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Abstract: 
This work studies transient thermal stresses in a thick hollow cylinder made of Functionally 

Graded Material (FGM). The material properties are considered to be nonlinear with a power 

law distribution through the thickness. The cylinder is assumed to be in plane-strain condition 

and has infinite length. The displacement and stresses distributions are obtained by analytical 

solution of the Navier governing differential equations. The transient dynamic behavior of 

thermal stresses are specified and discussed for various power law exponent in mechanical 

properties function. 
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1. Introduction 
Functionally graded materials (FGMs) are new kind of materials. FGMs have been shown to posses superior 

advantages when employed in high temperature environment. In FGMs, material properties vary continuously 

from one surface to the other, especially from metal to ceramic. These materials are adaptable for super- high 

temperature environments. Analytical and computational studies of appointing stresses and displacements in 

cylindrical shell made of FGM have been carried out by some of researchers as following. 

Zimmerman et al. [1] considered the nonhomogeneous material properties as linear functions of radius and 

presented the analytical solution in one-dimensional case for cylinders of FGMs. El-abbasi et al. [2] used a new 

thick shell element to study the thermoelastic behavior of functionally graded shells and plates structures. They 

used Rayleigh-Ritz method for determining the temperature distribution across the thickness. 

Temperature and stress distributions were determined in a stress-relief-type plate of FGMs with steady state and 

transient temperature distributions by Awaji [3]. A general analysis of one dimensional steady state thermal 

stresses in a thick hollow cylinder under axisymmetry and nonaxisymmetry loads was developed by Jabbari et 

al. [4, 5]. Liew et al. [6] presented an analysis of the thermo-mechanical behavior of thick cylinder made from 

FGM. They assumed that the cylinder includes many homogeneous sub-cylinders. 
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Transient temperature field and associated thermal stresses in functionally graded materials have been 

determined by using a Finite Element-Finite Difference Method (FEM/FDM) by Wang B-L et al. [7]. Thermal 

shock fracture of a FGM plate and the thermal shock resistance of FGMs were analyzed by them. A general 

solution for the one-dimensional steady state thermal and mechanical stresses in a hollow thick sphere made of 

functionally graded material was presented by Eslami et al [8]. The theoretical treatment of the steady-state 

thermoelastic problem of a functionally graded cylindrical panel due to nonuniform heat supply in the 

circumferential direction was carried out by Ootao et al [9]. They obtain the exact solution for the two-

dimensional temperature change in a steady state, and thermal stresses of a simple supported cylindrical panel 

under the state of plane strain. Analytical solutions of the three-dimensional temperature and thermo-elastic 

stress field in the functionally graded cylindrical panel with finite length were derived by Shao et al [10]. In their 

work, analytical solutions for the temperature and stress fields expressed in terms of trigonometric. The stresses 

and displacement were analyzed in the infinite functionally graded thick hollow cylinder under mechanical 

shock using multilayer method by authors in the prior work [11]. We obtained the dynamic behavior of cylinder, 

natural frequencies and the mean velocity of radial stress wave propagation. 

This paper presents an analytical solution for transient thermo-mechanical behavior of thick hollow cylinder 

made of functionally graded materials under thermal and mechanical radial loads in plane strain condition. The 

radial and hoop stresses and the radial displacement are analytically determined by using Bessel functions. The 

comparisons in thermal stresses are presented for various kind of functionally graded material in different times. 

 
2. Temperature field 
To determine the thermal stresses, the temperature distribution across the thickness of cylinder should be 

obtained. The inner surface of cylinder is assumed to be made of ceramic and outer surface to be made of metal. 

The temperature distribution in the functionally graded thick hollow cylinder across the thickness was 

analytically determined in the prior experience of authors [12]. To obtain the temperature distribution, the 

following boundaries and initial conditions are considered. 
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The inner and outer radii are assumed as a and b. The following nondimensional variables are used for 

temperature field. 
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where r, t, h, ,k and  are radius, time, heat transfer coefficient, density, thermal conductivity and specific 

heat of ceramic and is a constant temperature. The temperature of body T is defined by: 
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where  is the temperature of cylinder body and  is the temperature of fluid that flows in the cylinder.  

It is assumed that the thermal conductivity and 

( )tr ,θ 1θ

cρ are the power functions of “r” as follows: 
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where 2100 ,,, mmck ρ  are the material constants and 10 =cρ  is for ceramic material (inner surface). The 

temperature distribution is presented as follows: 
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where iγ  are the eigen-values and   

21 mmm −=  (9) 
 

3. Thermoelastic equations 

 In thick hollow cylinder with infinite length and Pseudo-Dynamic conditions, the equilibrium equation can be 

written as the following: 

0=
−

+
rdr

d rrrr θθσσσ
 (10) 

And the constitutive equations are: 
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and θθσσ ,rr , θθεε ,rr ,T ,α are the radial and hoop stresses, the radial and hoop strains, the temperature 

distribution in cylinder and the coefficient of thermal expansion. E and ν are the modulus of elasticity and 

Poisson's ratio. The strain –displacement relations are: 

dr
du

rr =ε  (14) 

r
u
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The governing equations can be written through the following dimensionless terms: 
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where ccE α, are the standard values (the modulus of elasticity and the thermal expansion coefficient of ceramic 

inner surface). In functionally graded material, E and α are power function of “r” as the following: 

3
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3mrE =  (18) 
4mr=α  (19) 

where are the material constants. The Navier equation in terms of the displacement for the FGM 

cylinder can be obtained by introducing of the above equations into the Equation (10) as the following: 
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The right side of Equation (20) can be written as follows by using Equation (8).  
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The differential of Bessel functions and coefficients to  are presented in Appendix (1). By solving the 

Equation (21), the Bessel function composition form is assumed for the radial displacement as the following: 
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The coefficients to  and and exponent iz1 iz6 pc k′ should be determined by replacing Equation (22) to 

Equation (21). Coefficients and can be calculated by using boundary conditions. The coefficient and 

exponent  can be written as the following: 

1c 2c pc

k′

( )( ) 04040

0

1 cmBmA
Fcp +++

−=  (23) 

14 +=′ mk  (24) 
 
Coefficients to would be calculated from the following equations: iz1 iz6

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

i

i

i

i

i

i

i

i

i

i

i

i

f
f
f
f
f
f

z
z
z
z
z
z

aaa
aaa
aaa

aaa
aaa
aaa

6

5

4

3

2

1

6

5

4

3

2

1

666564

565554

464544

333231

232221

131211

000
000
000

000
000
000

 (25) 

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−

i

i

i

i

i

i

i

i

i

i

i

i

f
f
f
f
f
f

a

z
z
z
z
z
z

6

5

4

3

2

1

1

6

5

4

3

2

1

][  (26) 

 

The components of matrix [a] are given in Appendix (1). The exponents and  can be determined from 

Equation (27). 
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The mechanical boundary conditions are considered as follows: 

aratPrr =−= 1σ  (28) 

bratPrr =−= 2σ  (29) 



The coefficients and are calculated by using the above boundary conditions. The radial and hoop stresses 

can be calculated by using Equations (30) and (31). 
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4. Numerical results and discussion 

The present method was verified in the prior experience of authors [12]. The functionally graded hollow cylinder 

with 1.1=
a
b

 where “a” and “b” are inner and outer radii, was considered. Suppose that the inner surface is 

made of graphite/epoxy with thermal conductivity Km
Wk .72.0= .  

 
Table 1- The first six eigenvalues for thin hollow cylinder (b/a=1.1)[12] 

 

1γ  2γ  3γ  4γ  5γ  6γ  
1m

 present Ref. 
[13] present Ref. 

[13] present Ref. 
[13] present Ref. 

[13] present Ref. 
[13] present Ref. 

[13] 

0 0 0 31.4268 31.4292 62.8373 62.8385 94.2514 94.2522 125.6664 125.667 157.0818 157.0823 

0.5 0 0 31.4226 31.4391 62.8352 62.8434 94.25 94.2555 125.6654 125.6695 157.081 157.0843 

1 0 0 31.4308 31.4512 62.8392 62.8495 94.2527 94.2596 125.6674 125.6726 157.0825 157.0867 

2 0 0 31.4699 31.4821 62.8589 62.865 94.2659 94.2699 125.6773 125.6803 157.0905 157.0928 

5 0 0 31.5498 31.6271 62.8902 62.9378 94.2849 94.3185 125.6909 125.7167 157.1011 157.1221 

 
 

 For t = 0 and  (homogeneous-material), the first five eigenvalues were obtained by using the boundary 

conditions (flux-prescribed at inner and outer surfaces) in ref. [13]. For simplicity of analysis, the power law 

coefficients for and  were considered to be the same. These eigenvalues were compared with the results 

presented in ref. [13] and were in good agreement with those obtained according to ref. [13].  

01 =m

1m 2m

Consider the functionally graded thick hollow cylinder with inner radius “a” and outer radius “b”. The boundary 

and initial conditions are defined in equation (2) to (4). Suppose that the inner surface is made of alumina 

(ceramic) and the inner and outer pressures are as follows:  

00 21 == PandP  



  
Figure 1. Radial distribution of temperature for t =0.5 and 
b/a=1.5 [12] 

   Figure 2. History of temperature radial distribution for 
m1=m2=0.5 and b/a=1.5 [12] 

 

The alumina specifications are: 

 
cm

Wkc o.
46= , cc o

610*4.7 −
=α , 

ckg
kJcc o.

76.0= , GpaEc 380= , 33800
m
kg

c =ρ , 3.0=ν  

and inner radius 'a' is 0.25 m. The convection coefficient and temperature of the fluid flowing within hollow 

cylinder are 
c

Wh
o

4600=  and . The dynamic behavior of cylinder subjected to the transient 

thermal load can be seen by using the proposed method. Figures 1 to 4 show the radial distribution of 

temperature for various time and exponents and  which were obtained and discussed in our previous work 

[12]. These temperature distributions are considered to determine the thermal stresses.  

co2001 =θ

1m 2m

  
Figure 3. Radial distribution of temperature for t=0.5 

and b/a=2 [12] 
Figure 4. History of temperature radial distribution for 

m1=m2=0.5 and b/a=2 [12] 
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Figure 5. Nondimensional radial stress distribution 
across thickness for t =0.5 and b/a=2 and various  

0m4m3m2m1m ====  

Figure 6. Nondimensional radial stress distribution 
across thickness for t =0.5 and b/a=1.5 and various 

  0m4m3m2m1m ====

 
For simplicity of analysis the power law coefficients for , ,  and  are considered to be the same, 

. The Figures (5) and (6) show the nondimensional radial stresses for two values of 

b/a across the thickness of shell in 

1m 2m 3m 4m

04321 mmmmm ====

t =0.5 and various values of power law index . These figures show that as 

the power law index increase, the maximum value of radial stress is increased. The Figures (7) and (8) show 

the hoop stresses for two values of b/a in 

0m

0m

t =0.5 across the thickness of shell. The maximum value of hoop stress 

is obtained in inner radius. For ‹1, the maximum value of hoop stress is decreased as the power index is 

increased and these values are compression hoop stresses. For ›1, the maximum points of hoop stresses 

diagram are tension hoop stresses and these are increased as the power index is increased.  
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Figure 7. Nondimensional hoop stress distribution across 

thickness for t =0.5 and b/a=1.5 and various 
 0m4m3m2m1m ====

Figure 8. Nondimensional hoop stress distribution 
across thickness for t =0.5 and b/a=2 and 

various  0m4m3m2m1m ====
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Figure 9. Nondimensional radial stress distribution 

across thickness for various t (nondimensional time) and 
=0.5 , b/a=2 0m

Figure 10. Nondimensional radial stress distribution 
across thickness for various t (nondimensional time) 

and =0.5 , b/a=1.5 0m

 
The Figures (9) and (10) show the plot of radial stress along the radius for two values of b/a in =0.5 and 

various values of time

0m

t . The magnitude of the radial stress is increased at first and then these values are 

decreased and converged to zero (steady state) in all point. The hoop stresses for two values of b/a in =0.5 

and various values of time 

0m

t across the thickness of shell are shown in Figures (11) and (12). The hoop stresses 

are increased with the time and these values of hoop stresses are converged to zero (steady state). The maximum 

value of hoop stress which is obtained in inner surface is decreased with the time. 

5. Conclusion 

In this paper, an analytical solution for transient thermo-mechanical behavior of functionally graded thick hollow 

cylinder under thermal and mechanical radial loads is presented in plane strain and axisymmetry conditions. The 

pseudo dynamic condition is assumed in this article.  
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Figure 11. Nondimensional hoop stress distribution 
across thickness for various t (nondimensional time) and 

=0.5 , b/a=1.5 0m

Figure 12. Nondimensional hoop stress distribution 
across thickness for various t (nondimensional time) 

and =0.5 , b/a=2 0m



The material properties through the thickness of cylinder are assumed to be nonlinear with a power law 

distribution. The results of this procedure can be outlined as: 

1. The transient dynamic behavior of radial and hoop thermal stresses in functionally graded thick hollow 

cylinder are illustrated for various power law exponents in mechanical properties function. 

2. The radial and hoop stresses of functionally graded thick hollow cylinder are analytically obtained. The 

closed form solutions are presented for the radial and hoop stresses for FGM cylinders subjected to 

thermal and mechanical radial loading. 
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Appendix (1): 

To determine the differential of the Bessel functions, we can use the following equations a1 and a2: 
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The coefficients to  can be obtained as follows: i1f i6f
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And the components of matrix [a] are: 
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