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Linan and Kurdymov [6] studied numerically the 
laminar free convection induced by a line heat source at 
small Grashof numbers, using the Boussinesq equations, 
in stream function-vorticity ( ω−ψ ) variables. Wang et 
al. [7] studied the transient laminar natural convection 
from horizontal cylinders, and they used the ( ω−ψ )
equations. Ayani et al. [8] investigate the effect of 
radiation on laminar natural convection induced by a 
line heat source and concluded a considerable departure 
from the Boussinesq-based solution and from the 
boundary layer results.  
All the additional equations applied in the analytical 
solutions are strongly dependent to experimental data 
and some simplifying assumptions. In this paper, the 
additional equation is based on the physics of the flow 
obtained using the governing equations of the 
phenomena. In addition, no more simplifying 
assumptions are applied. 
 
Governing Equations 
Laminar natural convection flow from a horizontal line 
heat source, figure 1, assuming the end effects of the 
source, is negligible, is governed by continuity equation, 
the two-dimensional Navier-Stocks equations using 
Boussinesq approximation and the energy equation [3]. 
 

  
Figure 1. Problem under consideration  

 
Based on the physical configuration shown in Figure 1, 
the governing equations in the Cartesian coordinate 
system take the following form : 
 

  Abstract 
In this study the natural convection induced by a line 
heat source is investigated. Boundary layer and energy 
equations are solved analytically using integral method. 
Since the number of equations is less than the number of
unknown variables; a new additional equation is
applied. This equation is obtained by applying
momentum equation on the center line of the plume. 
Some different velocity and temperature profiles are
used. Results show that The Gaussian profile in
comparison with other studied profiles has a better
agreement with the results of similarity approach. 
Keywords: integral method, natural convection, heat
transfer, plume, laminar. 
 
Introduction 
Natural convection induced by a heat sources in an
infinite fluid space is relevant in many engineering
applications, in particular, laminar natural convection
generated around the horizontal line heat source, and
from heated circular cylinders. This issue has been
extensively investigated numerically and
experimentally. Bejan [1] presented an integral solution
for turbulence natural plume. The applied solution is
based on some simplifying assumptions and is
dependent upon the experimental data. Fujii [2] solved 
the two-dimensional boundary layer equations for Pr of 
0.01, 0.7, 2 and 10 by using similarity approach, which 
reduces the set of four partial differential equations into
two ordinary differential equations. Jaluria and Gebhart
[3] studied laminar natural convection flow arising from
a steady line thermal source, which is positioned at the
leading edge of a vertical adiabatic surface. The two-
dimensional boundary layer flow equations were
reduced to self-similarity equations, and they were
solved numerically. Lin et al. [4] examined the inclined
wall plumes that arise from a line thermal source
embedded at the leading edge of an adiabatic plate with
arbitrary tilt angle. They carried out both experiments,
and numerical analyses based on the self-similarity
equations. A few numerical studies were conducted to
analyse the plume arising above heated horizontal
circular cylinders. Kuehn and Goldstein [5] studied the
laminar natural convection heat transfer from a
horizontal isothermal cylinder by solving the Navier-
Stokes and energy equations in  ( ω−ψ ) form. 



for polynomial and sinusoidal profiles the latter 
boundary condition for relatively far points from the 
heat source turns to following boundary condition: 
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In the solution procedure, Pr is assumed to be equal to 1
which is an acceptable assumption in the case of air as 
the understudy fluid. Therefore, thickness of 
hydrodynamic boundary layer (b) can be taken to be 
equal to the thickness of thermal boundary layer (bT). 
 
A- Gaussian profile:  
Applying the boundary conditions, the Gaussian profile
takes the following form: 
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Substituting the Gaussian  profiles in the equations 7 to 
9 leads to the following relations: 
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B- Third order polynomial:   
Applying the boundary conditions, the polynomial 
velocity and temperature profiles take the form below: 
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Following the same procedure done for the Gaussian 
profile the below relation will be obtained for the third 
order polynomial: 
 

(18) ( )
∞−= ν

dx
bud c

2
1  

(19)  ( ) ( )bTTg
dx

bud
c

c
∞−= β

2
1

35
13 2

  

(20)  ( )
p

cc C
qTTbu

ρ
′

=− ∞35
13  

 
C- Sinusoidal profile: 
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In order to obtain the integral form of the governing
equations, they are integrated from y=0 up to y=Y (Figure 
1). 
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It is known that 
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Boundary conditions 
The flow is symmetric about a vertical plane passing
through the axis of the heat source (Figure 1). The boundary
conditions for the symmetry plane ( y = 0) are as follows: 
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The other boundaries are located relatively far away from
the heat source, and the pressure is assumed to have a
constant value. 
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In which uc and Tc are centerline velocity and centerline
temperature respectively. 
 
Temperature and velocity profiles 
In pursuit of solving the integral form of the governing
equations, proper profiles for both velocity and temperature
fields should be guessed. Gaussian, exponential, polynomial 
and sinusoidal profiles are applied. It should be noted that  



B- Third order polynomial: 
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C- Sinusoidal profile: 
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D- Exponential profile: 
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Since the number of equations are less than the number 
of unknown variables, therefore an additional equation 
is needed which could be obtained by applying the 
momentum equation on the centerline. 
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v at the centerline the additional 
equation reduce to the following equation: 
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This equation shows the balance of inertia term along 
the perpendicular plane to the plume by diffusion in y 
direction and buoyancy term. These terms serve as the 
main basis in forming a plume. 
Applying the assumption for uc, ∞− TTc  and b in the 
latter equation lead to an additional equation which 
serves as an equation to complete the set of four 
equations and 4 unknowns. 
 
A- Gaussian profile: 
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B- third order polynomial: 
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Substituting in the equations 7 to 9, following relations will
obtain: 
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D-  Exponential profile: 

(26)  ⎟
⎠

⎞
⎜
⎝

⎛ −=
⎟
⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ − b

y
b

y

c eeuu 2  

(27)  ( ) ⎟
⎠

⎞
⎜
⎝

⎛ −−=−
⎟
⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ −

∞∞
b

y
b

y

c eeTTTT 2  

 
after substituting in integral form of  governing equations,
we have: 
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Solution approach 
As done in the pervious step, initially the guessed profiles
for temperature and velocity fields are replaced in integral
form of the governing equations. This leads to three
equations in which cu , ( )∞−TTc

, b  and ∞ν , that is, centerline
velocity, centerline temperature difference, boundary layer
thickness and entrainment velocity, respectively  are 
unknowns. These variables are assumed to have the
following form: 
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As could be seen there is 4 unknowns and only 3 equations. 
Therefore, another additional equation is required.  
Substituting these relations in latter equations obtained from
replacing the guessed profiles in the equations 7 to 9.   
the subsequent Non-linear equations will be gained : 
A- Gaussian profile: 
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C- Sinusoidal  profile: 
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D- Exponential profile 
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Results Discussion 
In order to verify the results and also in order to 
determine the best profile which could explain the 
plume phenomena best, results are compared with 
results obtained from semi-analytical solution of Fujii 
[2]. 
For the fluid flowing over plume which is considered to 
be air, the properties are determined for the ambient 
temperature of C20T °=∞ . Other properties are 
presented in table 1. 
   

Table1-properties considered for air and heat source 
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70 41015.0 −×
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In order to compare the solutions obtained from fully 
analytical procedure with fujii results, results are 
presented in terms of similarity parameters, which are
defined as below: 
 
 

 
C- Sinusoidal  profile: 
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D- Exponential profile: 
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In order to solve the set of 4 equations, three conservation
equations and one additional equation, powers and
constants for every equation should be equal to each other.
Applying the equalities, the following powers will obtain
for all of the profiles: 
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Till this step it is found that centerline velocity, centerline
temperature difference, boundary layer thickness and
entrainment velocity are polynomial functions of
powers,0.2 , -0.6, 0.4 and -0.4, respectively.  
Applying the equality of constants will lead to subsequent
equations for each of the under study profiles and unknowns
of the problem will be completely determined.  
A- Gaussian profile: 
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Solving equation 53 and applying the powers obtained from
equation 52 determine the four unknowns and subsequently
velocity field and temperature field will be concluded. 
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Subsequently for third order polynomial, sinusoidal and
exponential profiles we have: 
B- third order polynomial profile: 
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Figure5- variation of f versus ξ  
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Figure 2 presents the variation of centerline velocity which
was shown to be a polynomial function of power 0.2. 
It should also note that centerline velocity is a function of 
expansion coefficient ( )β , source power ( )q′  and also
diffusivity coefficient ( )α .  The Gaussian profile agrees
well with the Fujii results and exponential, polynomial and
sinusoidal, respectively, deviate more and more from Fujii
results. For the case of sinusoidal and polynomial profiles,
the second boundary condition for far away borders is
somehow a non-physical condition, therefore these profiles
are not proper for precise capture of the parameters derived
from this phenomena.  In the case of temperature difference
it treats as a polynomial function of power, -0.6. That is the
centerline temperature tends to ambient temperature asξ
increases. Also it should be mentioned that the temperature
difference just like the centerline velocity is a function of
expansion coefficient ( )β , source power ( )q′  and also
Diffusivity coefficient ( )α . Figure 3 presents the variation
of centerline temperature difference versusξ . 
Variation of similarity functions, f, f' and h with respect to
similarity parameter,ξ  is compared with the results of
integral method and are presented in figure 4, 5 and 6, 
respectively. 
As could be seen in these figures Gaussian profile is the
best profile among others. Also it should be noted that other
profiles over predict the similarity functions f, f' and h.  
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Figure6- variation of h versus ξ  

 
Figure 7 presents the similarity parameters for Gaussian
profile with respect to Fujii results. In this figure it is
obviously shown that the Gaussian profile obtained from
full analytical procedure discussed in this article, agrees
well with Fujii results and doubtlessly could predict laminar
plume induced by a line heat source. 
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Conclusion 
In this paper, natural convection induced by a line heat
source is investigated using integral method. Prior works
mostly treat this phenomenon numerically or semi-
analytically. There are some analytical solutions which are
strongly dependent to experiment results. In this paper the
solution to this problem is obtained in fully analytical
procedure applying a new additional equation. The
additional equation is obtained applying the momentum
equation at centerline of plum.  
Results of this fully analytical solution are compared with
the similarity results obtained by Fujii [2].  Results show the
Gaussian profile could predict this phenomenon
appropriately and it has a higher accuracy with respect to
other profiles. It should be noted that other profiles, nearly
for all cases, over predict the phenomenon and desperately
deviate from Fujii results. 
 

 


