
Optimal Number of Replicas with QoS Assurance in Data Grid Environment*

Abstract

Optimizing the use of grid resources is critical for
users to effectively exploit a Data Grid (DG). Data
replication is considered as a major technique for
increasing access performance and data availability in
DG systems. Current works on data replications in
Grid systems focuses on infrastructure for replication
mechanism for creating or deleting replicas. One of the
challenges in data replication is determining Optimal
Number of Replicas (ONR) with Quality of Service
(QoS) assurance, as well as their Optimal Location of
Replicas (OLR) in DG.

In this paper, we propose an algorithm that finds
ONR of an object over DG systems, such that the
overall communication and storage cost is minimized.
This algorithm ensures that QoS required from the
users are satisfied. In addition, we proposed a sketch of
the proof for our algorithm and its integrity.

1. Introduction

Generally the field of Grid research can be divided
into two large sub-domains: Computational and Data
Grid (DG). Although a Computational Grid is a natural
extension of cluster computers where large computing
tasks have to be computed at distributed computing
resources. A DG deals with the efficient management,
placement and replication of large amounts of data.

In this paper, we focus on DG that connects a
collection of geographically distributed computers and
storage resources that may be located in different parts
of a country or even across the globe, and enables the
users to share data and other resources. For example,
scientists working on application domains, such as
High Energy Physics (HEP), earth observation,
astrophysics and climate change modeling, generate
large objects that are collected and stored in
geographically distributed locations[1,2,3]. Since these
objects have large amounts of data, the cost of
maintaining a local copy of objects on each site that
needs the data is extremely expensive. In addition,

these objects are mostly read-only and we seldom
write in them (these are input data to the applications
for various purposes, such as benchmarking,
identification and classification [4]).

Data replication is excellent technique to move and
cache data close to users. Replication reduces access
latency and bandwidth consumption. A fair amount of
work on data replication in DG systems have been
reported. However, most of the existing works have
focused on infrastructure for replications and
mechanisms for creating/deleting replicas [5, 6, 7, and
8]. We believe that optimizing the overall access cost
and reducing the cost of replication (i.e., build and
maintenance of a server) are two conflicting goals. On
the other hand, considering the importance of response
time for users and business-oriented applications, there
is an increasing demand to support QoS in DG. Thus, a
strategy for determining ONR, with QoS assurance and
minimizing the overall replication cost is necessary.

Some works exist on the placement of replicas in
parallel and distributed systems with regular network
topologies such as tree, hyper-cubes and ring, etc [9,
10, and 11]. However, these algorithms are not directly
used by DG environments due to hierarchical network
structure and special data access patterns in DG
environments that are not common in traditional
parallel system. Moreover, QoS has never been
considered in these works.

A number of early works have considered placing
replicas for DG environments. In [12], the author
presents a heuristic algorithm, named proportional
share replication for the placement problems.
However, the algorithm does not guarantee to find
optimal placement for replicas. Liu et al. [4] have
suggested efficient algorithm for selecting strategic
location for placing the replicas so that the workload
among these replicas are balanced. In addition, they
have proposed algorithm in [13] to decide the
minimum number of replicas required, when the
maximum workload capacity of each replica server is
known. This algorithm ensures that a locality
requirement (QoS) from the user is satisfied. This
algorithm has been developed in [14] and they deal

Yasser Mansouri, Reza Monsefi
Department of Computer Engineering
Ferdowsi University of Mashhad-Iran

E-mail: ya_ma20@stu-mail.um.ac.ir, rmonsefi@ferdowsi.um.ac.ir

*The present research work has been partially sponsored by
Iranian Telecommunication Research Center (ITRC), Tehran,
Iran.
Contract No:T500,12602

Second Asia International Conference on Modelling & Simulation

978-0-7695-3136-6/08 $25.00 © 2008 IEEE
DOI 10.1109/AMS.2008.147

168

2

1 1

with the optimality of QoS and bandwidth constraints.
However, the objective function of the two mentioned
algorithms is different from that of our algorithm, since
storage cost has not been considered in these two
algorithms. Storage cost cannot be ignored because the
sizes of objects in DG are too vast. In addition, our
algorithm proves to have a better time complexity in
comparison to these two recent works [13, 14].

Here, we present a novel algorithm on geographical
replications of objects on hierarchical (i.e. tree
structure) DG systems for read-only applications. This
algorithm finds ONR and location of replicas; such
that the communication and storage cost is minimized.
Meanwhile, our algorithm ensures that locality
requirements i.e. QoS requested by the users are
satisfied.

The rest of the paper is organized as follows.
Section 2 formulates minimum replication cost
problem for hierarchical DG. A polynomial Optimal
Number of Replicas (ONR) solution to the problem
with assuring required QoS for each user; is presented
in section 3. Section 4 presents sketch of the proof for
our algorithm. Finally, section 5 concludes the overall
work.

2. DG Systems Model and Notations for

ONR Problem

First, we describe DG model where we consider
hierarchical DG model in our work, due to its
simplicity and close resemblance to the hierarchical
(tree) management, usually found in a grid
environment. For instance, LCG (World-Wide Large
Hardon Collider Computing Grid) [15] and GriPhyN
[16]. Therefore, this paper focuses on tree topology.

In this model, a user of a local site at the leaf,
accesses an object as follows: First (s)he tries to locate
the object replica locally. If the object replica is not
present, (s)he goes to the parent node up the tree to
find if a replica exists. That is, the user's request goes
up the tree and uses the first replica encountered along
the path toward the root. If there is no replica along the
path, the hub (i.e. the root of tree) will serve this
request. However, in this paper, we assume that all of
the tree nodes (including the internal nodes) could
request data. We also assume that each client’s request
has a QoS (i.e. locality assurance or sometimes-said
range limit). No less of generality, we can also
consider the distance (i.e. number of hops) between a
client and its server as QoS. That is, if the object can
be retrieved by client c from server v within
distance q(c)v)d(c, � , then the QoS requirement is
satisfied. Otherwise, it is violated. For example, in

Fig.1 the user at node n1 tries to access an object
within q(n1)=3. Whence, the user could not find the
object locally. Therefore, (s)he tries the parent node n2,
which contains no data. Then, the request reaches node
n3 where it is served by the replica in there. Since
d(n1,n3)=d(n1,n2)+d(n2,n3) =1+2 =3. Therefore, QoS
requirement of node n1 is met. However, if q(n1)=2,
then we fail to serve the request by this q(n1), because,
there is no replica placed at node n2. Therefore, QoS
requirement of node n1 is satisfied. On the other hand,
there is data in node n3 which d(n1,n3)=3 � q(n1). Thus,
QoS requirement of node n1 is not met, and data must
be retrieved from node n3 and be replicated in node n1.
Formally, we define that a client's request can reach a
server if sum of distance over links between the client
and the nearest replica along the path to the root is no
more than its QoS (i.e. range limit).

Now, we introduce the notations and definitions
used in this article. A connected and undirected Tree
models the DG systems Tr= (V, E), where V is the set
of nodes (i.e. server or client) and E is the set of
physical/logical links between the nodes. Moreover, r
is the root of DG system, which we name it "original
server" (the hub) and assuming that initially, all M
objects are within it. Additionally, Anc(v) is the set of
ancestors of node v.

We also consider for each object M)ii(1 �� ,

every node rTv� is associated with a non-negative
read rate rv,i, which is the number of access during a
certain period of time (T=5msec.), where node v
requests object i and q(v) is QoS of node v. Let d(u,v)
be a non- negative cost assigned to link Ev)(u, �
which could be interpreted as delay, link cost, hop
count, etc. A weight Si(v) is associated with each
node Vv� , representing the cost of storing a copy of
object i (or server building and maintenance cost) in
node v. No less of generality, we can also consider the

Figure.1. A DG tree

r

n3

n2

n1

Replica

169

distance (i.e., number of hops) between a client and its
server as QoS. So, assume that QoS constraint is
defined as follows:

 (c)qv)d(c,server,vclient,c i����� (1)
Where, the distance d(c,v) is the sum of distances over
links between client c and server v; qi(c) is the QoS
requirement for client c, which has requested object i.

At this time, we are going to calculate the total cost
of the system, which is the sum of the overall read and
the storage cost. Suppose that the nodes of T issue read
request for an object i, and that replicas of that object i
can be stored at multiple nodes of T. The set of nodes
at which replicas of that object i are placed is called an
Optimal Location of Replicas for object i (i.e. OLRi).
The read cost of OLRi is the cost of servicing the read
requests issued from all the nodes of T for object i, is
given by:

))OLRc(v,.d(v,r iiv,Vv
�
�

 (2)

Where we define c(v,OLRi) to be the lowest ancestor
of rTv� that is contained in OLRi, i.e., the first node
in OLRi that is seen while going up the request from v
to root r. This node, which is c(v,OLRi) may be located
in height l, top of the node v, which denoted with vl
(that is, c(v,OLRi) and d(v,vl) equal to the sum of the
distances over l links. Clearly moreover, node
containing replica of object i, does not request data
from ancestor. The storage cost of OLRi is the cost of
placing replicas of that object i at all the nodes in OLRi
and is given by:
 �

� iOLRv
(v)Si (3)

Thus, the total cost for an Optimal Location of Replica
(i.e., OLRi) for Tr is:

�V),(OLRicost i)v.d(v,r
Vv

iv, l�
�

+ �
� iOLRv

(v)Si (4)

Therefore, the total cost for M objects, which we
desire to be minimum is given by:

V),(OLRcost i
iM

1i
�
�

 (5)

Hence, the Optimization Problem (OP) can be formally
defined as follows:
OP: Given a tree network of DG Tr= (V, E) and M

objects. Find ONRi and OLRi� V and r�OLRi,
for all Mi1 �� , such that to minimize

V),(OLRcost i
iM

1i
�
�

, where V),(OLRcost i
i is

given by (4). Meanwhile, QoS for each user
should be met.

3. Optimal Number of Replicas (ONR)
with QoS Assurance

In this section, we present a solution to the ONR
and as well as Optimal Location of Replicas (OLR),
for object i in a DG Tree Tr such that total cost given in
(4) is minimized and QoS for each client is satisfied.
No less of generality, we assume that initially, all
objects are located in root of DG Tree. This
assumption is completely in accordance with general
state of the problem in real world.

At this time, we propose a new algorithm for ONR.
As shown in Fig. (2.a), we consider a more generalized
problem of ONR in a sub-tree rooted at node v,
assuming the lowest ancestor of v that has replica in
node vl. This node (i.e. vl) is located in distance l link
from node v. We assume that, min_cost(v,vl)-value is
the minimum cost of the sub-tree rooted at v, where the
next replica of object i up the tree is at distance l link
from v. Moreover, OLR(v,vl) is an optimal solution for
placing replicas in sub-tree Tv .

In order to determine optimal number of replicas
for object i, in a way that the total cost i.e., (4), to be
minimum; two cases for calculation
min_cost(v,vl)-value for all nodes rTv� and for each

Anc(v)v �l is considered, as follows:
Case1: we assume that in sub-tree rooted at v, no
replica i is located in node v. Therefore, in this case
value of min_cost(v,vl) equals to sum of the following
costs:
1) Replication cost in v’s children, while we have

optimum number of replica and minimum
replication cost. In this case, it is clear that the
lowest ancestor of v’s children is vl, which
contains object i and data are read from it.
Therefore, replication cost of v’s children
is)v,min_cost(z

Z(v)z
�
�

l where Z(v) is the set of v’s

children.

 (a) (b)

Figure.2. Description of algorithm for
min_cost(v,vl) in a DG Tree: (a). No
replica at node v, (b) replica at node v.

v

l

vl

() vZ v T�

v

l

vl

() vZ v T�

170

)9(

)]v(v,c)v(v,cor q(v))v[d(v,and leaf anot is vif)(

)]v(v,c)]v(v,c and q(v))vd(v, and leaf anot is vif),(

)]v.d(v,r)vd(v,+ (v)Sor q(v))v[d(v, and leaf a is vif

)]v.d(v,r)vd(v,+ (v)S and q(v))v[d(v, and leaf a is vif

21)(

21

iv,i

i,vi

 ,

[

)(

�
�
�

	

��
�

�

�
�
�

�

��
�

�

�

�

�

��

��

�

lll
vZz

llll

lll

lll

vzOLRv

vzOLR

v

vZz

��

��

�

2) Reading cost of node v from the lowest of its
ancestor (i.e., vl) which contains object i.
Therefore, reading cost of node v is rv,i .d(v,vl).

Therefore, in this case recurrence function can be as
follows (see fig. 2.a):
min_cost(v,vl) = c1(v,vl)

 = rv,i .d(v,vl)+)v, min_cost(z
Z(v)z
�
�

l (6)

Case2: we assume that in sub-tree rooted in v, one
replica of object i is located in node v. Thus, in this
case value of min_cost(v,vl) equals to sum of the
following costs:
1) Replication cost in v’s children, while we have

optimum number of replica and minimum
replication cost. In this case, the lowest ancestor,
which contains object i and data are read from it
by v’s children, is node v (i.e., object is read from
parent). That is, .)v, min_cost(z

Z(v)z
�
�

2) Reading cost of node v from the lowest of its
ancestor (i.e., vl node) which contains object i. In
this case, object i is read once, and is replicated in
node v. Thus, read cost of node v is d(v,vl).

�)v,min_cost(v l

�),(OLR lvv

4. Sketch of Proof and Complexity to the
ONR Algorithm with QoS Assurance
In this section, we present a sketch of proof to the

ONR algorithm with QoS assurance. As show in Fig.3,
we consider a more generalized problem of placing
replicas in a sub-tree rooted at node v, with a string
length connected to it. The string consist of the nodes
(v1,v2,…,vl) and the edges are {ev=vv-1=(vv ,vv-1)�v=1,
2…l)}such that v0=v is the original root of Tv.The
string length is l and on side of it is connected to the
root Tv. At node vl, there is a server with a replica of
the object. Meanwhile, the storage cost of an object in
the string Sl is not included in the total cost of tree Tv.

3) Storage cost object i in node v, i.e., Si(v).

Therefore, in case 2 recurrence functions can be as
follows (see fig. 2.b):

min_cost(v,vl) = c1(v,vl)
 =)v, min_cost(z

Z(v)z
�
�

+d(v,vl)+Si(v) (7)

Now, we consider general DG tree with n node,
and the traversal of all the nodes in reverse post-order.
That is, starting from tree’s leaf, we calculate all
min_cost(v,vl)-values. Note that, these values for all
DG tree nodes considering all ancestors of node, is
calculated. Therefore, OLR(v,vl) is trivial if v is a leaf
in Tv. In this case, if d(v,vl)� q(v) and
Si(v)+d(v,vl)� rv,i .d(v,vl), no replica need to be placed
at v. Otherwise, if d(v,vl)� q(v) or Si(v)+d(v,vl) � rv,i
.d(v,vl), a replica should be placed at v. For each none-
leaf (i.e. internal node) v in Tv, we compare two
min_cost(v,vl) in (6) and (7). Thus, if d(v,vl)� q(v)
and c1(v,vl) � c2(v,vl), no replica need to be placed at v
(see Case1); otherwise, if d(v,vl)� q(v) or
c1(v,vl)� c2(v,vl), a replica should be placed at v. Thus,
the recurrences for algorithm are given by:

However, the communication cost from the string is
included. These assumptions are completing in
accordance with general state of the problem.
Therefore, in our algorithm (see section 3) treatment of
a sub-tree Tv corresponds to the treatment of (its root)
v, and a string of length corresponds to the initial
distance of sub-tree from the server, which contains a
replica of the object.

Moreover, we assume minimum string length that is
l=1 to prove the problem because the algorithm with
l=1 has finished and it is only required to calculate the
value of (v,vl) for the root.

Our proof of ONR algorithm with QoS assurance is
based on induction and assumption that ONR

)8(

)]v(v,c)v(v,cor q(v))v[d(v, and leaf anot is vif)v(v,c
)]v(v,c)v(v,c and q(v))v[d(v, and leaf anot is vif)v(v,c

)]v.d(v, r)vd(v,+ (v)Sor q(v))v[d(v, and leaf a is vif)vd(v,+ (v)S
)]v.d(v,r)vd(v,+ (v)S and q(v))v[d(v, and leaf a is vif)v.d(v,r

212

211

iv,ii

i,vii,v

�
�
	

�
�

�

�
�
�

�
�

�

��

��

llll

llll

llll

llll

��

��

171

lString, Sl

lv�

1vT

Sub-tree

……

v

Tree,Tv

1v

2vT

Sub-tree

kvT
Sub-tree

2v

kv

algorithm has been terminated (i.e. lengths of string is
zero=0). Lemma 1 is used as induction base.
Lemma1: For all string length, ONR algorithm with

QoS assurance optimally determines replicas
number of object in the Tree Tv when v is leaf of T,
such that ONR cost is minimized.

Proof: There is string with length l� 1 where ONR
cost is the minimum between:

a) Allocating a replica in node v, the cost is the
sum of: 1) storage cost of replica in node v.
2) Communication cost: this cost is the sum of
links distance on the string with length l, since
the object is read from the server, which is of
length l away from node v, by only one.

b) Not allocating a replica in node v. Therefore
the ONR cost is communication only. This
cost equals to sum of the link distance on
string with length l multiplied by frequency of
reading object by node v.

Note that According to (8), it is clear that in sub-
tree Tv, which is d(v,vl)� q(v), one replica must be
located in node v. That is option a) is selected.
Otherwise, the minimum amount of options
a) and b) is selected.

Lemma2 is the induction step. In this lemma2, we
prove that all strings with length l, ONR optimally
allocate the replicas of objects in the tree Tv when v is
a non-leaf of T.
Lemma2: Assume that the ONR algorithm optimally

determines number of replicas to nodes in every
tree that is rooted at the child of node v
(i.e.,

k21 vvv T,....,T,T , see Fig.3), for all string

length, such that ONR cost is minimized and QoS
for the user should be met. Then, ONR algorithm
with QoS assurance determine numbers of replicas
in tree rooted at node v optimally for all string
length, such that ONR cost is minimized.

Proof: Either one of two possibilities holds:
1) If there is one string connected (i.e., l=1), ONR

cost is the minimum between:
(a) Allocating a replica in node v. The ONR

cost is the sum of : 1) the cost of sub-trees that
are rooted at the children of node v with string
length one connected to them. 2) The storage
cost at node v and communication cost which
equals to the distance over link (i.e. distance
between node v and vl (see (7)).

(b) Not allocating a replica in node v. The ONR
cost is the sum of : 1) the costs of k sub-trees
that rooted at the children of node v with a

Figure.3. Tree with string Sl

string of length two connected to them Since
the distance between the children of v
(v1,v2,..vk) and the node vl (l=1) is equal to
two links. 2) Communication cost, which
equals to the sum of links distance on string
with length two multiplied by frequency of
reading object by node v (see (6)).

If d(v,vl)� q(v); then option a) is selected, only to
replicate the object in the node v so that the QoS in
node v is satisfied. Otherwise, (d(v,vl)� q(v)) these
are the only two possibilities when there is one
string connected. The minimum is optimal
allocation1 for k sub-trees that rooted at children of
node v. If this is not the optimal allocation then
clearly one of the allocations for k sub-trees that
rooted at node v, is not optimal. This contradicts
the assumption that all k sub-trees that are rooted at
children of node v have optimal allocation for
replicas, for all string length.

2) If a string of length l is connected, ONR cost is the
minimum between:

a) Allocating a replica in node v. The ONR cost
is the sum of: 1) trees is cost that are rooted at
childrens of node v with string length one
connected to them. 2) Storage cost at node v.
3) Communication cost, which equals to sum
of the links distance on string with length l
(see (7)).

b) Not allocating a replica in node v, and using
the replica from the string. The ONR cost is
the sum of: 1) The costs of k sub-trees which
are rooted at children of node v, with a string
of l+1 connected to them. 2) Communication
cost of node v, that equals to the sum of links

1 That is, determining ONR with QoS assurance, such that ONR cost
is minimized.

172

distance on string with length l multiplied by
frequency of reading object by node v (see
(6)).

If d(v,vl)� q(v) then option a) is selected. Else, there
are the only two possibilities when there is string of
length l connected to node v. The minimum is the
optimal allocation for k sub-trees rooted at node v.
If this is not optimal allocation then clearly one of
the allocations for k sub-trees rooted at childrens of
node v, is not optimal. This contradicts the
assumption that k sub-trees that are rooted at the
children of node v have optimal allocation for the
replica, for all string length. Thus, the allocation of
replicas is optimal for the Tv rooted at root v, for
every length of strings connected to it.

Theorem1. When the algorithm terminate, that is l=0,
optimal number of replicas is determined. So that
ONR cost is minimized and the user's QoS is
assured.
Proof: The proof is conducted by an induction

where lemma1 is the base and lemma2 is the
induction step.

Finally, we analyse the complexity of ONR
algorithm with QoS assurance for a DG Tree in the
following theorem.
Theorem2. Let Tr be a DG Tree with n nodes. We can

find ONR with QoS assurance for Tr in O(n.q(v))
time and space complexity, such that (5) is
minimized.
Proof: ONR algorithm computes each

min_cost(v,vl) and OLR(v,vl) in O(Z(v)), where
Z(v) is the number of v’s children. Moreover, it
is needed to calculate O(q(v)) in the forms of
OLR(v,vl) and min_cost(v,vl) for each v�V,
where q(v) is the QoS of node v. Therefore, the
total time complexity of ONR algorithm is
given by:

))(.())(.)(())().(((vqnOvqvZOvqvZO
Vv Vv

��� �
� �

Therefore, time complexity of our algorithm is
O(n.q(v)). As we noted, our algorithm has a better time
complexity than the two other ones. The coefficients
 and log2n are too large since n the number of nodes in
DG, is large.

5. Conclusion

In this paper we have introduced a new algorithm
for determining Optimal Number of Replicas (ONR)
and Optimal Location of Replicas (OLR) in a DG Tree
system, such that the overall cost (i.e., communication
and storage cost) is minimized and QoS of users are
being met. Meanwhile, our algorithm takes time
complexity at worst-case O(n.q(v)), which n and q(v)

are number of nodes and user's QoS in the DG Tree.
Although QoS constraint is applied to both of these
two algorithms [13, 14] but the objective function of
our algorithm are different to these two algorithms and
this is in accordance with the actual properties of DG.
On top of that, our algorithm has a better time
complexity than the said two algorithms.

References
[1] B. Allcock, J. Bester, J. Bresnahan, A. L.Chervenak, I. Foster, C.
Kesselman, S. Meder, V. Nefedova, D. Quesnal, and S. Tuecke, Data
management and transfer in high performance computational grid
environments, Parallel Computing Journal 28 (2002), no. 3, 749{771.
[2] D. Bosio, J. Casey, A. Frohner, and L. Guy et al, Next generation
data grid data management services, computing in high-energy
physics (CHEP2003), March 2003.
[3] A. Chervenak et. al, Giggle: A framework for constructing
scalable replica location services, Proc. of the ACM/ IEEE Super
Computing Conference, November 2002.
 [4] P. Liu and j .j. Wu. Optimal Replica Placement Strategy for
Hierarchical Data Grid Systems. Proceedings of the Sixth IEEE
International Symposium on Cluster Computing and the Grid
(CCGRID'06), Volume 00, 2006.
[5] A. Chervenak, R. Schuler, C. Kesselman, S. Koranda, and B.
Moe. Wide area data replication for scientific collaborations. In
Proceedings of the 6th International Workshop on Grid Computing,
November 2005.
[6] W. B. David. Evaluation of an economy-based file replication
strategy for a data grid. In International Workshop on Agent based
Cluster and Grid Computing, pages 120–126, 2003.
[7] M. Deris, A. J.H., and H. Suzuri. An efficient replicated data
access approach for large-scale distributed systems. In IEEE
International Symposium on Cluster Computing and the Grid, April
2004.
[8] K. Ranganathan, A. Iamnitchi, and I. Foster. Improving data
availability through dynamic model-driven replication in large peer-
to-peer 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid, pages 376–381, 2002.
 [9] M. M. Bae and B. Bose. Resource placement in tours-based
networks. IEEE Transactions on Computers, 46(10):1083– 1092,
October 1997.
[10] K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal placement
of replicas in trees with read, write, and storage costs. IEEE
Transactions on Parallel and Distributed Systems, 12(6):628–637,
June 2001.
[11] N.-F. Tzeng and G.-L. Feng. Resource allocation in cube
network systems based on the covering radius. IEEE Transactions on
Parallel and Distributed Systems, 7(4):328–342, April 1996.
[12] J. H. Abawajy. Placement of file replicas in data grid
environments. In ICCS 2004, Lecture Notes in Computer
Science3038, pages 66–73, 2004.
[13]P. Liu, Y.-F. Lin, and J.-J. Wu. Optimal placement of replicas in
data grid environments with locality assurance. In International
Conference on Parallel and Distributed Systems (ICPADS). IEEE
Computer Society Press, 2006.
 [14] V. Rehn-Sonigo, Optimal Replica Placement in Tree Networks
with QoS and Bandwidth Constraints and the Closest Allocation
Policy, Proceedings of the CoreGRID Symposium 2007.
[15] World wide LHC computing Grid .http//lcg.web.cern.ch./lcg/.
[16] The GriPhyN Project, http://www.Griphyn.org.

173

