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Abstract: By using the reductive perturbation theory, the Kadomstev-Petviashvili (KP) 
equation in unmagnetized dusty plasmas with variable dust charge, electrons with Boltzmann 
distribution and nonthermal ions, is derived and the propagation of nonlinear waves is analyzed. 
It is found that compressive and rarefactive solitons can be appeared. Amplitude of solitonic 
solutions of KP equation becomes diverges at the critical densities. 

1.  Introduction  
The study of dusty plasmas represents one of the most rapidly growing branches of plasma physics. 
The dust grains are usually of micrometer or sub-micrometer size and their masses are very large. 
Experimental observations have confirmed the existence of linear and nonlinear feature of both dust 
acoustic waves (DAW) and dust ion acoustic waves (DIAW) [1]. DAWs with nonthermal ions and 
constant dust charge have been studied by Lin and Duan [2]. Duan have also investigated DAW with 
hot dusty plasmas [3]. Also Duan et al. have studied the nonlinear Schrödinger equation and stability 
of solitons in unmagnetized warm dusty plasmas and magnetized dusty plasma [4]. Also, Mamun and 
Shukla have already studied spherical and cylindrical dust acoustic waves. Gao and Tian have 
continued their works on DAW and DIAW. El.labany et al. have studied warm dusty plasmas with 
vortex like distributed electrons and have obtained modified KdV equation for different orders of 
dispersion terms. DAWs in the presence of hot and cold dust have been worked [5]. Wang et al. have 
studied the effects of negative ions on solitary waves in dusty plasmas by using the Sagdeev potential. 
Cylindrical KP equation in warm dusty plasmas with two ions has been studied by Wang and Zhang. 
Zhang and Xue have investigated dusty plasma systems containing dust charge fluctuation in which 
densities of electrons and ions vary with x coordinate. They did it successfully and derived shock 
waves and solitary waves in these mediums [6]. In above cases charge of dust particles is constant. 
Solitary waves of the KdV equation have been studied in dusty plasma with variable dust charge in 
[7,8]. Gill et al. have also analyzed solitons of KP equation for these plasmas with two temperature 
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ions [9]. In present paper, we study the nonlinear waves in dusty plasmas with variable dust charge; 
Boltzmann distributed electrons and the nonthermal ions. In section 2 the basic set of equations is 
introduced. We derive the KP equation by using the reductive perturbation method in section 3. In 
section 4 the modified KP equation is derived at the critical density. Finally, conclusions and remarks 
are given in section 5. 

2.  Basic equations  
We consider the propagation of dust acoustic waves in collisionless, unmagnetized dusty plasma 
consisting of high negatively charged dust grains, variable dust charges, nonthermal ions and 
Boltzmann distributed electrons. Total charge neutrality at equilibrium requires that iedd nnnZ 0000 =+ , 
where ,  and  are the equilibrium values of ions, electrons and dust number densities 
respectively.  is the unperturbed number of charges on the dust particles. The following set of 
normalized two dimensional equations of motion describes the dynamics of dust acoustic wave in the 
variable dust charge plasmas: 
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in which  and  are velocity components of the dust particles in x and y-directions and 

normalized by the dust acoustic speed 
du dv

didd mTZc 0=  where  is the temperature of ions,  is 

the mass of  dust particles. and 
iT dm

dn φ  are the dust number density and electrostatic potential that have 
been  normalized by and dn eTi  and e is the magnitude of the electron charge, respectively.  and 

 are the electron and ion number densities which are normalized by and , respectively. The 

Space and Time variables are normalized by the Debye length

en

in en0 in0

2
04 eZ ddnTi πλD = and the inverse 

of dust plasma frequency 22
04 eZnm oddd π=1

pdω − , respectively. Normalized number densities for 
Boltzmann distributed electrons and nonthermal distributed ions are [2] 

                             [ ] φφσ φφβμμμ −++−=−= enen ie
i )(1)11(,)1( 2                           (2) 

where ie nn 00=μ , eii TT=σ  and )31(4 ααβ +=  in which α  is a parameter that determines 
the population of nonthermal ions. The dust charge variable Q dd Zdm=  is obtained from the charge-

current balance equation ied IIQVt +=∇+∂∂ ).( , where ),du( dv=V  and ,  are the electron 
and ion currents. We further suppose that the streaming velocities of electrons and ions are much 
smaller than the thermal velocities. Notice that the characteristic time for dust motion is around  
while the dust charging time is typically about [9]. So the dust charge reaches its equilibrium 
position quickly. Thus 

eI iI

s310−

s910−

ied IIdtdQ ,<<  and charge-current balance equation reads [8] 
                                                           0≈+ ie II                                                                                  (3) 
The electron and ion currents for spherical dust grains with radius r are 

)exp(82
eeeee TenmTreI Φ−= ππ                                                                                

                                                                                                          (4) 
)exp(82

iiiii TenmTreI Φ= ππ  
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in which Φ  denotes the dust grain surface potential relative to the plasma potentialφ . If the thermal 
velocities of electrons and ions are larger than their streaming velocities then from (3) we have  
                             [ ] 0)exp()exp()1)(exp()(1 2 =−−−++ ψσφσμψφφφβμσ iiii                      (5) 
where iTeΦ=ψ and 1840≅= eii mmμ . The dust charge Φ= CQd  is calculated by using (5) in which 

C is capacitance of dust grains(C=r).  is defined as dZ
0ψ

ψ
=dZ ,  where )0(0 == φψψ  is the dust 

surface floating potential with respect to the unperturbed plasma potential at an infinite region. By 
substituting 0=φ  into (5) we have 

                                                   0)exp()1( 00 =−− ψσμψμσ iii                                                 (6)  

dZ  can be expanded respect to φ  as  
                                                                                                          (7) 
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3.  Derivation of the KP equation 
According to the reductive perturbation method, we choose the independent variables as )( tx λεξ −= , 

and  where y2εη = t3ετ = λ  is the phase velocity of waves and ε  is a small parameter which is 
characterized the strength of the nonlinearity. Dependent variables are expanded as follows  
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 By substituting (9) into (2) and collecting the terms in the different powers of ε  we have  
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Finally the KP equation is obtained  
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Coefficients of nonlinear and dispersion terms are 
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Recently Zhang S. has derived generalized solutions of (3+1)-dimensional KP equation [10]. One-
solitonic solution for (11) is given by [9] 
 
                                                      )(sec 2 whm χφ=1φ                                                                     (13) 
where τηξχ u−+=  . The amplitude and width of the solitons are  

                                        acum )(3 −=φ         )(2 cubw −=                                                     (14) 
Now we can compare the above results with the other authors' results. The above mentioned equations 
agree with [9] for dusty plasma containing one ion with Boltzmann distribution. Results of Zhang and 
Xue [8] for warm dusty plasma with the external static magnetic field agree with our results. 
For 021 == γγ , the above solitonic solutions agree with those of Duan for warm dusty plasma with 
Boltzmann distribution ion, and also are reduced to equation of wave propagation in one dimension 
which mentioned in [2]. Lin and Duan [11] have studied this medium with two ions and N different 
species of dust grains and our results are compatible with their results.  
Figures1 and 2 show the strength of nonlinear term of the KP equation and the solitonic profiles with 
different values of the parameters, respectively. The 1γ and 2γ  are zero in all the cases. From (12) one 
can find that "a" is always negative for 0=α  when dust charge is constant. Also Figure 1 clearly 
shows that "a" can be positive or negative for different values of μα , and iσ . Figures1 and 2 present 
that the parameter "a" is negative for 5.0=α  and 0 43.0<< μ . Thus we have rarefactive soliton in 
this range of parameters. Also for 43.0>μ  "a" is positive so the compressive soliton can be appeared. 
Figure 2 shows this situation too. These results show that the parameterα  has important role. Also, it 
is clear that the amplitude of compressive (rarefactive) solitons increases (decreases) as μ  
and iσ increases and amplitude of compressive (rarefactive) solitons decreases (increases) as α  
increases. The width of soliton decreases when μ  and iσ   increase and increases when α  increases. 
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            Figure 1: Parameter “a” as a function of μα , and iσ .In figure-a 3.0=iσ  and in figure-b 
5.0=α  

 

     Figure2. The soliton profiles for different values of parameters. 1γ and 2γ  are zero and u=1.1 in all 
plots. 

4.  The modified KP equation 
From (14) it is clear that the amplitude of solitons is highly depends on "a" which is a function 
ofμ , β , iσ , 1γ  and 2γ . There exist values of density (which we called it the critical density) for which 
the coefficient "a" becomes zero and thus mφ  increases to infinity. Some researchers have studied KP 
and KdV equations at the critical density and have obtained modified KP and modified KdV equations 
[2,11,12]. Here with 02 ==1 γγ , the critical density is 
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In this case we save the stretching coordinates transform in section 3, but we use the new perturbation 
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Substituting the above expansions into (2) and collecting different orders of ε  we can derive the 
following equation 
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For critical density ( cμ ) "E" becomes zero and in this situation (17) reduces into the modified KP 
equation   
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This equation has solitonic solutions. One solitonic solution for this equation is [2,9]  
 
                                                       [ ]Wuhm )(sec1 τηξφφ −+±=                                                    (20) 
where u, ACum )(6 −=φ   and  )( CuBW −=  are velocity, amplitude and width of solitary wave. 
The above results for one dimensional propagation with 0321 === γγγ  can be compared with 
results of [2]. Figures 3 show the parameter "A" as functions ofμ , α  and iσ . The 31,γγ and 3γ  are 
zero in these Figures. It is clear that “A” is always positive. 

 
a                                                                            b 

             Figure3: Parameter "A" as a function of μ , α  and iσ . In figure(a) 3.0=iσ , in 
figure(b) 3.0=α  
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5.  Conclusion and remark  
The KP equation was obtained in unmagnetized dusty plasma with variable dust charge; Boltzmann 
distributed electrons and nonthermal ions. In this equation 1γ  and 2γ  are appeared and the effects of 
non-thermal ions, relative density and relative temperature on the behavior of the solitons are 
discussed. Since the nonlinear coefficient of the KP equation "a" can be positive or negative, it can 
also be zero at a critical density ( cμ ). In critical density the amplitude of solitons diverges. In order to 
find definite solutions, the new perturbation expansions are introduced so that the modified KP 
equation is derived. In the mKP equation, a new parameter ( 3γ ) is appeared. It can be concluded that 
when cμμ → , solitary waves of mKP equation has finite amplitudes at the critical density. Some 
results which are presented in this paper can be compared with [2, 8, and 9]. The stability and energy 
of the solitons of mKP equation and variations of them with respect to charge of dust particles can be 
investigated in further works.                   
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