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SUMMARY: This article presents the analysis of functionally graded hollow cylinder under 
dynamic load. The functionally graded cylinder is assumed to be made from many 
subcylinders. Each subcylinder is considered as an isotropic layer. Material's properties in 
each layer are constant and functionally graded properties are resulted by suitable arranging of 
layers in multilayer cylinder. The properties are controlled by volume fraction that is 
exponential function of radius. The shell is assumed to be in plane strain condition, and is 
subjected to axisymmetric dynamic loading. The Navier equation is solved by Galerkin finite 
element and Newmark methods. In each interface between two layers, stress and displacement 
continuity are satisfied. By using the fast Fourier transform (FFT), the time response is 
transferred to the frequency domain and natural frequencies found, then the dynamic behavior 
of functionally graded thick hollow cylinder is discussed. Finally the functionally graded 
cylinder is assumed isotropic and the results are compared with analytical results.  
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INTRODUCTION 
 

Functionally graded materials (FGMs) are new kind of materials. This material is spatial 
composite within which mechanical properties vary continuously in the macroscopic sense 
from one surface to the other. FGMs for use at high temperature are special composites that 
are usually made of ceramics and metals. In the recent years researchers have studied 
vibration and dynamic behavior of functionally graded materials and multiplayer cylindrical 
shells. 
The static and dynamic thermoelastic responses of functionally graded material plates were 
studied by Praveen and Reddy [1]. This work was investigated by varying the volume fraction 
of the ceramic and metallic constituents using a simple power law distribution and numerical 
results for the deflection and stresses were presented. A study on the vibration of cylindrical 
shells made of a functionally graded material composed of stainless steel and nickel was 
presented by Loy et al [2]. Buckling and steady state vibrations of a simply supported 
functionally gradient isotropic polygonal plate resting on a Winkler-Pasternak elastic 
foundation and subjected to uniform in–plane hydrostatic loads were studied by Cheng and 
Batra [3]. They used Reddy's third order plate theory. A study on the vibration of functionally 
graded cylindrical shell was presented by Pradhan et al [4]. In this work, Love's theory and 
Rayleigh method were employed for the analysis and natural frequencies were computed for 
various constitutive volume fractions. Analyzing transient waves was developed in a cylinder 



made of FGM by using a hybrid numerical method [5]. A computational method was 
presented to investigate SH wave in functionally graded material plates by Han and Liu [6]. 
The material properties were assumed as a quadratic function in the thickness direction. The 
transient heat conduction in a strip of a functionally graded material with continuous and 
piecewise differentiable properties was carried out by Jin [7].In this work a multi–layered 
material model was first used to obtain the Laplace transforms of temperature at the interfaces 
between the layers. 
The free vibration of simply supported, fluid–filled, cylindrically orthotropic functionally 
graded cylindrical shells with arbitrary thickness was investigated by Chen et al [8]. In this 
paper the effects of related parameters on natural frequencies were discussed. The 
thermoelasticity problems of hollow cylinder whose boundaries are subjected to time–
dependent temperatures and pressures were discussed by Lee [9]. The two–dimensional 
quasi–static axisymmetric coupled thermoelastic problem of a finitely long hollow cylinder 
was discussed in this paper. 
This article presents the analysis of functionally graded hollow cylinder under dynamic load. 
 
 

EQUATION OF MOTION AND FINITE ELEMENT MODELING 
 

Consider a thick hollow cylinder of inside radius a and outside radius b made of FGM. The 
cylinder's material is graded through the r-direction. The shell is made of a combined 
ceramic-metal material, the mixing ratio of which is varied continuously and smoothly in the 
r-direction. The inner surface of shell is pure ceramic and outer surface is pure metal. The 
material distribution is shown by: 
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Where P is material property, n is a non-negative volume fraction exponent and subscripts c 
and m stand for ceramic and metal. The material properties P are Young's modulus E and 
mass density ρ . The FGM cylinder is divided to m sub-cylinder (m layers) and it is assume 
that the non-homogeneous sub-cylinders are homogeneous. (Fig. 1) 
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Fig. 1: Schematic of layers Figure 2. Distribution of modulus of elasticity 

in layers 
 

 The material properties of Jth layer are found by: 
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Where t is: 
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The change of material property with n, using Eqn.2, is shown in Fig. 2. 
For plane strain conditions (infinite length) and axisymmetry loading, the governing equation 
is: 
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Where u is the displacement component in radial direction. Then the strain-displacement 
relations are: 
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The constitutive equations of each layer are stated as: 
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Where 1c and 2c  are found by: 
 

( )
( )( )

( )( )ν−ν+
ν=

ν−ν+
ν−=

211

211
1

2

1

E
c

E
c

 

(7) 

 
The governing equation in terms of displacement for each layer of cylindrical shell under 
axisymmetric load becomes: 
 

2

2

1
22

2 1
t

u
cr

u
r
u

rr

u

∂
∂ρ=−

∂
∂+

∂
∂  

(8) 

 
The boundary conditions on the inner and outer surfaces of the shell are taken as: 
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The continuity conditions to be enforced at any interface between two layers, can be written 
as: 
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The Galerkin method is used to obtain the finite element model of shell. Considering linear 
shape functions for the variable u as: 
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And applying the Galerkin method to the governing Eqn. 7, results into the following 
dynamic finite element equilibrium equation for each element: 
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For nodes which are located at any interface between kth and (k+1)th layers as Fig.1 , the 
continuity conditions are written as: 
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Deriving Eqn. 14 in terms of displacements and expressing the derivatives in backward and 
forward finite difference for kth and (k+1)th layers result: 
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Where h is thickness of element and kR , 1+kR are mean radius of kth and (k+1)th layers. the 
subscript k stand for kth layer. The Eqn. 15 and Eqn. 13 are used in assembling of global 
stiffness and mass matrices. The global dynamic equilibrium equations for shell become:  
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Once the finite element equilibrium equation is established, different numerical method can 
be employed to solve them in space and time domains. The Newmark direct integration 
method with suitable time step is used and the equilibrium equation is solved. To find the first 
natural frequency, the displacement responses are transferred to frequency domain by using 
the fast Fourier transform. 
 
 

NUMERICAL RESULTS AND DISCUSSION 
 

As an example, consider a thick hollow cylinder of inner radius a=0.25m and outer radius 
b=0.5m. The modulus of elasticity and the mass density at the inner radius (Alumina) are 

GpaEc 380= , 33800
m

kg
c =ρ  and the outer radius (Aluminum) are GpaEm 70= , 32707

m
kg

m =ρ . 

The loading equation is assumed as:  
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Where 0P  is Sec
GPaP 40 = .The shell is excited by unloading at sec005.0=t . 
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Fig. 3: Time history of the radial displacement at 

middle point of thickness for two values of n 
Fig. 4: Time history of the radial displacement at 

middle point of thickness for two values of n 
 
Fig. 3 shows the time history of the radial displacement at the middle point of thickness for 
two values of the power law exponent n.The power law exponent n influences conversely the 
amplitude of vibration. For large values of n, the amplitude will be constant. Fig. 4 shows the 
constant amplitude of vibration for large values of n. A comparison of the displacement 
responses between various values of the power law exponent n is presented in Fig. 3 and Fig. 
4. 
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Fig. 5: Time history of radial displacement at r = 
0.3125 m for n = 0.5 

Fig. 6: Time history of radial displacement at r = 
0.375 m for n = 0.5 

 
The comparison of the displacement responses between various point across thickness in 
certain power law exponent (n = 0.5) are presented in Fig. 5 to Fig. 7.The amplitude decrease 
from inner surface (ceramic) to outer surface (metal). 
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Fig. 7: Time history of radial displacement at r = 
0.4375 m for n = 0.5 

Fig. 8: The displacement responses in frequency 
domain for various values of n 

 
Fig. 8 shows the displacement responses in frequency domain. In this figure a comparison of 
first natural frequencies between various values of the power law exponent n is illustrated. 
The first natural frequencies are located at the peak of diagram. The natural frequency 
increase when the power law exponent n increase, table 1. 

 
Table 1: First natural frequencies for various values of n 

n 0.01 0.5 5 20 
First natural 

frequency (Hz) 
2441.5 3906.2 4394.5 4394.5 

 
Conclusion: 
 
In this paper, functionally graded thick hollow cylinder is studied by using the multiplayer 
theory. Material's properties in each layer are constant and functionally graded properties are 
resulted by suitable arranging of layers in multiplayer cylinder. To find the first natural 
frequency, the displacement responses are transferred to frequency domain by using the fast 
Fourier transform. A comparison of the radial displacement responses between various values 
of the power law exponent is presented. The first natural frequencies for various values of n 
are studied. 
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