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Abstract

Let G be a group and Aut(G) the group of automorphisms of G. For

any element g ∈ G and α ∈ Aut(G) the element [g, α] = g−1gα is an

autocommutator of g and α.

Also, the autocommutator subgroup of G is defined to be

K(G) =< [g, α] = g−1gα|g ∈ G, α ∈ Aut(G) >,

which is a characteristic subgroup of G.

In this talk, we discuss some properties of this concept and its

generalization.
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1. introduction

Let A = Aut(G) denote the group of automorphisms of a given group G. For

any element g ∈ G and α ∈ A the element [g, α] = g−1gα is an autocommu-

tator of g and α. Also, let K(G) = 〈[g, α]|g ∈ G, α ∈ Aut(G)〉 denote the

autocommutator subgroup of G.

P. Hegarty ([2] and [3]), proved that for any given finite group G, the

number n(G) of the finite groups X such that K(X) ∼= G is finite. In fact he

proves

Theorem (Hegarty (1997)). Given a finite group G, there are finitely many

finite groups X satisfying K(X) ∼= G.

Hegarty did not give any explicite bound for the number of solutions X of

the equation K(X) ∼= G; One notes that: For example, since the symmetric

group S3 is a complete group, it is easily seen that there are no groups X

such that K(X) ∼= S3.

The above remark leads one to suspect that when the structure of a finite

group G is very simple (i.e, G has very few automorphisms), the number of

solutions of the equation K(X) ∼= G is quite small. This is in contrast with

the equation X
′ ∼= G; this equation, if it has a solution, has infinitely many

solutions, for if X is a solution, then so is X × A, where A is an arbitrary

abelian group.
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However, the following result is proved in [2] for cyclic groups.

Theorem (Deaconescu and Walls, 2007).

1) If K(G) ∼= Z, then G ∼= Z, G ∼= Z × C2, or G ∼= D∞.

2) Let G be a finite group such that K(G) ∼= Cp. If p = 2, then G ∼= C4.

If p > 2, then G ∼= Cp, Cp×C2, T , or T ×C2, where T is a partial holomorph

of Cp.

Since there are finite groups G, as for instance G = S3, such that n(G) =

0, a natural question is to determine those groups G satisfying n(G) ≥ 1. So

in [1], C. Chis, M. Chis and G. Silberberg prove the following result:

Theorem (C. Chis, M. Chis and G. Silberberg (2008)). Every finite abelian

group is the autocommutator subgroup of some finite abelian group.

2. Higher autocommutators

Let A = Aut(G) denote the group of automorphisms of a given group G. For

any element g ∈ G and α ∈ A the element [g, α] = g−1gα is an autocommuta-

tor of g and α. We define the autocommutator of higher weight inductively

as follows:

[g, α1, α2, ..., αi] = [[g, α1, α2, ..., αi−1], αi],

for all α1, α2, ..., αi ∈ A.

So the autocommutator subgroup of weight i+1 is defined in the following

way:
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Ki(G) = [G, A, ..., A︸ ︷︷ ︸
i−times

] = 〈[g, α1, α2, ..., αi] | g ∈ G, α1, α2, ..., αi ∈ A〉.

Clearly Ki(G) is a characteristic subgroup of G, for all i ≥ 1. Therefore,

one obtains a descending chain of autocommutator subgroups of G as follows:

G ⊇ K1(G) ⊇ K2(G) ⊇ ... ⊇ Ki(G) ⊇ ...,

which we may call it the lower autocentral series of G. The aim of this section

is to prove the following main result.

Theorem 2.1. For any finite abelian group G and every natural number

n ∈ N , there exists a finite abelian group H such that

G ∼= Kn(H).

Using the above notation, we have the following

Lemma 2.2. If Zm is a finite cyclic group, then for any natural number n,

Kn(Zm) = Z2n

m .

Lemma 2.3. Let G be a finite abelian group of odd order m and Z2 the

cyclic group of order 2, then Kn(G) and Kn(G × Z2) are both isomorphic

with G, for all natural number n.

Theorem 2.4. For all natural numbers m ≥ n1 ≥ ... ≥ nr and n ≥ 2, then

Kn(Z2m × Z2n1 × ...× Z2nr ) = Z2m−n × Z2n1−(n−1) × ...× Z2nr−(n−1) .
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Proof of Theorem 2.1

Let G be a finite abelian group, which can be written as a product of its

Sylow subgroups. Now, if |G| is an odd number then by Lemma 2.3,

G = Kn(G).

Assume 2 divides |G| and A is the Sylow 2-subgroup of G, then G = A ×

P1× ...×Ps, where P
′
i s are Sylow pi-subgroups of G, (1 ≤ i ≤ r). By Lemma

2.1,

Kn(G) = Kn(A)× P1 × ...× Ps.

As A is abelian 2-group, we may write A as a direct product of cyclic groups

of orders some powers of 2, as follows:

A ∼= Z2m × Z2n1 × ...× Z2nr ,

where m ≥ n1 ≥ ... ≥ nr.

Now, we choose the abelian group

H = Z2m+n × Z2n1+n−1 × ...× Z2nr+(n−1) × P1 × ...× Ps.

It can be easily seen that

Kn(H) = G,

and hence the claim is proved. 2
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3. Autonilpotent groups

The following definition is vital in our investigations.

Definition 3.1.

We call the set of elements

L(G) = {g ∈ G | [g, α] = 1 or gα = g, ∀α ∈ A}

the autocentre of G.

Clearly, it is a characteristic subgroup of G ( see [1] for more information)

and if A = Inn(G) then L(G) = Z(G) is the centre of G.

Now, we define the upper autocentral series of G in following way:

〈1〉 = L0(G) ⊆ L1(G) = L(G) ⊆ L2(G) ⊆ ... ⊆ Ln(G) ⊆ ...,

where Ln(G)
Ln−1(G)

= L( G
Ln−1(G)

), or equivalently Ln(G) = π−1
G (L( G

Ln−1(G)
)), for all

n ≥ 2, in which πG : G −→ G
Ln−1(G)

is a homomorphism.

In particular, if we take the group of inner automorphisms we obtain the

usual upper central series of G. A group G is said to be autonilpotent group

of class at most n if Ln(G) = G, for some natural number n ∈ N.

The main purpose of this section is to determine all finite abelian groups,

which are autonilpotent.

The following lemma follows easily from the definition.

Lemma 3.2. Let G be a group and x ∈ Ln(G), for some n ≥ 1, then for all

α1, ..., αn ∈ Aut(G),

[x, α1, ..., αn] = 1.
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Corollary 3.3. If G is an autonilpotent group of class n, then Kn(G) = 〈1〉.

Remark. For any group G and each natural number n,

Kn(G) ≥ γn(G),

and

Ln(G) ≤ Zn(G).

Note that the above inequalities will be attained, when the group G is

taken to be the symmetric group S3, since Aut(S3) = Inn(S3).

One observes that autonilpotent groups are nilpotent, but the converse

is not true in general.

Example 3.4 One can easily check that

L(Z2) = Z2; L(Z3) = 〈1〉; L2(Z4) = Z4; L(Z6) = {e, x3} and L2(Z6) = L(Z6).

Hence the cyclic groups of orders 2 and 4 are autonilpotent and the ones

of orders 3 and 6 are not, while they are nilpotent in the usual sense.

It is known that the symmetric group S3 is not nilpotent and it is easily

checked that L(S3) = 〈1〉, hence it is not autonilpotent as well.

The following property for autonilpotent groups is similar to the one in

the usual nilpotent groups.
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Proposition 3.5. If G is a non-trivial autonilpotent group, then

L(G) 6= 〈1〉.

4. Some more properties of autonilpotent groups

In this section it is shown that some of the known results of nilpotent groups

can be carried over to autonilpotent groups.

In the view of Example 3.4 in the previous section, we show that all cyclic

groups of order 2n, n > 1, are autonilpotent, while it is not so for arbitrary

cyclic groups.

Remark. The cyclic group Zp, of odd prime order p is not autonilpotent,

while it is nilpotent, since Aut(Zp) = Up−1 is a cyclic group of order p − 1

and so it can not fix any element of Zp.

It will be shown that this is held for all cyclic groups of order pn, when

p 6= 2 (see Theorem 4.3, below). On the other hand, if p = 2 the following

result shows that the cyclic group of order 2n is autonilpotent.

Theorem 4.1. The cyclic group, Z2n , of order 2n (n > 1), is an autonilpotent

group.

Proof. Let Z2n = 〈x | x2n
= 1〉 be the cyclic group of order 2n (n > 1).

Clearly, if r = 2t + 1 is an odd number then the map α : x 7→ xr is an

automorphism. So

r2n−1 = (2t + 1)2n−1 ≡ 2n−1 (mod 2n).

8



Hence (x2n−1
)α = xr2n−1

= x2n−1
. Now, if for each α ∈ Aut(Z2n) and s ∈ N ,

(xs)α = xs,

then xrs = xs and so xs(r−1) = 1, which implies that 2n | s(r − 1), i.e.

s = 2n−1. Thus L(Z2n) = {e, x2n−1} and hence L( Z2n

L(Z2n )
) is a cyclic group of

order 2n−1. Continuing in this way we obtain Ln(Z2n) = Z2n , after n-steps,

which proves the claim. 2

Theorem 4.2. (i) Let C2 and Z2n be the cyclic groups of orders 2 and

2n, (n > 1), respectively. Then the direct product C2 ×Z2n is not autonilpo-

tent group.

(ii) The direct product C2m ×Z2n can not be autonilpotent group, for all

natural number m, n.

Proof. (i) Let Z2n = 〈x| x2n
= 1〉 and C2 = 〈y| y2 = 1〉 be the cyclic groups

of orders 2n and 2, respectively. Then clearly the action of any automorphism

α ∈ Aut(C2 × Z2n) on the generators x and y is as follows:

α(x) = xi, (i, 2n) = 1, α(y) = yjx2n−1

, j = 0, 1.

By the definition of the autocentre of G, for all yrxs ∈ L(C2 ×Z2n), we have

α(yrxs) = yrxs or α(yr)α(xs) = yrxs, which implies yrjxr2n−1
.xsi = yrxs.

Thus yr(j−1)xr2n−1+s(i−1) = 1. Hence 2|r(j − 1) and 2n|r2n−1 + s(i− 1). Now,

since j = 0, 1 it follows that r = 2t, t ≥ 1 and 2n|s(i − 1), for all i, where

(i, 2n) = 1. So it must be true for i = 3, which implies that s = 2n−1 and so

yrxs = 2n−1. This follows that

L(C2 × Z2n) = 〈x2n−1〉 ∼= Z2.

9



Hence

Ln(C2 × Z2n) = Ln−1(C2 × Z2n) = Z2n−1 .

Therefore, C2 × Z2n can not be autonilpotent group.

(ii) Using a similar argument as in part (i), one may prove this part.2

The following theorem gives a complete characterization of cyclic groups.

Theorem 4.3. The cyclic group, Zpn , of order pn, is not autonilpotent, for

each odd prime p and n ≥ 1.

Proof. Let Zpn = 〈a | apn
= 1〉 be the cyclic group of order pn, where

p 6= 2 and n ≥ 1. Then φ : a 7−→ a2 is an automorphism of Zpn . If there

exists i < pn such that φ(ai) = ai, then a2i = ai and so ai = 1, which

contradicts the order of a. Thus L(G) = 〈1〉 and hence by Proposition 1.5,

Zpn can not be an autonilpotent group. 2

Example 4.4 Consider D8 = 〈a, b | a4 = b2 = 1, bab = a−1〉, the dihedral

group of order 8. Clearly, the group of automorphisms of D8 is of order 8

and one may check that L(D8) = {e, a2} ∼= Z2 and

L2(D8)

L(D8)
= L(

D8

L(D8)
) = L(Z2 × Z2) = 〈1〉.

Hence L2(D8) = L(D8), which implies that D8 is not an autonilpotent group,

while it is nilpotent.

The following result gives the basic step in proving our main goal which

says that; the abelian groups, which are autonilpotent are the only cyclic

groups of order 2n, for n ≥ 1.
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Theorem 4.5. If the group G = H ×K is the direct product of its charac-

teristic subgroups H and K, then for all n ≥ 1,

Ln(H ×K) = Ln(H)× Ln(K).

The following corollaries are immediate consequences of the above theo-

rem.

Corollary 4.6. If (|H|, |K|) = 1, then the above theorem is also true.

Corollary 4.7. If G = H × K, is the direct product of its characteristic

subgroups such that H or K is not autonilpotent, then so is not G.

Our final result classify all finite abelian groups which are autonilpotent.

Theorem 4.8. A finite abelian group is autonilpotent if and only if it is a

cyclic 2-group.

Proof. The necessary condition follows from Theorem 2.1. Now, for the

reverse conclusion, we assume that G is not a cyclic 2-group. So it is either

abelian 2-group or G has a direct summand Zpt , where p is an odd prime

number and t ≥ 1. In the first case, Theorem 2.2 implies that the group

G is not autonilpotent in the second case by Theorem 4.3, Zpt can not be

autonilpotent. Thus, Corollary 4.7 gives the result. 2
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