Scientia Iranica, Vol. 7, No. 2, pp 129-136
© Sharif University of Technology, April 2000

Research Note

[ENTI

SC A
[RANICA

Comparison of Four Adaptive PID Controllers
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PID controllers have been used for many years in industry and if a controller is well tuned,

its performance is acceptable for many industrial processes.

When the operating point is

changed, due to nonlinear behavior of most processes, the controller should be retuned. In
this regard, several self-tuning PID controllers are proposed in the literature. In this paper, four
such algorithms are compared through simulation and experimental studies. in the simulation
study, the effects of factors such as process pole locations, non-minimum phase behavior and
model changes on the performance of the schemes are investigated. Simulation and experimental
results demonstrate that one of the schemes performs better than the others.

INTRODUCTION

PID controller is the most common control algorithm.
The controller structure is simple and performs well
when it is properly tuned. Many tuning schemes
have been reported in the literature among which
are techniques proposed by Ziegler and Nichols [1],
Cohen and Coon [2] and Rivera et al. [3]. Although
PID controllers are common and well-known, they are
often poorly tuned. To overcome this problem, several
autotuning approaches have been reported [4].

In an autotune PID, the controller parameters
are tuned automatically on demand of the operator.
When a process is time varying or has nonlinear
dynamics, the controller adaptation should be done
continuously. This type of PID is called adaptive
or self-tuning. In this article, the performances of
four such schemes are compared through computer
simulation and experimental studies. In the next part,
these algorithms are briefly reviewed.

COMPARED SELF-TUNING SCHEMES

In this article, four adaptive PID controllers proposed
by Banyacz et al. [5], Vega et al. [6], Katende [7] and
De Keyser [8] are compared. In all of the schemes, the
following velocity form of PID is used:

u(t) = u(t = 1) + G(g ™ e(t), (1)
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where u(t) and e(t) are plant input and output error,
respectively, and:

G =go+qg™ " + 92072

In the first two schemes [5,6], the process is
modeled by the following ARMA model:

¢ “B(¢g"h)

yit) = L ute) + (o), 2

where,
Al =14aig +- +aq",
B(g ") =by+big”" + -+ bag™™,

y(t) and v(t) are plant output and unmeasured distur-
bances, respectively.

In these two schemes, the process model param-
eters are estimated by Recursive Least Squares (RLS)
at each sampling time and based on these estimates,
the PID parameters are updated. The schematic block
diagram of these indirect adaptive schemes is presented
in Figure 1.
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Figure 1. Indirect adaptive PID.
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In the above equation, A is a forgetting factor and « is
the weighting factor for the control efforts. y(j + d/j)

denotes the optimal prediction of y(y
squares sense as a function of y(j)
In this design, there is no limitatio
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and u(j — 1), ...
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order and, therefore, higher order dynamics can be

considered. Based on the above objec

tive function, the

controller parameters are calculated recursively.

The third scheme is proposed

by Katende and

Jutan {7]. This design is based on the minimization

of the following cost function:

J = E{e(t +d) + BAu(t)}?.

After several simplifying assumptions

dating formula is obtained for direct
controller parameters.
The fourth scheme, which is

(4)

a recursive up-
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proposed by De

Keyser [8], is a direct adaptive model reference con-
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Figure 2. Direct adaptive PID.
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Table 1. Design parameter for different schemes.

Scheme No. | Design Parameter
I [5] ¢m (phase margin)
II {6] a
II1 [7] 8
IV [8] v

parameters, it becomes a PID controller. The reference
model is a first order model with time delay:

-7

R(¢™!) = q_dl——F'

(5)
Similar to the former scheme, the recursive least
squares technique is used for updating the controller
parameters.

SIMULATION RESULTS

In this section, the performances of the four aforemen-
tioned schemes are compared through simulations. The
effects of the following factors are investigated:

a) Pole locations of the discrete model,
b) Non-minimum phase behavior,

¢) Process model changes.

In all simulations, recursive least squares with variable
forgetting factor [10] is used. The initial values of the
covariance matrix and parameter estimates are chosen
as follows:

P(0) = 1001,
G(0) =0,

where I is the identity matrix. Every scheme has one
design parameter which is shown in Table 1. The value
of this parameter for each scheme is so selected to
minimize the sum of the absolute value of the error.

Effects of Pole Locations and Non-Minimum
Phase Behavior

Simulation results demonstrate that as model poles
approach the center of the unit circle, the difference
in performances of the four schemes becomes less.
Therefore, systems having poles near the unit circle
are chosen for simulations. Sampling time is selected
based on the following rule [11]:

I =4 -10, (6)

h

where T, and h are rise time and sampling time
respectively.
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The continuous and discrete models of the simu-
lated examples are given in Table 2. The first example
is a second order model plus lag and it should be noted
that the dynamic behavior of many real processes can
be modeled by such a transfer function. The second
system used for simulation which has complex poles is
an example of systems with oscillatory responses. The
last example is selected to evaluate the performances of
the control schemes for non-minimum phase processes.

In simulations, a white noise with zero mean and
variance of 0.01 is added to the output of the model. In
each simulation, a sequence of set-point changes with
magnitude of two is provided with switching every 25
samples. After four changes in the set-point, a step
change in load is applied at k = 150. For schemes I
and II, an PRBS input with height of two is applied
to the open loop system during the first 25 samples.
Since applying such an input does not improve the
performances of schemes IIT and IV, it is not considered
for these schemes.

The simulation results are shown in Figures 3 to
14. The results indicate that the best performance
belongs to scheme I. Schemes II, III and IV do not
perform well in the case of non-minimum phase sys-
tems, especially when the right hand side zero is close

Table 2. Transfer functions of the simulated models.

Process No. | Continuous Model Discrete Model
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Figure 3. Response of process I using scheme 1

(¢pm = 68).
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Figure 4. Response of process [ using scheme II
(o =0.3).
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Figure 5. Response of process I using scheme III

(B=12).
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Figure 6. Response of process I using scheme IV
(v =0.78).
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Figure 7. Response of process 11 using scheme I
(¢dm = 63.5).
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Figure 8. Response of process I1 using [scheme 1

(a = 0.5).
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Figure 9. Response of process II using scheme 111

(3 = 2.0).
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Figure 10. Response of process I using scheme IV
(r=07).
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Figure 11. Response of process I11 using scheme I
(¢m = 56).
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Response of process 111 using scheme 1
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Figure 13. Response of process 111 using scheme I1I
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Figure 14. Response of process III using scheme IV
(y = 0.74).

to the unit circle. The performances of all schemes
are degraded, as the system poles become closer to the
unit circle. It should be mentioned that the third and
fourth schemes are more sensitive to the pole locations
and for poles very close to the unit circle, the closed
loop system may become unstable.

Process Model Changes

In this part, the effects of process model changes on
the performances of the control schemes are verified.
The simulated models and their corresponding time
intervals are presented in Table 3. In all schemes, the
dead time is assumed to be two samples and for schemes
I and II the degrees of B(¢~!) and A(¢~!) polynomials
are set equal to four and two respectively.

The simulation results are illustrated in Figures
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Figure 15. Closed loop response using scheme I
(¢m = 60).
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Figure 16. Closed loop response using scheme II
(a = 0.27).

15 to 18. As can be seen from the reults, scheme I
has the best performance. The performance of scheme
I1 is acceptable but it is more sensitive to the model
mismatch. In order to decrease its sensitivity, the
design parameter (o) should be increased which results
in a sluggish response. The performances of schemes
IIT and IV are not satisfactory.

EXPERIMENTAL RESULTS

To evaluate the performances of the aforementioned
schemes, they are applied to a bench scale plate heat
exchanger. The schematic diagram of the set-up is
shown in Figure 19. The temperature of the exit
stream y(t) is controlled by adjusting the flow rate
of hot water u(t). The process can be modeled by
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a second order model plus dead time|

For schemes I

and 11, the degrees of B(¢~') and A(q™') polynomials
are set equal to one and two respectively. The process

time delay is assumed to be three. E

xperiments were
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Table 3. Simulated process models.
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Figure 17. Closed loop response using scheme II1
(B=12).
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Figure 18. Closed loop response using scheme IV

(v = 0.87).
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Figure 19. Experimental set-up.
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performed with sampling rate of 10 seconds. Two set-
point changes with magnitude of 15 and 10°C followed
by a load change with magnitude of 100 cm?3/min in
flow rate of cold stream were applied. The results are
demonstrated in Figures 20 to 23. As can be seen from
the results, scheme I has the best performance, scheme
II has an acceptable performance and the performances

of schemes III and IV are not satisfactory.

These

results are consistent with the results obtained through

simulations.
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Figure 20. Experimental response using scheme I
(@771 = 65)
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Figure 21. Experimental response using scheme II
(o =1.2).
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Figure 22. Experimental response using scheme III

(B=12).
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Figure 23. Experimental response using scheme IV

(y=104).
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CONCLUSION

In this article, the performances of four adaptive
schemes are compared through simulation and ex-
perimental studies. Simulation results demonstrate
that control scheme I has the best performance for
overdamped, underdamped and non-minimum phase
systems and is more robust to model mismatch.
Scheme IT has an acceptable performance, however, the
performances of schemes III and IV are not satisfac-
tory. Experimental study on a bench scale plate heat
exchanger, which is an overdamped system, confirms
the results obtained through computer simulations for
such processes. Simulation results indicate that the
performances of all schemes degrade as system poles
become closer to the unit circle.

NOMENCLATURE

A(),B(.) polynomials in ¢!

a;,b; coefficients of polynomials A(.) and
B()

d time delay

E() expected value

e controller input (e = y, —v)

G() polynomial in ¢~}

gi coefficients of polynomial G(.)

h sampling time

m degree of B(.) polynomial

n degree of A(.) polynomial

¢t backward shift operator

S Laplace transform variable

T, rise time

U process input

Y process output

Yr set-point

z Z-transform variable

Greek Letters

o, 3 weighting factor for the control efforts
vy model reference pole

A forgetting factor

Om phase margin

v bounded unmeasured disturbances
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