of the cooperation 
between the relays (or adding the links ݕଵଶ ,  as in [17], theorem) ݓ ଶଵ) . Therefore, at first we split the messageݕ
7) into ݓ ൌ ሺݓ଴ଵ , , ଴ଶݓ  ଴ଷሻ and secondly we allow the relays to broadcast for cooperating with each other andݓ
the receiver. 

Suppose that ܤ െ 2 block messages ݓଵ , , ଶݓ ڮ , , ௜ݓ ڮ ,  ஻ିଶ , each block ݅ of ܴ݊ bits and the messageݓ
௜ݓ ൌ ሺݓ଴ଵ௜ , , ଴ଶ௜ݓ  .transmissions ܤ݊ ଷ duringݕ ଴ to the destinationݔ ଴ଷ௜ሻ , are transmitted from the sourceݓ
Therefore, the total effective single rate ܴ from the source ݔ଴ to the destination ݕଷ in Fig.1 equals  ோሺ஻ିଶሻ

஻
஻՜ஶ
ሱۛ ሮۛ ܴ ൌ ܴ଴ଵ ൅ ܴ଴ଶ ൅ ܴ଴ଷ . Also, the same codebook is used in each block of transmission.  

The assumption of no interference has been applied in the literature for reliable communication channels 
between nodes in models of ad-hoc wireless networks based on the geometric disc abstraction .For example, in 
[37] the outer bounds for the capacity have been determined with this assumption. Here we apply this assumption 
to the broadcast channels in the network (Fig.1). So, we use decode and broadcast coding, i.e., the relays (ݔଵ and 
 ଶ) act as transmitters for the broadcast channels and they broadcast what they decode from the source and theݔ
messages to each other, to the receiver and each other through ݔଵ and ݔଶ . In other words, two relays while 
cooperating with each other, cooperate with the transmitter to increase the total rate of transmission. The source 
 ଴ଷݓ ଴ଶ and meanwhile it superimposes its messageݕ ଴ଵ andݕ also acts as a transmitter for the receivers (଴ݔ)
intended only to the destination ݕଷ on its messages ݓ଴ଵ , ,଴ଵݓ ଴ଶ . The messagesݕ଴ଵݕ ଴ଶ intended forݓ  ଴ଶ areݓ
decoded by the first relay and the second relay respectively and then by the receiver, but the message ݓ଴ଷ is 
decoded only by the receiver ሺݕଷሻ .  

For broadcasting source and relays, it is necessary to use auxiliary random variables  
, ଵݑ , ଵݒ , ଶݑ , ଶݒ , ଴ݔ ଴ in relation with input random variablesݒ ଴ andݑ  ଶ and to choose an appropriateݔ  ଵ andݔ
joint distribution ( distribution (A) in main theorem, section II ). 

D. The previous studies of the network model in Fig.1 :  
The network in Fig.1 has been studied in : 
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D1 . [7] when all of the links are deterministic and its capacity has been determined using deterministic broadcast 
channels [26], [27] and max-flow min-cut upper bound [23], 
D2 . [4]  as two level relay channel by point to point coding without the link ݕଶଵ in Fig.1, 
D3 . [6] with additive white Gaussian regime, 
D4 . [13] in a diamond topology, without the links ݕଵଶ , , ଶଵݕ   . ଴ଷݕ

 

 

 
E. New results :  
The new achievable rate we have obtained (section II, main theorem) for the two relay network in Fig.1: 

E1 . Gives a lower bound for  the general relay channel the same as obtained by Cover and El Gamal 
[17,theorm7,special case] , but with slight difference due to no interference assumption at the receiver and 
includes the one relay rates of a two-level relay channel studied by Gupta and Kumar using point to point coding, 
E2 . Includes the rate of deterministic two relay network [7] and other special two relay networks, 
E3 . Meets max-flow min-cut upper bound [23] under additional assumptions and 
E4 . Is validated by its consistency with previous results related to special cases of broadcast channels [24],[25].  

The remainder of the paper is organized as follows. In section II, the main theorem is stated. In section III, 
the main theorem’s corollaries are derived and explained. In section IV, we prove the theorems and section V 
prepares a conclusion.  

II.  MAIN THEOREM 
Consider again the stochastic two relay network with no interference (Fig.1) where the source ሺݔ଴ሻ  and the 

relays (ݔଵ and ݔଶ)  act as broadcast channels and all of the links are stochastic.  
Regarding the network (Fig.1), for every cut-set bound achieving capacity theorem, the converse can be 

proved from general upper-bound at least under special cases and only the achievability proof is of importance.  
Therefore, by using binning method [19]-[22], superposition encoding [14]-[17] and combining all of the 

known coding techniques, we establish the decode-and-broadcast strategy and in order to apply this strategy we 
choose the appropriate distribution (the distribution (A) in the main theorem). By noting to the fact that the new 
message to be sent to the receiver in block i is ݓ௜ ൌ ሺݓ଴ଵ௜ , , ଴ଶ௜ݓ ܴ ଴ଷ௜ሻ with the rateݓ ൌ ܴ଴ଵ ൅ ܴ଴ଶ ൅ ܴ଴ଷ , we 
first introduce an achievable rate (main theorem) for ܴ and then derive its special cases, e.g., some certain 
capacity theorems in section III. 

Main Theorem : For the stochastic network (Fig.1) with no interference, the following rate is achievable: 
כࡾ ൌ ૚ࢉࡾ൛ ࢔࢏࢓  ܘܝܛ

כ , ૛ࢉࡾ
כ , ૜ࢉࡾ

כ , ૝ࢉࡾ
כ ൟ 

where ܴ௖భ
כ ൌ ;ሺܷ0ܫ ܻ01|ܺ1ሻ ൅ ;ሺܸ2ܫ ܻ23ሻ ൅ ;ሺܷ2ܫ ܻ21ሻ െ ;ሺܷ2ܫ ܸ2ሻ ൅ ሺܻ03ܻ13ܻ23|ܺ1ܺ2ሻܪ െ  ,ሺܻ03ܻ13ܻ23|ܺ0ܺ1ܺ2ሻܪ

          ܴ௖మ
כ ൌ ;ሺܸ0ܫ ܻ02|ܺ2ሻ ൅ ;ሺܸ1ܫ ܻ13ሻ ൅ ;ሺܷ1ܫ ܻ12ሻ െ ;ሺܷ1ܫ ܸ1ሻ ൅ ሺܻ03ܻ13ܻ23|ܺ1ܺ2ሻܪ െ   ,ሺܻ03ܻ13ܻ23|ܺ0ܺ1ܺ2ሻܪ

 ݓ ଴ݔ
Encoder ݌ሺ· | ·ሻ 

Relay 1

Relay 2ݕ଴ଶ, ଵଶݕ

ଵݔ

ଶݔ

,ଵଷݕ ,ଶଷݕ  ଴ଷݕ
Receiver 

,଴ଵݕ ଶଵݕ

  ෝݓ

Fig.2  Network Model 
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 Fig.1 Two Relay Network 
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         ܴ௖య
כ ൌ ;ሺܸ1ܫ ܻ13ሻ ൅ ;ሺܸ2ܫ ܻ23ሻ ൅ ሺܻ03ܻ13ܻ23|ܺ1ܺ2ሻܪ െ   ,ሺܻ03ܻ13ܻ23|ܺ0ܺ1ܺ2ሻܪ

        ܴ௖ర
כ ൌ ሺܻ03ܻ13ܻ23ܸ0ܷ0|ܺ1ܺ2ሻܪ െ ሺܻ03ܻ13ܻ23|ܺ0ܺ1ܺ2ሻܪ െ ሺܷ0|ܺ1ܻ01ሻܪ െ   ,ሺܸ0|ܺ2ܻ02ሻܪ

and supremum is taken over the joint distribution of the form : 
,ଶݔଵݔ଴ݔ଴ݒ଴ݑଶݒଶݑଵݒଵݑሺ݌ ଴ଶሻݕ଴ଵݕଶଵݕଵଶݕଶଷݕଵଷݕ଴ଷݕ ൌ
ଶሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥݔଵݔ଴ݒ଴ݑ|଴ݔሺ݌ଶሻݔ|଴ݒሺ݌ଵሻݔ|଴ݑሺ݌ଶሻݒଶݑ|ଶݔሺ݌ ଵሻݒଵݑ|ଵݔሺ݌ ଶሻݒଶݑଵݒଵݑሺ݌

஺ିଵ

ଶሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥݔଵݔ଴ݔ|଴ଶݕ଴ଵݕଶଵݕଵଶݕଶଷݕଵଷݕ଴ଷݕሺ݌
஺ିଶ

,  (A) 

A-1 and A-2 represent input and random output distributions, respectively. A-1 satisfies : 
ܺଶ ื ଵܺ ื ܷ଴  , ܷ଴ ଵܺ ื ܺଶ ื ଴ܸ  , ଵܺ ଵܷ ଵܸ ื ܷଶ ଶܸ ื ܺଶ                               (B) 
Proof: See section IV. 
Cut-set interpretation of the rates ࢏ࢉࡾ

כ  , ࢏ ൌ ૚, ૛, ૜, ૝ in כࡾ 
ܴ௖భ

כ , ܴ௖మ
כ , ܴ௖య

כ , ܴ௖ర
כ  are the achievable rates through the cut-sets (ݕଶଷ, ,ଶଵݕ ,଴ଷݕ ,ଵଷݕ) , (଴ଵݕ ,ଵଶݕ ,଴ଷݕ  , (଴ଶݕ

,ଵଷݕ) ,ଶଷݕ ,଴ଵݕ) , (଴ଷݕ ,଴ଶݕ  .଴ଷ) in Fig.1, respectivelyݕ
III.  MAIN THEOREM’S COROLLARIES  

Now, we give some of the main theorem’s corollaries (three corollaries). 
Corollary 1: A lower bound for general relay channel and about the two-level relay channel 
A lower bound for general relay channel 
By ଴ܻଶ ൌ ܺଶ ൌ ଵܻଶ ൌ ଶܻଵ ൌ ଶܻଷ ൌ ሺכܴ Fig.1 reduces to a relay channel [17] and from , ׎ ଴ܸ ൌ , ׎ ଵܷ ൌ ܷଶ ൌ

ଶܸ ൌ , ׎ ଵܸ ൌ ଵܺሻ, we obtain the following lower bound:  

ܴଵ ൌ sup௣ሺ௫బ௫భ௨బሻ min  ൝ܫሺܷ଴; ଴ܻଵ| ଵܺሻ ൅ ;ሺܺ଴ܫ ଴ܻଷ ଵܻଷ| ଵܷܺ଴ሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ሺଵሻ

, ሺܫ ଵܺ; ଵܻଷሻ ൅ ;ሺܺ଴ܫ ଴ܻଷ ଵܻଷ| ଵܺሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ሺଶሻ

ൡ , 

where (1) is the minimum of the first and the fourth terms in ܴכ ሺܷ଴ ื ܺ଴ ଵܺܺଶ ื ଴ܻଷ ଵܻଷ ଶܻଷ in ܣ െ 2ሻ and (2) is 
obtained from the second or the third terms in ܴכ . 
ܴଵ is slightly different, due to no interference assumption at the receiver, from the lower bound below [17, 
theorem 7, ෠ܻଵ ൌ , ׎ ܸ ൌ ܺଶ ื ଵܺ , ܷ ื ܷ଴ ଵܺ , ଵܻ ื ଴ܻଵ , ܻ ൌ ሺ ଴ܻଷ ଵܻଷሻ]: 

ܴଶ ൌ sup௣ሺ௫బ௫భ௨బሻ min ൝ܫሺܷ଴; ଴ܻଵ| ଵܺሻ ൅ ;ሺܺ଴ܫ ଴ܻଷ ଵܻଷ| ଵܷܺ଴ሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ሺଷሻ

 , ሺܺ଴ܫ ଵܺ; ଴ܻଷ ଵܻଷሻᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
ሺସሻ

ൡ , 

where ሺ1ሻ ൌ ሺ3ሻ and ሺ2ሻ ൏ ሺ4ሻ .  
Remarks : 
4-A special case of our main theorem ( ଵܻଶ ൌ ଶܻଵ ൌ  ,is a generalization of ܴଵ to two relays. In other words (׎

we have generalized the lower bound ܴଵ to two relays, but with the addition of the cooperation between the relays 
by the links ݕଵଶ ,  .ଶଵݕ

5-ܴଵ gives the capacity –defining rates of the relay channels with known capacity (degraded: ܷ଴ ൌ ܺ଴, 
reversely degraded: ܷ଴ ൌ full feedback: ܷ଴ ,׎ ൌ ܺ଴ and ଴ܻଷ ଵܻଷ ื ଴ܻଷ ଵܻଷ ଴ܻଵ, semi-deterministic: ܷ଴ ൌ ଴ܻଵ and 
orthogonal relay channels[28]: ܷ଴ ൌ ܺோ , ܺ଴ ൌ ሺܺோܺ஽ሻ ), but with no interference at the receiver. Therefore, our 
main theorem is a generalization of these channels to two relays, but with additional links ݕଵଶ ,  ଶଵ and noݕ
interference condition at the receiver. 

6-ܴଵ ൌ ܴଶ when the no interference condition ( ଵܺ ื ଵܻଷ ื ଴ܻଷ) is applied. 
About the two-level relay channel [4] : 
Point to point coding used in [4] for the two-level relay channel gives the rates of degraded and reversely 

degraded relay channels for a relay channel, but our new coding strategy gives a general lower bound for it. 
Corollary 2: The rate of two relay Aref network and the rate regions for special broadcast channels : 
We can validate the main theorem by its consistency with previous results in [7],[19],[25],[30],[31]. Here we 

choose the relevancy to two relay Aref network[7] and special broadcast channels [19],[25]. 
First, we assume that all of the links but ݕ଴ଷ in Fig.1 are deterministic and determine the following 

achievable rate ܴଵ
Then we derive from ܴଵ .(theorem 1)כ

 the rate of two relay Aref network and explain its כ
consistency with known results. 

Theorem 1: For the network (Fig.1) with no interference, random ݕ଴ଷ and assuming all other links to be 
deterministic, the following rate is achievable:  

ܴଵ
כ ൌ sup  ݉݅݊ 

ە
۔

ۓ
ሺܪ ଶܻଷ ଶܻଵሻ ൅ ሺܪ ଴ܻଵ| ଵܺሻ ൅ ሺܪ ଴ܻଷ| ଵܺܺଶሻ െ ሺܪ ଴ܻଷ|ܺ଴ ଵܺܺଶሻ,
ሺܪ ଵܻଷ ଵܻଶሻ ൅ ሺܪ ଴ܻଶ|ܺଶሻ ൅ ሺܪ ଴ܻଷ| ଵܺܺଶሻ െ ሺܪ ଴ܻଷ|ܺ଴ ଵܺܺଶሻ,
ሺܪ ଵܻଷሻ ൅ ሺܪ ଶܻଷሻ ൅ ሺܪ ଴ܻଷ| ଵܺܺଶሻ െ ሺܪ ଴ܻଷ|ܺ଴ ଵܺܺଶሻ,             
ሺܪ ଴ܻଵ ଴ܻଶ ଴ܻଷ| ଵܺܺଶሻ െ ሺܪ ଴ܻଷ|ܺ଴ ଵܺܺଶሻ                                       ۙ

ۘ

ۗ
 

Where     ݕ଴ଵ ൌ ଴݂ଵሺݔ଴ ݔଵሻ, ଴ଶݕ ൌ ଴݂ଶሺݔ଴ݔଶሻ, ଵଶݕ ൌ ଵ݂ଶሺݔଵሻ, ଶଵݕ ൌ ଶ݂ଵሺݔଶሻ, ଵଷݕ ൌ ଵ݂ଷሺݔଵሻ, ଶଷݕ ൌ ଶ݂ଷሺݔଶሻ, 
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and supremum is taken over the joint distribution of the form :  ݌ሺݔ଴ݔଵݔଶݕ଴ଵݕ଴ଶݕ଴ଷݕଵଶݕଶଵݕଵଷݕଶଷሻ ൌ 
ଶሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥݔଵݔ଴ଶݕ଴ଵݕ|଴ݔሺ݌ ଶሻݔ|଴ଶݕሺ݌ଵሻݔ|଴ଵݕሺ݌ ଶଵሻݕଶଷݕ|ଶݔሺ݌ ଵଷሻݕଵଶݕ|ଵݔሺ݌ ଶଵሻݕଶଷݕଵଷݕଵଶݕሺ݌

஺భିଵ

ଶሻᇣᇧᇧᇧᇤᇧᇧᇧᇥݔଵݔ଴ݔ|଴ଷݕሺ݌ 
஺భିଶ

 (A1) 

A1-1 and A1-2 represent equivalent input and random output distributions, respectively. A1-1 satisfies : 
ܺଶ ื ଵܺ ื ଴ܻଵ  , ଴ܻଵ ଵܺ ื ܺଶ ื ଴ܻଶ   , ଵܺ ଵܻଶ ଵܻଷ ื ଶܻଵ ଶܻଷ ื ܺଶ              (B1), 
and the distribution (A1) has been obtained from the distribution (A) in the main theorem by ݑଵ ൌ , ଵଶݕ ଵݒ ൌ
, ଵଷݕ ଶݑ ൌ , ଶଵݕ ଶݒ ൌ , ଶଷݕ ଴ݑ ൌ , ଴ଵݕ ଴ݒ ൌ ଴ଵݕ ଴ଶ andݕ ൌ ଴݂ଵሺݔ଴ ݔଵሻ, ଴ଶݕ ൌ ଴݂ଶሺݔ଴ݔଶሻ. 
Proof: See section IV. 

Special cases of theorem 1: 
(a) The rate of two relay Aref network [7] : 
If we consider the network in Fig.1 with ݕ଴ଵ ൌ ଴݂ଵሺݔ଴ ݔଵሻ, ଴ଶݕ ൌ ଴݂ଶሺݔ଴ݔଶሻ, ଵଶݕ ൌ ଵ݂ଶሺݔଵሻ, ଶଵݕ ൌ

ଶ݂ଵሺݔଶሻ, ଵଷݕ ൌ ଵ݂ଷሺݔଵሻ, ଶଷݕ ൌ ଶ݂ଷሺݔଶሻ  and ࢟૙૜ ൌ  :૙૜ሺ࢞૙ሻ ,we have the distributionࢌ
଴ଶሻݕ଴ଵݕଶݔଵݔ଴ݔሺ݌ ൌ ሺܣଵሻ ൌ  ,ଶሻ                                                             (C)ݔଵݔ|଴ଶݕ଴ଵݕ଴ݔሺ݌ ଶሻݔଵݔሺ݌
that is, (B1) conditions hold and the inputs are dependent, however, the dependence of ݔ଴ on ݔଵݔଶ is through 
଴ଵݕ ଴ଶ . If we changeݕ଴ଵݕ ൌ ଴݂ଵሺݔ଴ݔଵሻ , ଴ଶݕ ൌ ଴݂ଶሺݔ଴ݔଶሻ into ݕ଴ଵ ൌ ଴݂ଵሺݔ଴ሻ , ଴ଶݕ ൌ ଴݂ଶሺݔ଴ሻ, then, all links 
become deterministic as in [7,sec.3.5], however, according to (C) the inputs still remain dependent and (B1) 
conditions hold. Thus, theorem 1 for two relay Aref network [7] with dependent inputs and (B1) conditions is as 
follows: 

ܴ௔
כ ൌ sup  ݉݅݊ 

ە
۔

ۓ
ሺܪ ଶܻଷ ଶܻଵሻ ൅ ሺܪ ଴ܻଵ| ଵܺሻ ൅ ሺܪ ଴ܻଷ| ଵܺܺଶሻ,
ሺܪ ଵܻଷ ଵܻଶሻ ൅ ሺܪ ଴ܻଶ|ܺଶሻ ൅ ሺܪ ଴ܻଷ| ଵܺܺଶሻ,
ሺܪ ଵܻଷሻ ൅ ሺܪ ଶܻଷሻ ൅ ሺܪ ଴ܻଷ| ଵܺܺଶሻ,             
ሺܪ ଴ܻଵ ଴ܻଶ ଴ܻଷ| ଵܺܺଶሻ                                       ۙ

ۘ

ۗ
 

 (b) We can validate the theorem 1 by its consistency with the previous results [19],[24],[25]: 
If ଵܺ ൌ ܺଶ ൌ ሺ ଴ܻଶ ൌሻ ଶܻଷ ൌ ଵܻଷ ൌ ଶܻଵ ൌ ଵܻଶ ൌ  then Fig.1 is reduced to broadcast channels with degraded ,׎

messages, two (three) components and one random component[25],[24],[19] the achievable rate regions of which 
can be established from the terms in theorem 1(the details are omitted).  

Corollary 3: Certain capacity result  
The rate ܴଵ

 in theorem 1 coincides with max-flow min-cut upper bound under additional assumptions and כ
results in a certain capacity theorem. More generally, in the main theorem, if we impose the condition ( ଵܺܺଶ ื

ଵܻଷ ଶܻଷ ื ଴ܻଷ , (co-1) ) on the random channels distribution A-2 , we will have the following capacity theorem for 
the network with three random links.(Imposing this condition on A, adds the accompanying condition: ( ଴ܻଵ ଴ܻଶ ื

ଵܺܺଶ ื ଴ܻଷ ଵܻଷ ଶܻଷ , (co-2) ). Of course, the conditions (co-1,2) can be replaced by equivalent conditions resulting 
from the no interference assumption.  

Theorem 2: For the special case ( ଵܺܺଶ ื ଵܻଷ ଶܻଷ ื ଴ܻଷ) the capacity of the network (Fig. 1, ଵܻଶ ൌ ଶܻଵ ൌ
, ଵଷݕ with no interference, random (׎ , ଶଷݕ  : ଴ଷ and assuming other links to be deterministic, is given byݕ

ܥ ൌ sup  ݉݅݊ 

ە
۔

ۓ
ሺܪ ଶܻଷሻ ൅ ሺܪ ଴ܻଵ| ଵܺሻ ൅ ሺܪ ଵܻଷ| ଵܺሻ ൅ ሺܪ ଴ܻଷ| ଵܻଷ ଶܻଷሻ െ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ,
ሺܪ ଵܻଷሻ ൅ ሺܪ ଴ܻଶ|ܺଶሻ ൅ ሺܪ ଶܻଷ|ܺଶሻ ൅ ሺܪ ଴ܻଷ| ଵܻଷ ଶܻଷሻ െ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ,
ሺܪ ଵܻଷሻ ൅ ሺܪ ଶܻଷሻ ൅ ሺܪ ଴ܻଷ| ଵܻଷ ଶܻଷሻ െ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ,                               
ሺܪ ଴ܻଵ ଴ܻଶ ଴ܻଷ ଵܻଷ ଶܻଷ| ଵܺܺଶሻ െ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ                                               ۙ

ۘ

ۗ
 

Where     ݕ଴ଵ ൌ ଴݂ଵሺݔ଴ ݔଵሻ, ଴ଶݕ ൌ ଴݂ଶሺݔ଴ݔଶሻ, 
and supremum is taken over the joint distribution of the form :  ݌ሺݔ଴ݔଵݔଶݕ଴ଵݕ଴ଶݕ଴ଷݕଵଷݕଶଷሻ ൌ 
ଶሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥݔଵݔ଴ଶݕ଴ଵݕ|଴ݔሺ݌ ଶሻݔ|଴ଶݕሺ݌ଵሻݔ|଴ଵݕሺ݌ ଶሻݔଵݔሺ݌

஺మିଵ

ଶሻᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥݔଵݔ଴ݔ|ଶଷݕଵଷݕ଴ଷݕሺ݌ 
஺మିଶ

             (A2) 

A2-1 and A2-2 represent equivalent input and random output distributions, respectively. A2-1 satisfies : 
ܺଶ ื ଵܺ ื ଴ܻଵ  , ଴ܻଵ ଵܺ ื ܺଶ ื ଴ܻଶ                                            (B2) 
Proof: See section IV. 

Special cases of theorem 2: 
(a) When all of the links are deterministic, using (co-1,2) and the independence of the inputs, theorem 2 

gives the capacity of deterministic two relay network as in [7,sec.3.5 by ଶܻଵ or ଵܻଶ ൌ  .[׎
(b) If ܺଶ ൌ ଴ܻଶ ൌ ଶܻଷ ൌ  it is readily obtained that theorem 2 gives the capacity of semi-deterministic relay ,׎

channel in [18]. 
IV.  THE PROOF OF THEOREMS 

The proof of the main theorem  
Outline of the proof: 
As mentioned and explained in subsections B-C in the introduction, we apply decode-and-broadcast strategy. 

The source ݔ଴ sends the message splits ݓ଴ଵ , , ଴ଵݓ ଴ଶ (sends the corresponding sequences located in bins ofݓ  (଴ଶݓ
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to the first relay and the second relay, respectively and meanwhile superimposes the message split ݓ଴ଷ intended 
for only the receiver over ݓ଴ଵ ,  ଴ଶ . The relays decode what they receive from the source and each other andݓ
broadcast the result to the receiver and each other in an appropriate way. The receiver decodes first the messages 
from the relays and then from the source as will be explained in detail below. 

Random Codebook Generation: 
The input probability distribution, network transition distribution ݌ሺ· | ·ሻ, ߝ ൐ 0 and ݊ ൒ 1 are given. Fix the 

joint distribution (A) in the main theorem. The idea is to send ݓ ൌ ሺݓ଴ଷ , , ଴ଵݓ  .଴ଶሻ to the receiverݓ
G1 
(G1-a) Generate 2௡ூሺ௎భ;௒భమሻ ߝ-typical independent and identically distribution (i.i.d.) n-sequences ݑଵ א ࣯ଵ

௡ , 
each with probability : 

ଵ൯ݑ൫݌ ൌ ቐ
1

ԡܣఌ
௡ሺ ଵܷሻԡ                 ,       ݑଵ א ఌܣ

௡ሺ ଵܷሻ

.݄ݐ݋               ,                          0
 

where ԡ  ·  ԡ indicates the cardinality. Throw randomly the sequences ݑଵ into 2௡ோభమ bins; index the bins 
, ௠భమܤ ݉ଵଶ א ሾ1, 2௡ோభమሿ , ܴଵଶ ൏ ሺܫ ଵܷ; ଵܻଶሻ . 

(G1-b) Generate 2௡ூሺ௏భ;௒భయሻ ߝ-typical i.i.d. n-sequences ݒଵ א ଵࣰ
௡ , each with probability : 

ଵ൯ݒ൫݌ ൌ ቐ
1

ԡܣఌ
௡ሺ ଵܸሻԡ                 ,       ݒଵ א ఌܣ

௡ሺ ଵܸሻ

.݄ݐ݋               ,                          0
 

and throw them randomly into 2௡ோభయ bins; index the bins ܤ௠భయ , ݉ଵଷ א ሾ1, 2௡ோభయሿ , ܴଵଷ ൏ ሺܫ ଵܸ; ଵܻଷሻ . 
(G1-c) We can find jointly ߝ-typical pairs ൫ݑଵ,  : ଵ൯ such thatݒ

ቀݑଵሺ݇ଵሻ , ଵሺ݆ଵሻቁݒ א ൫ܤ௠భమ ൈ ௠భయ൯ܤ ת ఌܣ
௡ሺ ଵܷ, ଵܸሻ , ݇ଵ א , ௠భమܤ ݆ଵ א ௠భయܤ  ; then for each jointly ߝ-typical pair 

൫ݑଵ, ଵݔ typical conditionally independent n-sequence-ߝ ଵ൯, generate oneݒ א ଵࣲ
௡ that is jointly ߝ-typical with that 

pair, with probability: 

ଵ൯ݔ൫݌ ൌ ቐ
1

ԡܣఌ
௡ሺ ଵܺ|ݑଵݒଵሻԡ                 ,       ݔଵ א ఌܣ

௡ሺ ଵܺ ଵܷ ଵܸሻ

.݄ݐ݋               ,                          0
 

and index it as ݔଵሺ݉ଵଶ, ݉ଵଷሻ ൌ ଵሻ ,   ܴଵଶݏଵሺݔ ൅ ܴଵଷ ൏ ሺܫ ଵܷ; ଵܻଶሻ ൅ ሺܫ ଵܸ; ଵܻଷሻ െ ሺܫ ଵܷ; ଵܸሻ . 
Now, we state briefly the remaining steps of codebook generation and also random partitioning. 

(G2-a,b,c) Generate similarly n-sequences ݑଶ, ݒଶ, with the bins of ݉ଶଵ א 2௡ோమభ, ݉ଶଷ א 2௡ோమయ , respectively 
and ݔଶሺ݉ଶଵ, ݉ଶଷሻ ൌ ଶሻ, ܴଶଵݏଶሺݔ ൏ ;ሺܷଶܫ ଶܻଵሻ , ܴଶଷ ൏ ሺܫ ଶܸ; ଶܻଷሻ , ܴଶଵ ൅ ܴଶଷ ൏ ;ሺܷଶܫ ଶܻଵሻ ൅ ሺܫ ଶܸ; ଶܻଷሻ െ ;ሺܷଶܫ ଶܸሻ 

(G3-a,b,c) Generate, for each ݔଵሺ݉ଵଶ, ݉ଵଷሻ ൌ ,ଶሺ݉ଶଵݔ ଴ ; for eachݑ ଵሻ, 2௡ூሺ௎బ;௒బభ|௑భሻݏଵሺݔ ݉ଶଷሻ ൌ  ,ଶሻݏଶሺݔ
2௡ூሺ௏బ;௒బమ|௑మሻ ݒ଴ with the bins of ݓ଴ଵ א 2௡ோబభ, ଴ଶݓ א 2௡ோబమ , respectively, ܴ଴ଵ ൏ ;ሺܷ଴ܫ ଴ܻଵ| ଵܺሻ , ܴ଴ଶ ൏ ሺܫ ଴ܸ; ଴ܻଶ|ܺଶሻ; 
for each jointly ߝ-typical pair ൫ݑ଴, , ́ ଴൯ (the total number of these pairs is 2௡ோݒ ሖܴ ൌ ሺܷ଴ܪ ଴ܸ| ଵܺܺଶሻ െ
|ሺܷ଴ܪ ଵܺ ଴ܻଵሻ െ ሺܪ ଴ܸ|ܺଶ ଴ܻଶሻ ൐ ܴ଴ଵ ൅ ܴ଴ଶ) 2௡ோబయ ݔ଴ሺݓ଴ଷ|ݓ଴ଵݓ଴ଶݏଵݏଶሻ. 

Random Partitions: Randomly partition ݑ଴ sequences into 2௡ோభమ ൈ 2௡ோሖ భ, ݒ଴ sequences into 2௡ோమభ ൈ 2௡ோሖ మ , 
൫ݑ଴ , ଴൯ pairs into 2௡ሺோబభାோబమሻ disjoint cells; ሖܴݒ ଵ ൌ ܴ଴ଵ െ ܴଵଶ , ሖܴ ଶ ൌ ܴ଴ଶ െ ܴଶଵ.Therefore, ݑ ׊଴ א ௪బభܤ ื ଴ଵݓ ؠ
ሺ́ݏଵ , ݉ଵଶሻ, ଵݏ́ א ൣ1, 2௡ோሖ భ൧ and not vice versa. Similarly, ݒ  ׊଴ א ௪బమܤ ื ଴ଶݓ ؠ ሺ́ݏଶ , ݉ଶଵሻ, ଶݏ́  א ൣ1, 2௡ோሖ మ൧ and not 
vice versa. And also, ݉ଵଷ ؠ ሺ́ݏଵ, , ଵଶሻݑ ଵݏ́ א ൣ1, 2௡ோሖ భ൧ , ଵଶݑ א ሾ1, 2௡ோೠభమ ሿ , ܴଵଷ ൌ ሖܴଵ ൅ ܴ௨భమ  , ܴ௨భమ ൌ ሺܴଵଶߙ ൅
ܴଶଵሻ , 0 ൑ ߙ ൑ 1 , ݉ଶଷ ؠ ሺ́ݏଶ, , ଶଵሻݑ ଶݏ́ א ൣ1, 2௡ோሖ మ൧, ଶଵݑ א ሾ1, 2௡ோೠమభ ሿ , ܴଶଷ ൌ ሖܴ ଶ ൅ ܴ௨మభ  , ܴ௨మభ ൌ ሺܴଶଵߙ ൅
ܴଵଶሻ , ߙ ൌ 1 െ ,ߙ ሺݑଵଶ, ଶଵሻݑ ൌ ሺ݉ଵଶ, ݉ଶଵሻ. 
The figures (3-a,b) illustrate the above partitions of ൣ1, 2௡ூሺ௎బ;௒బభ|௑భሻ൧ and ൣ1, 2௡ூሺ௏బ;௒బమ|௑మሻ൧ :  

 Fig3.Random Partitions (a) for ݑ଴ sequences (b) for ݒ଴ sequences 
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Encoding: 
Let ݓ௜ ൌ ൫ݓ଴ଷ,௜ , , ଴ଵ,௜ݓ ݅ ଴ଶ,௜൯ be the message to be sent in block ݅ and assume that at the end of blockݓ െ 1 : 

The first relay has decoded ݓ଴ଵ,௜ିଵ , ݉ଶଵ,௜ିଵ and knows ݉ଵଶ,௜ିଵ . The second relay has decoded  ݓ଴ଶ,௜ିଵ , ݉ଵଶ,௜ିଵ 
and knows  ݉ଶଵ,௜ିଵ . Therefore, either relays know ൫݉ଵଶ,௜ିଵ , ݉ଶଵ,௜ିଵ൯ and can send this common information to 
the receiver time-sharingly, that is, the first relay sends ݑଵଶ,௜ and the second relay sends ݑଶଵ,௜ , thereby, the 
receiver can decode ൫ݑଵଶ,௜ , ଶଵ,௜൯ݑ ൌ ൫݉ଵଶ,௜ିଵ , ݉ଶଵ,௜ିଵ൯ , ܴ௨భమ ൌ ሺܴଵଶߙ ൅ ܴଶଵሻ , 0 ൑ ߙ ൑ 1 , ܴ௨మభ ൌ ሺܴଶଵߙ ൅
ܴଵଶሻ , ߙ ൌ 1 െ  . ߙ

Hence, at the beginning of block ݅ : The first relay sends ݔଵ൫݉ଵଶ,௜ , ݉ଵଷ,௜൯ ൌ  ଵ,௜൯, the second relay sendsݏଵ൫ݔ
ݔ

2
൫݉21,݅ , ݉23,݅൯ ൌ ݔ

2
൫2ݏ,݅൯, the transmitter sends ݔ

0
൫03ݓ,݅ห01ݓ,݅ , , ݅,02ݓ , ݅,1ݏ  .൯݅,2ݏ

Decoding and probability of error analysis: We defer the details of decoding and probability of error analysis to 
the Appendix. The analysis shows that if the rate ܴכ is as in the statement of the main theorem, the reliable 
communication is possible. 

The proof of theorem 1: 
Assuming that the transmitter knows the first symbols of ݔଵ and ݔଶ sequences and noting to the deterministic 

functions: ݕ଴ଵ௜ ൌ ଴݂ଵሺݔ଴௜, , ଵ௜ሻݔ ଴ଶ௜ݕ ൌ ଴݂ଶሺݔ଴௜, , ଶ௜ሻݔ ଵଶ௜ݕ ൌ ଵ݂ଶሺݔଵ௜ሻ , ଶଵ௜ݕ ൌ ଶ݂ଵሺݔଶ௜ሻ , ଵଷ௜ݕ ൌ ଵ݂ଷሺݔଵ௜ሻ ,  
ଶଷ௜ݕ ൌ ଶ݂ଷሺݔଶ௜ሻ , ଵ௜ݔ ൌ ଵ݂௜൫ݕ଴ଵ

௜ିଵ, ଶଵݕ
௜ିଵ൯ ൌ ଵ݂௜൫ݕ଴ଵଵ, ,଴ଵଶݕ ڮ , ;଴ଵ,௜ିଵݕ ,ଶଵଵݕ ڮ , , ଶଵ,௜ିଵ൯ݕ ଶ௜ݔ ൌ ଶ݂௜൫ݕ଴ଶ

௜ିଵ, ଵଶݕ
௜ିଵ൯ 

ൌ ଶ݂௜൫ݕ଴ଶଵ, ڮ , ;଴ଶ,௜ିଵݕ ,ଵଶଵݕ ڮ , , ଵଶ,௜ିଵ൯ݕ ݅ ൌ 1, ڮ , ݊ , we conclude that the transmitter knows 
, ଴ଵݕ , ଴ଶݕ , ଵଶݕ , ଶଵݕ  ଶଷ , hence, these sequences can be generated at the transmitter or can be treated asݕ ଵଷ andݕ
equivalent input random variables.Therefore,by putting ܷ଴ ൌ ଴ܻଵ, ଴ܸ ൌ ଴ܻଶ, ܷଶ ൌ ଶܻଵ, ଵܷ ൌ ଵܻଶ, ଶܸ ൌ ଶܻଷ, ଵܸ ൌ ଵܻଷ 
in the main theorem ([19,theorem 3],[26],[27]) and noting to deterministic functions, ܴଵ

 ז . כܴ is obtained from כ
The proof of theorem 2: 
Achievability : As explained in the proof of theorem 1, in this case, we can put in the main theorem 

ܷ଴ ൌ ଴ܻଵ , ଴ܸ ൌ ଴ܻଶ , ଶܸ ൌ ܺଶ , ଵܸ ൌ ଵܺ , ଵܻଶ ൌ ଶܻଵ ൌ ଵܷ ൌ ܷଶ ൌ   : and have , ׎
 (i) The first term in ܴכ ื 

ሺܪ ଴ܻଵ| ଵܺሻ ൅ ሺܪ ଶܻଷሻ െ ሺܪ ଶܻଷ|ܺଶሻ ൅ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ| ଵܺܺଶሻ െ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ 
                                    ൌ௘ ሺܪ ଴ܻଵ| ଵܺሻ ൅ ሺܪ ଶܻଷሻ ൅ ሺܪ ଵܻଷ| ଵܺሻ ൅ ሺܪ ଴ܻଷ| ଵܻଷ ଶܻଷሻ െ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ ,  

(ii) The second term in ܴכ ௙
՜ ሺܪ ଴ܻଶ|ܺଶሻ ൅ ሺܪ ଵܻଷሻ ൅ ሺܪ ଶܻଷ|ܺଶሻ ൅ ሺܪ ଴ܻଷ| ଵܻଷ ଶܻଷሻ െ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ, 

(iii) The third term in ܴכ ௚
՜ ሺܪ ଵܻଷሻ ൅ ሺܪ ଶܻଷሻ ൅ ሺܪ ଴ܻଷ| ଵܻଷ ଶܻଷሻ െ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ , 

(iv) The fourth term in ܴכ ௛
՜ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷY଴ଵY଴ଶ| ଵܺܺଶሻ െ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ , 

where e,f, and g follow from the intropy relations, the conditional independence of ଵܻଷ ଶܻଷ and the assumption 
ଵܺܺଶ ื ଵܻଷ ଶܻଷ ื Y଴ଷ in theorem 2, h  follows from ଴ܷ ൌ ଴ܻଵ ൌ ଴݂ଵሺܺ଴ ଵܺሻ and ଴ܸ ൌ ଴ܻଶ ൌ ଴݂ଶሺܺ଴ܺଶሻ. 

Converse : Using max flow-min cut upper bound in [23] for Fig.1 and (a) entropy and information  relations 
,ሺܺܪ ) ܻሻ ൌ ሺܺሻܪ ൅ ,ሺܻ|ܺሻܪ ,ܤ|ܣሺܪ ሻܥ ൑ ,ሻܤ|ܣሺܪ ;ሺܺܫ ܻሻ ൌ ሺܻሻܪ െ  ሺܻ|ܺሻ ), (b) deterministic functionsܪ
଴ଵݕ ൌ ଴݂ଵሺݔ଴ݔଵሻ, ଴ଶݕ ൌ ଴݂ଶሺݔ଴ݔଶሻ, we can prove: 

(i) ܫሺܺ଴ܺଶ; ଴ܻଵ ଴ܻଷ ଶܻଷ ଵܻଷ| ଵܺሻ ൌ
ሺ௔ሻ,ሺ௕ሻ

ڮ ൑
ሺ௔ሻ

ሺܪ ଴ܻଵ| ଵܺሻ ൅ ሺܪ ଶܻଷሻ ൅ ሺܪ ଵܻଷ| ଵܺሻ ൅ ሺܪ ଴ܻଷ| ଵܻଷ ଶܻଷሻ െ
ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ .  
Similarly, the other three conditions are proved (for brevity, the details are omitted):  

(ii) ܫሺܺ଴ ଵܺ; ଴ܻଶ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺଶሻ ൑ ڮ ൌ
ሺܪ ଵܻଷሻ ൅ ሺܪ ଴ܻଶ|ܺଶሻ ൅ ሺܪ ଶܻଷ|ܺଶሻ ൅ ሺܪ ଴ܻଷ| ଵܻଷ ଶܻଷሻ െ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ, 

(iii) ܫሺܺ଴ ଵܺܺଶ; ଴ܻଷ ଵܻଷ ଶܻଷሻ ൌ ڮ ൑ ሺܪ ଵܻଷሻ ൅ ሺܪ ଶܻଷሻ ൅ ሺܪ ଴ܻଷ| ଵܻଷ ଶܻଷሻ െ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ,  
(iv) ܫሺܺ଴; ଴ܻଵ ଴ܻଷ ଴ܻଶ ଵܻଷ ଶܻଷ| ଵܺܺଶሻ ൌ ڮ ൌ ሺܪ ଴ܻଵ ଴ܻଶ ଴ܻଷ ଵܻଷ ଶܻଷ| ଵܺܺଶሻ െ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ .  
The above proof completes the converse. ז   

V.  CONCLUSION 
A new achievable rate as a main theorem for a stochastic two relay network with no interference was established 
which gives the lower bound for  the general relay channel obtained by Cover and El Gamal with slight difference 
due to no interference assumption at the receiver , includes the one relay rates of a two-level relay channel studied 
by Gupta and Kumar using point to point coding, includes the rates of two relay Aref network and other special 
two relay networks, meets the max-flow min-cut upper bound under certain additional assumptions resulting in 
certain capacity theorem which includes the related previous capacities and is validated by its consistency with 
previous results relevant to special cases of broadcast channels. The theorems might be generalized to networks 
having more than two relays. 
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APPENDIX 

Decoding and Probability of Error Analysis 
(D-1) The first relay, knowing ݏଵ,௜ and upon receiving ݕ଴ଵ , finds ݑ଴ : ቀݑ଴, ଴ଵቁݕ א ఌܣ

௡ and then finds the bin of ݑ଴, 
that is, ݓෝ଴ଵ,௜ and declares with small probability of error: ݓෝ଴ଵ,௜ ൌ  ଴ଵ,௜ iff ݊ is sufficiently large and : [19],[20],[21]ݓ
                                                 ܴ଴ଵ ൏ ;ሺܷ଴ܫ ଴ܻଵ| ଵܺሻ                                                       (1-a) 

And the second relay, knowing ݏଶ,௜ and upon receiving ݕ଴ଶ , finds ݒ଴ : ቀݒ଴, ଴ଶቁݕ א ఌܣ
௡ and then finds the bin 

of  ݒ଴, that is, ݓෝ଴ଶ,௜  and declares with small probability of error: ݓෝ଴ଶ,௜ ൌ   ଴ଶ,௜  iff ݊ is sufficiently large andݓ
                                                 ܴ଴ଶ ൏ ሺܫ ଴ܸ; ଴ܻଶ|ܺଶሻ                                                       (1-b) 

And there are unique ൫ݓෝ଴ଵ,௜ , ෝ଴ଶ,௜൯ݓ ൌ ൫ݓ଴ଵ,௜ ,  : ଴ଶ,௜൯  iffݓ

ܴ଴ଵ ൅ ܴ଴ଶ ൏ ;ሺܷ଴ܫ ଴ܻଵ| ଵܺሻ ൅ ሺܫ ଴ܸ; ଴ܻଶ|ܺଶሻ െ ;ሺܷ଴ܫ ଴ܸ| ଵܺܺଶሻ ൌ
ሺ஺ሻ

ሺܷ଴ܪ ଴ܸ| ଵܺܺଶሻ െ |ሺܷ଴ܪ ଵܺ ଴ܻଵሻ െ
ሺܪ ଴ܸ|ܺଶ ଴ܻଶሻ      (1-c) 
(D-2) The second relay and the receiver act as two receivers for broadcasted ݔଵ .The receiver, upon receiving ݕଵଷ 

and finding ݒଵ: ቀݒଵ, ଵଷቁݕ א ఌܣ
௡ , and the bin of ݒଵ,that is, ෝ݉෡ଵଷ,௜ , declares ෝ݉෡ଵଷ,௜ ൌ ݉ଵଷ,௜ (́ݏመመଵ,௜ ൌ , ଵ,௜ݏ́ ො෠ଵଶ,௜ݑ ൌ  (ଵଶ,௜ݑ

and the second relay, upon receiving ݕଵଶ and finding ݑଵ: ቀݑଵ, ଵଶቁݕ א ఌܣ
௡ and its bin number ෝ݉ଵଶ,௜ , declares 

ෝ݉ଵଶ,௜ ൌ ݉ଵଶ,௜ , all with small probability of error iff ݊ is sufficiently large and: [19],[20],[21] 

ܴଵଷ ൌ ܴ ଵ́ ൅ ሺܴଵଶߙ ൅ ܴଶଵሻ ൏ ሺܫ ଵܸ; ଵܻଷሻ  ,          ߙ א ሾ0,1ሿ                                             (2-a)   
ܴଵଶ ൏ ሺܫ ଵܷ; ଵܻଶሻ െ ሺܫ ଵܷ; ଵܸሻ                                                                                                  (2-b)  
(D-3) The first relay and the receiver act as two receivers for broadcasted ݔଶ . The receiver, upon receiving ݕଶଷ 

and finding ݒଶ: ቀݒଶ, ଶଷቁݕ א ఌܣ
௡ , and the bin of ݒଶ,that is, ෝ݉෡ଶଷ,௜ , declares ෝ݉෡ଶଷ,௜ ൌ ݉ଶଷ,௜ (́ݏመመଶ,௜ ൌ , ଶ,௜ݏ́ ො෠ଶଵ,௜ݑ ൌ  (ଶଵ,௜ݑ

and the second relay, upon receiving ݕଶଵ and finding ݑଶ: ቀݑଶ, ଶଵቁݕ א ఌܣ
௡ and its bin number ෝ݉ଶଵ,௜ , declares 

ෝ݉ଶଵ,௜ ൌ ݉ଶଵ,௜ , all with small probability of error iff ݊ is sufficiently large and: [19],[20],[21] 

ܴଶଷ ൌ ܴ ଶ́ ൅ ሺܴଶଵߙ ൅ ܴଵଶሻ ൏ ሺܫ ଶܸ; ଶܻଷሻ  ,          ߙ ൌ 1 െ    (a-3)                                            ߙ

ܴଶଵ ൏ ;ሺܷଶܫ ଶܻଵሻ െ ;ሺܷଶܫ ଶܸሻ                                                                                                 (3-b)  

(D-4) The receiver, upon receiving ݕ଴ଷ and having received ቀݕଵଷ, , ො෠ଵଶ,௜ିଵݑ ଶଷቁ, foundݕ , ො෠ଶଵ,௜ିଵݑ , መመଵ,௜ିଵݏ́  , መመଶ,௜ିଵݏ́

 ෝ݉෡ଵଶ,௜ିଵ , ෝ݉෡ଶଵ,௜ିଵ and hence knowing ̂ݏመଵ,௜ିଵ ,  መଶ,௜ିଵ , finds jointly typical pairݏ̂

൫ݑ଴ , ଴൯ݒ א ܮ ቀݕ଴ଷ,௜ିଶ , , ଵଷ,௜ିଶݕ ଶଷ,௜ିଶቁݕ ת ሺܣଵ ൈ ଵሻܤ ת ఌܣ
௡ሺܷ଴ ଴ܸ| ଵܺܺଶሻ  and then ൫ݓෝ෡଴ଵ,௜ିଶ ,  ෝ෡଴ଶ,௜ିଶ൯ with smallݓ

probability of error iff ݊ is sufficiently large and (see random partition) : 
ሖܴ ൏ ܴ଴ଵ ൅ ܴ଴ଶ ൅ ሺܷ଴ܫ ଴ܸ; ଴ܻଷ ଵܻଷ ଶܻଷ| ଵܺܺଶሻ                                                                 (4) 

Where 
ܮ ቀݕ଴ଷ,௜ିଶ , , ଵଷ,௜ିଶݕ ଶଷ,௜ିଶቁݕ ൌ ቄ൫ݑ଴ , :଴൯ݒ ቀݑ଴ , , ଴ݒ , ଵݔ , ଶݔ , ଴ଷݕ , ଵଷݕ ଶଷቁݕ א ఌܣ

௡ቅ   , 

ଵܣ ൌ ቄݑ଴: ଴ݑ א ܵଵ,௦́መመభ,೔షభ
ת ܵଵଶ,௠ෝ෡ భమ,೔షభ

ת ఌܣ
௡ሺܷ଴| ଵܺܺଶሻቅ , ܤଵ ൌ ቄݒ଴: ଴ݒ א ܵଶ,௦́መመమ,೔షభ

ת ܵଶଵ,௠ෝ෡ మభ,೔షభ
ת ఌܣ

௡ሺ ଴ܸ| ଵܺܺଶሻቅ 

(D-5) The receiver, upon receiving ݕ଴ଷ and having found jointly typical pair ൫ݑ଴ , , ෝ෡଴ଵ,௜ିଶݓ଴൯ or ൫ݒ  ෝ෡଴ଶ,௜ିଶ൯ andݓ

knowing  ൫ݔଵ , ,ଵଷݕଶ൯ , ቀݔ , ଴ݔ଴ such that ቀݔ ଶଷቁ findsݕ , ଴ଷݕ , ଵଷݕ , ଶଷݕ , ଵݔ , ଶݔ , ଴ݑ ଴ቁݒ א ఌܣ
௡ and declares ݓෝ଴ଷ,௜ିଶ ൌ

 : ଴ଷ,௜ିଶ with small probability of error iff ݊ is sufficiently large andݓ
ܴ଴ଷ ൏ ;ሺܺ଴ܫ ଴ܻଷ ଵܻଷ ଶܻଷ| ଵܺܺଶܷ଴ ଴ܸሻ                                                                                     (5) 

Now, we are able to find bounds on the total rate ܴ for the message ݓ ൌ ሺݓ଴ଵ , , ଴ଶݓ  ଴ଷሻ. From codeݓ
construction and (G-3) in codebook generation , we have: 
                                                                         ܴ ൌ ܴ଴ଵ ൅ ܴ଴ଶᇣᇧᇧᇤᇧᇧᇥ ൅ ܴ଴ଷ ൏ ܴ ́ ൅ ܴ଴ଷ                                            (6) 
ሺ4,5,6ሻ ฺ ܴ ൏ ܴ଴ଵ ൅ ܴ଴ଶᇣᇧᇧᇤᇧᇧᇥ ൅ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ| ଵܺܺଶሻ െ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ                       (7) 
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(B-1) 
 (2-a) + (3-a)     ฺ  ܴ ଵ́ ൅ ܴଵଶ ൅ ܴ ଶ́ ൅ ܴଶଵ ൏ ሺܫ ଵܸ; ଵܻଷሻ ൅ ሺܫ ଶܸ; ଶܻଷሻ,    0 ൏ ߙ ൏ 1                          (8) 
(B-2) 

ܴ ଵ́ ൅ ܴଵଶ ൌ ܴ ଵ́ ൅ ଵଶᇣᇧᇧᇤᇧᇧᇥܴߙ ൅ ଵଶถܴߙ ൏
ሺଶି௔,௕ሻ

ሺܫ ଵܸ; ଵܻଷሻ ൅ ሺܫ ଵܷ; ଵܻଶሻ െ ሺܫ ଵܷ; ଵܸሻ,   ߙ ൌ 0               (9-a)                                            

ܴ ଶ́ ൅ ܴଶଵ ൌ ܴ ́ଶ ൅ ଶଵᇣᇧᇧᇤᇧᇧᇥܴߙ ൅ ଶଵถܴߙ ൏
ሺଷି௔,௕ሻ

ሺܫ ଶܸ; ଶܻଷሻ ൅ ;ሺܷଶܫ ଶܻଵሻ െ ;ሺܷଶܫ ଶܸሻ,   ߙ ൌ 1                       (9-b) 
(B-3) From random coding and random partitioning, we have: 
                                                                    ܴ ଵ́ ൅ ܴଵଶ ൌ ܴ଴ଵ                                                                      (10-a) 
                                                                   ܴ ଶ́ ൅ ܴଶଵ ൌ ܴ଴ଶ                                                                       (10-b) 
                          ܴ ́ ൌ ሺܷ଴ܪ  ଴ܸ| ଵܺܺଶሻ െ |ሺܷ଴ܪ ଵܺ ଴ܻଵሻ െ ሺܪ ଴ܸ|ܺଶ ଴ܻଶሻ                                                 (10-c) 
 (B-4) 

ܴ ൏
ሺ଻ሻ,ሺଵ,ଵ଴ି௔ሻ,ሺଽି௕ሻ

;ሺܷ଴ܫ ଴ܻଵ| ଵܺሻ ൅ ሺܫ ଶܸ; ଶܻଷሻ ൅ ;ሺܷଶܫ ଶܻଵሻ െ ;ሺܷଶܫ ଶܸሻ ൅ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ| ଵܺܺଶሻ െ
ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ ൌ ܴ௖భ

כ                                                                                                                      (11-a), 
and  

ܴ ൏
ሺ଻ሻ,ሺଵ,ଵ଴ି௕ሻ,ሺଽି௔ሻ

ሺܫ ଴ܸ; ଴ܻଶ|ܺଶሻ ൅ ሺܫ ଵܸ; ଵܻଷሻ ൅ ሺܫ ଵܷ; ଵܻଶሻ െ ሺܫ ଵܷ; ଵܸሻ ൅ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ| ଵܺܺଶሻ െ
ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ ൌ ܴ௖మ

כ                                                                                                                     (11-b),                          
and  

ܴ ൏
ሺ଻ሻ,ሺ଼ሻ

ሺܫ ଵܸ; ଵܻଷሻ ൅ ሺܫ ଶܸ; ଶܻଷሻ ൅ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ| ଵܺܺଶሻ െ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ ൌ ܴ௖య
כ                       (11-c), 

and  

ܴ ൏
ሺହሻ,ሺଵ଴ି௖ሻ

ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ ଴ܸ ଴ܷ| ଵܺܺଶሻ െ ሺܪ ଴ܻଷ ଵܻଷ ଶܻଷ|ܺ଴ ଵܺܺଶሻ െ |ሺܷ଴ܪ ଵܺ ଴ܻଵሻ െ ሺܪ ଴ܸ|ܺଶ ଴ܻଶሻ ൌ ܴ௖ర
כ           (11-d),                               

We know that: 
The average probability of error is small arbitrarily ฻ decoding steps (D-1) – (D-5) and the corresponding 
bounds are satisfied ฺ the bounds (11-a, b, c, d) are satisfied, or equivalently: 
At least one of the bounds (11-a, b, c, d) is not satisfied ฺ at least one of the decoding steps is not satisfied ฻ 
the average probability of error is not small arbitrarily. 
So, The bounds (11-a, b, c, d) complete the proof of the main theorem.ז 

ACKNOWLEDGMENT 
The authors would like to thank Prof.Rashvand and anonymous reviewers for their helpful and invaluable 
comments. 

REFERENCES 
 [1] IEEE Transaction on Information Theory, Special Issue on Models, Theory, and Codes for Relaying and 
Cooperation in Communication Networks,vol.53,no.10,Oct. 2007. 
[2] G.Kramer,M.Gastpar and P.Gupta, “ Cooperative Strategies and Capacity Theorems for Relay Networks,” 
IEEE Trans.Inform.Theory,vol.51,no.9,pp. 3037-3063,2005. 
[3] P.Gupta and P. R.Kumar,“The Capacity of Wireless Networks,”IEEE Trans. Inform.Theory, vol.46,pp.388- 
404, Mar,2000 
 [4] P. Gupta and P. R.Kumar,“Towards an Information Theory of Large Networks; An Achievable Rate Region,” 
IEEE Trans. Inform. Theory, vol.49, no.8,pp. 1877-1894, Aug.2003. 
[5] M. Grossglauser and D.N. Tse, “Mobility Can Increase The Capacity of wireless Networks,” in IEEE 
INFOCOM 2001, Alaska, April 2001. 
[6] M. Gastpar and M. Vetterli, “On the Capacity of Wireless Networks; The Relay Corse,” IEEE INFOCOM 
2002,pp. 1577-1586. 
[7] M. R. Aref, Information Flow in Relay Networks, Ph.D. thesis, Stanford University, 1981 
[8] N. Ratnakar and G. Kramer,“ The Multicast Capacity of Acyalic, Deterministic Relay Networks With No 
Interference ”, First Workshop on Network Coding, Theory and Applications, Riva de Garda, Italy, April 7, 2005. 
[9] A.S.Avestimehr,S.N.Diggavi and D.N.C.Tse, “Wireless Network Information Flow,” Proceedings of Allerton 
Conference on Communications, Control and Computing, Illinois, 2007. 
[10] A.S.Avestimehr,S.N.Diggavi and D.N.C.Tse, “A Deterministic Approach to Wireless Relay Networks,” 
Submitted to IEEE,2007. 
[11] R. Ahlswede, N. Cai, S-Y. R. Li, and R. W. Yeung,“ Network Information Flow ”, IEEE Trans. Inform. 
Theory. vol IT-46 , 2000. 
[12] Radhika Gowaikar, Amir F. Dana, Ravi Palanki, Babak Hassibi, and Michalle Effros ,“On the Capacity of 



10 
 

Wireless Erasure Networks ”, Proc. ISIT, Chicago, 2004. 
[13] F.Xue and S.Sandhu, “Cooperation in a Half-Duplex Gaussian Diamond Relay Channel,” IEEE Trans. 
Inform. Theory, vol.51, no.10, pp. 3806-3814,Oct.2007. 
[14] T.M.Cover,”Broadcast Channels,” IEEE Trans.Inform.Theory,vol.18,no.1,pp. 2-14,1972. 
[15] P.P.Bergmans, “Random Coding Theorems for Broadcast Channels with Degraded Components,” IEEE 
Trans. Inform. Theory, vol.19, no.2,pp. 196-207,1973. 
[16] T.M.Cover, “An Achievable Rate Region for the Broadcast Channel,” IEEE Trans. Inform. Theory, vol. 
21,no.4,pp. 399-404,1975. 
[17] T.M.Cover and A.El Gamal, “Capacity Theorems for the Relay Channel,” IEEE Trans. Inform. Theory, vol. 
25,no.5.pp. 572-584, 1979. 
[18] A.El Gamal and M.Aref, “The Capacity of Semi-deterministic Relay Channel,” IEEE Trans. Inform. 
Theory, vol.IT28,no.3,p.576,1982. 
[19] K.Marton, “A Coding Theorem for the Discrete Memoryless Broadcast Channel,” IEEE Trans. Inform. 
Theory, vol. 25,no.3,pp. 306-310,1979. 
[20] A.El Gamal and Van Der Meulen, “A Proof of Marton’s Coding Theorem for the Discrete Memoryless 
Broadcast Channel,” IEEE Trans.Inform.Theory,vol.27,no.1,pp. 120-122,1981. 
[21]T.M.Cover,“Comments on Broadcast Channels,” IEEE Trans.Inform.Theory,vol.44,no.6,pp.2524-2530, 1998. 
[22] T.P.Coleman,E.Martinian,M.Effros and M.Medard, “Interference Management via Capacity-Achieving 
Codes for the Deterministic Broadcast Channel,” Submitted to IEEE,2007. 
[23] T.Cover and J.Thomas, Elements of Information theory, Wiley ,Newyork, 1991. 
[24] S.I.Gelfand and M.S.Pinsker, “Capacity of a Broadcast Channel with One Deterministic 
Component,”Probl.Pered.Inform.,vol.16,no.1,pp. 17-25,1980. 
[25] J.Korner and K.Marton, “General Broadcast Channels with Degraded Message Sets,” IEEE 
Trans.Inform.Theory,vol.23,no.1,pp. 60-64,1977. 
[26] M. Pinsker,“ The Capacity Region of Noiseless Broadcast Channels ”, Problems of Information 
Transmission, vol. 14, No. 2, pp 97-102, April - June 1978 (English translation). 
[27] K.Marton, “The Capacity Region of Deterministic Broadcast Channels,” ISIT 1977. 
[28] A. El Gamal and S. Zahedi, “Capacity of A Class of Relay Channels with Orthogonal Components,” IEEE 
Trans. Inform. theory, vol.51, no.3, pp. 1815-1817,May 2005. 
[29] G.Abed Hodtani, Relay Networks, M.Sc. Thesis, Isfahan Univ. of Tech.,Isfahan,Iran,1987 (in Persian). 
[30] R.Dabora and S.D.Servetto, “ Broadcast Channels with Cooperating Decoders,” Submitted to IEEE 2007. 
[31] Y.Liang and V.V.Veeravalli, “ Cooperative Relay Broadcast Channels,” IEEE 
Trans.Inform.Theory,vol.53,no.3,pp.900-928,2007. 
[32] A. El Gamal, et al., “ Energy-Efficient Scheduling of Perfect Transmission over Wireless Networks,” IEEE 
INFOCOM 2002,PP.1778-1782. 
[33] S.Toumpis and A.J.Goldsmith, “Capacity Regions for Wireless Ad-Hoc Networks,”IEEE Trans.Wireless 
Com.,vol.2,no.4, pp.736-748, July 2003. 
[34] L.-L. Xie and P.R.Kumar, “A Network Information Theory for Wireless Communication:Scaling Laws and 
Optimal Operation,” IEEE Trans. Inform. theory, vol.50,no.5, pp.748-767,2004. 
[35] -------, “On the Path-Loss Attenuation Regime for Positive Cost and Linear Scaling of Transport Capacity in 
Wireless Networks,” IEEE Trans. Inform. theory, vol.52,no.6pp.2313-2328,2006. 
[36] M.Langberg,A.Sprintos and J.Bruke, “The Encoding Complexity of Network Coding,” IEEE Trans. Inform. 
theory, vol.52,no.6,pp.2386-2397, 2006. 
[37] N.J.A.Harvey, R.Kleinberg and A.R. Lehman, “On the Capacity of Information Networks,” IEEE Trans. 
Inform. theory, vol.52,no.6,pp.2345-2364,2006. 
[38] S.Borade,L.Zheng and R.Gallager, “Amplify-and-Forward in Wireless Networks:Rate,Diversity,and Network 
Size,” IEEE Trans. Inform. theory, vol.53,no.10,pp.3302-3318,2007. 


