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Abstract 

Optimizing the use of grid resources is critical for 
users to effectively exploit a Data Grid (DG). Data 
replication is considered as a major technique for 
increasing access performance and data availability in 
DG systems. Current works on data replications in 
Grid systems focuses on infrastructure for replication 
mechanism for creating or deleting replicas. One of the 
challenges in data replication is determining Optimal 
Number of Replicas (ONR) with Quality of Service 
(QoS) assurance, as well as their Optimal Location of 
Replicas (OLR) in DG. 

In this paper, we propose an algorithm that finds 
ONR of an object over DG systems, such that the 
overall communication and storage cost is minimized. 
This algorithm ensures that QoS required from the 
users are satisfied. In addition, we proposed a sketch of 
the proof for our algorithm and its integrity.  

1. Introduction 
 

Generally the field of Grid research can be divided 
into two large sub-domains: Computational and Data 
Grid (DG). Although a Computational Grid is a natural 
extension of cluster computers where large computing 
tasks have to be computed at distributed computing 
resources. A DG deals with the efficient management, 
placement and replication of large amounts of data. 

In this paper, we focus on DG that connects a 
collection of geographically distributed computers and 
storage resources that may be located in different parts 
of a country or even across the globe, and enables the 
users to share data and other resources. For example, 
scientists working on application domains, such as 
High Energy Physics (HEP), earth observation, 
astrophysics and climate change modeling, generate 
large objects that are collected and stored in 
geographically distributed locations[1,2,3]. Since these 
objects have large amounts of data, the cost of 
maintaining a local copy of objects on each site that 
needs the data is extremely expensive. In addition, 

these objects are mostly read-only and we seldom 
write in them (these are input data to the applications 
for various purposes, such as benchmarking, 
identification and classification [4]). 

Data replication is excellent technique to move and 
cache data close to users. Replication reduces access 
latency and bandwidth consumption. A fair amount of 
work on data replication in DG systems have been 
reported. However, most of the existing works have 
focused on infrastructure for replications and 
mechanisms for creating/deleting replicas [5, 6, 7, and 
8]. We believe that optimizing the overall access cost 
and reducing the cost of replication (i.e., build and 
maintenance of a server) are two conflicting goals. On 
the other hand, considering the importance of response 
time for users and business-oriented applications, there 
is an increasing demand to support QoS in DG. Thus, a 
strategy for determining ONR, with QoS assurance and 
minimizing the overall replication cost is necessary.   

Some works exist on the placement of replicas in 
parallel and distributed systems with regular network 
topologies such as tree, hyper-cubes and ring, etc [9, 
10, and 11]. However, these algorithms are not directly 
used by DG environments due to hierarchical network 
structure and special data access patterns in DG 
environments that are not common in traditional 
parallel system. Moreover, QoS has never been 
considered in these works.  

A number of early works have considered placing 
replicas for DG environments. In [12], the author 
presents a heuristic algorithm, named proportional 
share replication for the placement problems. 
However, the algorithm does not guarantee to find 
optimal placement for replicas. Liu et al. [4] have 
suggested efficient algorithm for selecting strategic 
location for placing the replicas so that the workload 
among these replicas are balanced. In addition, they 
have proposed algorithm in [13] to decide the 
minimum number of replicas required, when the 
maximum workload capacity of each replica server is 
known. This algorithm ensures that a locality 
requirement (QoS) from the user is satisfied. This 
algorithm has been developed in [14] and they deal 
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with the optimality of QoS and bandwidth constraints. 
However, the objective function of the two mentioned 
algorithms is different from that of our algorithm, since 
storage cost has not been considered in these two 
algorithms. Storage cost cannot be ignored because the 
sizes of objects in DG are too vast. In addition, our 
algorithm proves to have a better time complexity in 
comparison to these two recent works [13, 14].

Here, we present a novel algorithm on geographical 
replications of objects on hierarchical (i.e. tree 
structure) DG systems for read-only applications. This 
algorithm finds ONR and location of replicas; such 
that the communication and storage cost is minimized. 
Meanwhile, our algorithm ensures that locality 
requirements i.e. QoS requested by the users are 
satisfied.  

The rest of the paper is organized as follows. 
Section 2 formulates minimum replication cost 
problem for hierarchical DG. A polynomial Optimal 
Number of Replicas (ONR) solution to the problem 
with assuring required QoS for each user; is presented 
in section 3. Section 4 presents sketch of the proof for 
our algorithm. Finally, section 5 concludes the overall 
work.  

   
2. DG Systems Model and Notations for 

ONR Problem  
 

First, we describe DG model where we consider 
hierarchical DG model in our work, due to its 
simplicity and close resemblance to the hierarchical 
(tree) management, usually found in a grid 
environment. For instance, LCG (World-Wide Large 
Hardon Collider Computing Grid) [15] and GriPhyN 
[16]. Therefore, this paper focuses on tree topology. 

In this model, a user of a local site at the leaf, 
accesses an object as follows: First (s)he tries to locate 
the object replica locally. If the object replica is not 
present, (s)he goes to the parent node up the tree to 
find if a replica exists. That is, the user's request goes 
up the tree and uses the first replica encountered along 
the path toward the root. If there is no replica along the 
path, the hub (i.e. the root of tree) will serve this 
request. However, in this paper, we assume that all of 
the tree nodes (including the internal nodes) could 
request data. We also assume that each client’s request 
has a QoS (i.e. locality assurance or sometimes-said 
range limit). No less of generality, we can also 
consider the distance (i.e. number of hops) between a 
client and its server as QoS. That is, if the object can 
be retrieved by client c from server v within 
distance q(c)v)d(c, � , then the QoS requirement is 
satisfied. Otherwise, it is violated. For example, in 

Fig.1 the user at node n1 tries to access an object 
within q(n1)=3. Whence, the user could not find the 
object locally. Therefore, (s)he tries the parent node n2, 
which contains no data. Then, the request reaches node 
n3 where it is served by the replica in there. Since   
d(n1,n3)=d(n1,n2)+d(n2,n3) =1+2 =3. Therefore, QoS 
requirement of node n1 is met. However, if q(n1)=2, 
then we fail to serve the request by this q(n1), because, 
there is no replica placed at node n2. Therefore, QoS 
requirement of node n1 is satisfied. On the other hand, 
there is data in node n3 which d(n1,n3)=3 � q(n1). Thus, 
QoS requirement of node n1 is not met, and data must 
be retrieved from node n3 and be replicated in node n1. 
Formally, we define that a client's request can reach a 
server if sum of distance over links between the client 
and the nearest replica along the path to the root is no 
more than its QoS (i.e. range limit).    

Now, we introduce the notations and definitions 
used in this article. A connected and undirected Tree 
models the DG systems Tr= (V, E), where V is the set 
of nodes (i.e. server or client) and E is the set of 
physical/logical links between the nodes. Moreover, r 
is the root of DG system, which we name it "original 
server" (the hub) and assuming that initially, all M
objects are within it. Additionally, Anc(v) is the set of 
ancestors of node v. 

We also consider for each object M)ii(1 �� , 

every node rTv� is associated with a non-negative 
read rate rv,i, which  is the number of access  during  a 
certain period of time (T=5msec.), where node v 
requests object i and q(v) is QoS of node v. Let d(u,v) 
be a non- negative cost assigned to link Ev)(u, �  
which could be interpreted as delay, link cost, hop 
count, etc. A weight Si(v) is associated with each 
node Vv� , representing the cost of storing a copy of 
object i (or server building and maintenance cost) in  
node v.  No less of generality, we can also consider the  

   
 
 
 
 
 

 
 
 
 
 
 
 

 
Figure.1. A DG tree 
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distance (i.e., number of hops) between a client and its 
server as QoS. So, assume that QoS constraint is 
defined as follows: 

          (c)qv)d(c,server,vclient,c i����� (1) 
Where, the distance d(c,v) is the sum of distances over 
links between client c and server v; qi(c) is the QoS 
requirement for client c, which has requested object i.  

At this time, we are going to calculate the total cost 
of the system, which is the sum of the overall read and 
the storage cost. Suppose that the nodes of T issue read 
request for an object i, and that replicas of that object i 
can be stored at multiple nodes of T. The set of nodes 
at which replicas of that object i are placed is called an 
Optimal Location of Replicas for object i  (i.e. OLRi). 
The read cost of OLRi is the cost of servicing the read 
requests issued from all the nodes of T for object i, is 
given by: 

        ))OLRc(v,.d(v,r iiv,Vv
�
�

                               (2) 

Where we define c(v,OLRi) to be the lowest ancestor 
of rTv�  that is contained in OLRi, i.e., the first node 
in OLRi that is seen while going up the request from v
to root r. This node, which is c(v,OLRi) may be located 
in height l, top of the node v, which denoted with vl 
(that is, c(v,OLRi) and d(v,vl) equal to the sum of the 
distances over l links. Clearly moreover, node 
containing replica of object i, does not request data 
from ancestor. The storage cost of OLRi is the cost of 
placing replicas of that object i at all the nodes in OLRi
and is given by: 
                                     �

� iOLRv
(v)Si                             (3)                          

Thus, the total cost for an Optimal Location of Replica 
(i.e., OLRi) for Tr  is: 

�V),(OLRicost i )v.d(v,r
Vv

iv, l�
�

+ �
� iOLRv

(v)Si           (4)  

Therefore, the total cost for M objects, which we 
desire to be minimum is given by:                                                              

V),(OLRcost i
iM

1i
�
�

                (5)   

Hence, the Optimization Problem (OP) can be formally 
defined as follows: 
OP: Given a tree network of DG Tr= (V, E) and M 

objects. Find ONRi and OLRi�  V and r�OLRi, 
for all Mi1 �� , such that to minimize 

V),(OLRcost i
iM

1i
�
�

, where  V),(OLRcost i
i is 

given by (4). Meanwhile, QoS for each user 
should be met. 

3. Optimal Number of  Replicas   (ONR)   
with QoS Assurance 

In this section, we present a solution to the ONR 
and as well as Optimal Location of Replicas (OLR), 
for object i in a DG Tree Tr such that total cost given in 
(4) is minimized and QoS for each client is satisfied. 
No less of generality, we assume that initially, all 
objects are located in root of DG Tree. This 
assumption is completely in accordance with general 
state of the problem in real world.  

At this time, we propose a new algorithm for ONR. 
As shown in Fig. (2.a), we consider a more generalized 
problem of ONR in a sub-tree rooted at node v, 
assuming the lowest ancestor of v that has replica in 
node vl. This node (i.e. vl) is located in distance l link 
from node v. We assume that, min_cost(v,vl)-value is 
the minimum cost of the sub-tree rooted at v, where the 
next replica of object i up the tree is at distance l link 
from v. Moreover, OLR(v,vl) is an optimal solution for 
placing replicas in sub-tree Tv . 

In order to determine optimal number of replicas 
for object i, in a way that the total cost i.e., (4), to be 
minimum; two cases for calculation        
min_cost(v,vl)-value for all nodes rTv� and for each 

Anc(v)v �l  is considered, as follows:  
Case1: we assume that in sub-tree rooted at v, no 
replica i is located in node v. Therefore, in this case 
value of min_cost(v,vl) equals to sum of the following 
costs: 
1) Replication cost in v’s children, while we have 

optimum number of replica and minimum 
replication cost. In this case, it is clear that the 
lowest ancestor of v’s children is vl, which 
contains object i and data are read from it. 
Therefore, replication cost of v’s children 
is )v,min_cost(z

Z(v)z
�
�

l where Z(v) is the set of v’s 

children.  
 
 
 
 
 
 
 
 
 
 
               
                       (a)                                   (b)    

Figure.2. Description of algorithm for 
min_cost(v,vl) in a DG Tree: (a). No 
replica at node v, (b) replica at node v. 
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2) Reading cost of node v from the lowest of its 
ancestor (i.e., vl) which contains object i. 
Therefore, reading cost of node v is rv,i .d(v,vl). 

Therefore, in this case recurrence function can be as 
follows (see fig. 2.a): 
min_cost(v,vl) = c1(v,vl) 

 = rv,i .d(v,vl)+ )v, min_cost(z
Z(v)z
�
�

l      (6)                                                                                                                               

Case2: we assume that in sub-tree rooted in v, one 
replica of object i is located in node v. Thus, in this 
case value of min_cost(v,vl) equals to sum of the 
following costs: 
1) Replication cost in v’s children, while we have 

optimum number of replica and minimum   
replication cost. In this case, the lowest ancestor, 
which contains object i and data are read from it 
by v’s children, is node v (i.e., object is read from 
parent). That is, .)v, min_cost(z

Z(v)z
�
�

 

2) Reading cost of node v from the lowest of its 
ancestor (i.e., vl node) which contains object i. In 
this case, object i is read once, and is replicated in 
node v. Thus, read cost of node v is d(v,vl).  
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4. Sketch of Proof and Complexity to the 
ONR Algorithm with QoS Assurance 
In this section, we present a sketch of proof to the 

ONR algorithm with QoS assurance. As show in Fig.3, 
we consider a more generalized problem of placing 
replicas in a sub-tree rooted at node v, with a string 
length connected to it. The string consist of the nodes 
(v1,v2,…,vl) and the edges are {ev=vv-1=(vv ,vv-1)�v=1,
2…l)}such that v0=v is the original root of Tv.The 
string  length is l and on side of  it  is  connected to the 
root Tv. At node vl, there is a server with a replica of 
the object. Meanwhile, the storage cost of an object in 
the string Sl is not included in the total cost of tree Tv. 

3) Storage cost object i in node v, i.e., Si(v).  
 
Therefore, in case 2 recurrence functions can be as 
follows (see fig. 2.b): 

min_cost(v,vl) = c1(v,vl) 
                  = )v, min_cost(z

Z(v)z
�
�

+d(v,vl)+Si(v) (7) 

Now, we consider general DG tree with n node, 
and the traversal of all the nodes in reverse post-order. 
That is, starting from tree’s leaf, we calculate all 
min_cost(v,vl)-values. Note that, these values for all 
DG tree nodes considering all ancestors of node, is 
calculated. Therefore, OLR(v,vl) is trivial if v is a leaf 
in Tv. In this case, if d(v,vl)� q(v) and 
Si(v)+d(v,vl)� rv,i .d(v,vl), no replica need to be placed 
at v. Otherwise, if d(v,vl)� q(v)  or Si(v)+d(v,vl) �  rv,i 
.d(v,vl), a replica should be placed at v. For each none-
leaf (i.e. internal node) v in Tv, we compare two 
min_cost(v,vl) in (6) and (7). Thus, if d(v,vl)� q(v)
and c1(v,vl) � c2(v,vl), no replica need to be placed at v 
(see Case1); otherwise, if d(v,vl)� q(v) or 
c1(v,vl)� c2(v,vl), a replica should be placed at v. Thus, 
the recurrences for algorithm are given by: 
 
 
 
 
 
 
 
 
 

However, the communication cost from the string is 
included. These assumptions are completing in 
accordance with general state of the problem. 
Therefore, in our algorithm (see section 3) treatment of 
a sub-tree Tv corresponds to the treatment of (its root) 
v, and a string of length corresponds to the initial 
distance of sub-tree from the server, which contains a 
replica of the object. 

Moreover, we assume minimum string length that is
l=1 to prove the problem because the algorithm with 
l=1 has finished and it is only required to calculate the 
value of (v,vl) for the root. 

Our proof of ONR algorithm with QoS assurance is 
based on induction and assumption that ONR 
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algorithm has been terminated (i.e. lengths of string is 
zero=0). Lemma 1 is used as induction base. 
Lemma1: For all string length, ONR algorithm with 

QoS assurance optimally determines replicas 
number of object in the Tree Tv when v is leaf of T, 
such that ONR cost is minimized.  

Proof: There is string with length l� 1 where ONR 
cost is the minimum between: 

a) Allocating a replica in node v, the cost is the 
sum of: 1) storage cost of replica in node v.  
2) Communication cost: this cost is the sum of 
links distance on the string with length l, since 
the object is read from the server, which is of 
length l away from node v, by only one. 

b) Not allocating a replica in node v. Therefore 
the ONR cost is communication only. This 
cost equals to sum of the link distance on 
string with length l multiplied by frequency of 
reading object by node v.  

Note that According to (8), it is clear that in sub-
tree Tv, which is d(v,vl)� q(v), one replica must be 
located in node v. That is option a) is selected. 
Otherwise, the minimum amount of options  
a) and b) is selected. 
 

Lemma2 is the induction step. In this lemma2, we 
prove that all strings with length l, ONR optimally 
allocate the replicas of objects in the tree Tv when v is 
a non-leaf of  T. 
Lemma2: Assume that the ONR algorithm optimally 

determines number of replicas to nodes in every 
tree that is rooted at the child of node v 
(i.e.,

k21 vvv T,....,T,T , see Fig.3), for all string 

length, such that ONR cost is minimized and QoS 
for the user should be met. Then, ONR algorithm 
with QoS assurance determine numbers of replicas 
in tree rooted at node v optimally for all string 
length, such that ONR cost is minimized. 

Proof: Either one of two possibilities holds: 
1) If there is one string connected (i.e., l=1), ONR 

cost is the minimum between: 
(a) Allocating a replica in node v. The ONR 

cost is the sum of : 1) the cost of sub-trees that 
are rooted at the children of node v with string 
length one connected to them. 2) The storage 
cost at node v and communication cost which 
equals to the distance over link (i.e. distance 
between node v and vl (see (7)). 

(b) Not allocating a replica in node v. The ONR 
cost is the sum of : 1) the costs of k sub-trees 
that rooted at the children of node v  with a 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.3. Tree with string Sl 
      

string of length two connected to them Since 
the distance between the children of v 
(v1,v2,..vk) and the node  vl (l=1) is equal to 
two links. 2) Communication cost, which 
equals to the sum of links distance on string 
with length two multiplied by frequency of 
reading object by node v (see (6)). 

If d(v,vl)� q(v);  then option a) is selected, only to 
replicate the object in the node v so that the QoS in 
node v is satisfied. Otherwise, (d(v,vl)� q(v)) these 
are the only two possibilities when there is one 
string connected. The minimum is optimal 
allocation1 for k sub-trees that rooted at children of 
node v. If this is not the optimal allocation then 
clearly one of the allocations for k sub-trees that 
rooted at node v, is not optimal. This contradicts 
the assumption that all k sub-trees that are rooted at 
children of node v have optimal allocation for 
replicas, for all string length. 

2) If a string of length l is connected, ONR cost is the 
minimum between: 

a) Allocating a replica in node v. The ONR cost 
is the sum of: 1) trees is cost that are rooted at 
childrens of node v with string length one 
connected to them. 2) Storage cost at node v. 
3) Communication cost, which equals to sum 
of the links distance on string with length l 
(see (7)). 

b) Not allocating a replica in node v, and using 
the replica from the string. The ONR cost is 
the sum of: 1) The costs of k sub-trees which 
are rooted at children of node v, with a string 
of l+1 connected to them. 2) Communication 
cost of node v, that equals to the sum of links 

                                                           
1 That is, determining ONR with QoS assurance, such that ONR cost 
is minimized.   
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distance on string with length l multiplied by 
frequency of reading object by node v  (see 
(6)). 

If d(v,vl)� q(v) then option a) is selected. Else, there 
are the only two possibilities when there is string of 
length l connected to node v. The minimum is the 
optimal allocation for k sub-trees rooted at node v. 
If this is not optimal allocation then clearly one of 
the allocations for k sub-trees rooted at childrens of 
node v, is not optimal. This contradicts the 
assumption that k sub-trees that are rooted at the 
children of node v have optimal allocation for the 
replica, for all string length. Thus, the allocation of 
replicas is optimal for the Tv rooted at root v, for 
every length of strings connected to it. 

Theorem1. When the algorithm terminate, that is l=0, 
optimal number of replicas is determined. So that 
ONR cost is minimized and the user's QoS is 
assured. 
Proof: The proof is conducted by an induction 

where lemma1 is the base and lemma2 is the 
induction step. 

  

Finally, we analyse the complexity of ONR 
algorithm with QoS assurance for a DG Tree in the 
following theorem.  
Theorem2. Let Tr be a DG Tree with n nodes. We can 

find ONR with QoS assurance for Tr in O(n.q(v)) 
time and space complexity, such that (5) is 
minimized. 
Proof: ONR algorithm computes each 

min_cost(v,vl) and OLR(v,vl) in O(Z(v)), where 
Z(v) is the number of v’s children. Moreover, it 
is needed to calculate O(q(v)) in the forms of 
OLR(v,vl) and min_cost(v,vl) for each v�V, 
where q(v) is the QoS of node v. Therefore, the 
total time complexity of ONR algorithm is 
given by: 

 ))(.())(.)(())().((( vqnOvqvZOvqvZO
Vv Vv

��� �
� �

 

Therefore, time complexity of our algorithm is 
O(n.q(v)). As we noted, our algorithm has a better time 
complexity  than  the two other ones. The  coefficients 
 and log2n are too large since  n the number of nodes in 
DG, is large. 
 
5. Conclusion 

In this paper we have introduced a new algorithm 
for determining Optimal Number of Replicas (ONR) 
and Optimal Location of Replicas (OLR) in a DG Tree 
system, such that the overall cost (i.e., communication 
and storage cost) is minimized and QoS of users are 
being met. Meanwhile, our algorithm takes time 
complexity at worst-case O(n.q(v)), which n and q(v) 

are number of nodes and user's QoS in the DG Tree.
Although QoS constraint is applied to both of these 
two algorithms [13, 14] but the objective function of 
our algorithm are different to these two algorithms and 
this is in accordance with the actual properties of DG. 
On top of that, our algorithm has a better time 
complexity than the said two algorithms. 
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