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Abstract 

 This paper discusses some of the salient issues involved in 
implementing the illusion of a shared-memory programming 
model across a group of distributed memory processors on a 
cluster of computers. This illusion can be provided by a Software 
Distributed Shared Memory (SDSM) system implemented by using 
autonomous agents. 

Mechanisms that have the potential to increase the performance 
by omitting consistency latency intra site messages & data 
transfers are highlighted. 

In this paper we describe the overall design/architecture of a 
prototype system, AOMP which integrates DSM and Agent 
paradigms and may be the target of an OpenMP compiler. Our 
initial goal is to apply this to Cluster Computing Applications. 

1. Introduction 

One of the main objectives of parallel software research 
has been the development of a standard programming 
methodology for the development of efficient programs for 
parallel machines. Such standardization would reduce the 
effort needed to train programmers, facilitate the porting of 
programs, and, in general, would reduce the burden of 
adopting parallel computing. 

So far the most popular way of programming parallel 
machines, especially clusters and distributed memory 
machines in general, is to write SPMD (Single Program 
Multiple Data) programs and use Message-Passing Interface 
(MPI) library routines [4] for communication and 
synchronization. The second approach, which dominates 
when the target machine is a Symmetric Multiprocessor 
(SMP) with a few processors, is to use thread libraries or 
OpenMP [3] to write parallel programs assuming a shared 
memory model. 

Shared memory is a simpler paradigm for constructing 
parallel applications, as it offers uniform access methods to 
memory for all user threads of execution. Therefore it offers 
an easier way to construct applications when compared to a 
corresponding message passing implementation.  

Through the use of compiler directives, serial code can be 
easily parallelized by explicitly identifying the areas of code 
that can be executed concurrently. 

We believe it is possible to use OpenMP to generate 
efficient programs for distributed memory clusters. Clearly, 
to achieve this goal the appropriate runtime systems, and 
compiler techniques should be developed. 

A possible approach to implement OpenMP is to use a 
Software Distributed Shared Memory (SDSM) system such 
a TreadMarks [1] to create a shared memory view on top of 
the target system. The drawback is that the overhead typical 
of SDSMs can affect speedup significantly.  

A way to reduce the overhead is to translate OpenMP 
programs so that the SDSM system is implemented by 
agents. 

This can be achieved by applying compiler techniques 
similar to those developed by NavP [7]. This approach does 
not suffer from the same overhead problems as the SDSM 
approach in the case of faulting pages and moving pages 
from one node to another. 

Providing use of agents through extensions to OpenMP 
will make it possible for the programmers to take advantage 
of the compiler in order to optimize OpenMP and also avoid 
the complexities of message-passing programming. The 
main goal in this work is gaining good performance while 
we provide easy programming environment without 
changes in programming syntax .So we can execute any 
program written with OpenMP directives on Cluster 
environment without changes in program. 

The rest of this paper is organized as follows. Section 2 
and 3 introduce related works and some of optimization 
techniques implemented by using agents. Section 4 details 
the proposed idea in using agents with combination of 
Clusters. Section 5 discusses our implementation of some 
OpenMP directives. Performance evaluation for some 
directives has shown in section 6 and in section 7 we have 
conclusion.  

2. Related Works 

Many commercial compilers for modern hardware architectures 
can compile OpenMP programs. There are also various open-
source implementations of the OpenMP standard for SMPs. 
OdinMP/CCp [8], OmniOpenMP[16], and OpenUH[14]are 
source-to-source compilers that preprocess source code with 
OpenMP directives and create a source program that uses a 
threading library (OdinMP uses pthreads; Omni OpenMP can use 
different thread packages ;OpenUH can also compile to native 
Itanium code.) The upcoming GCC version4.2 is expected to also 
compile OpenMP (C/C++ and Fortran) code to native. 

Two OpenMP specifications for Java are available. The JOMP 
[9] source-to-source compiler transforms a subset of the OpenMP 
standard to regular Java and uses the Java Threading API for 
parallelism. In contrast to JOMP, JaMP[10] compiler benefits 
from translating rather than rewriting the OpenMP directives, 
because the Jackal[11] compiler is aware of the parallelization 
applied. This enables various compiler optimizations, e.g., data 
race analysis, use of explicit send/receive operations instead of the 
DSM protocol, and the like. 

There is little OpenMP-related work on clusters like JaMP. Intel 
Cluster OMP[12]extends the OpenMP specification by a special 
clause to share data between different cluster nodes. It is based on 
an extended version of the TreadMarks DSM [14]. Omni/SCASH 
[13] transparently executes OpenMP-enriched programs in the 
SCASH-DSM [15]. 
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3. Agent based optimizations 

Some optimizations previously used for SDSM are as 
follows: 

3.1 Privatization optimization 

In this kind of optimization , the focus is on read-only 
access to data.The data that have read-only accesses is 
privatized In general, two kinds of shared data can be 
treated as private data [5,6]. The shared data with read-only 
accesses in certain program sections can be made “private 
with copy-in” during these sections. Similarly, the shared 
data that are exclusively accessed by the same thread can be 
privatized during such a program phase. 

Our system provides this kind of optimization by using 
agents. Firstly private data are agent’s variable which is 
private to that agent. Secondly agents go toward data and 
locally access data they need. So shared data is also 
accessed locally and do not need any privatization. 

3.2 Page Placement and data Distribution on the nodes 

In this optimization, all shared variables of a program are 
allocated after all the threads are created and before all the 
slaves are suspended for the first time. 

The first step makes all the pages of an allocation unit 
distribute across all the execution threads averagely because 
the allocation is done at the beginning of the execution. 
Here “threads” are used instead of “nodes”, which means if 
several threads are running on one node, the pages 
associated with these threads are all located in this node. 

The second step is to implement the first-touch placement 
based on home migration provided by JIAJIA [2]. If the 
page never migrated is referenced only by one thread in a 
parallel region, it will be migrated into the node on which 
the thread is running. 

We implemented autonomous agents that migrate toward 
data, so we do not need to use this technique. 
Communication cost is almost reduced to migrating agents. 

We also try to distribute computation at a coarse 
granularity level and uniformly at the start of execution so 
that agents do not need to migrate very soon. Fortunately, 
many algorithms exhibit some degree of locality of access 
and are coarse grained. 

3.3 Overlapping data communication with computation 

One of the other optimizations done in OpenMP is to 
overlap communication and computation. This optimization 
is used to reduce all spent time (communication time + 
computation time ) for that process. 

At runtime when an access does not have its data 
available on the same node (locally), the runtime optimizer 
tries to bring its data before finishing the computation. Here 
computation and communication overlapping is done. 

Since in the agent based system, agents migrate toward 
data, it is not possible to overlap communication with 
computation unless we break the agent into two agents. 
Breaking the agent into two agents should be done at the 
point of where the agent needs a data not available on the 
same node. But here we should consider other 
circumstances such as dependencies of data. 

According to NavP, programmer should distribute data. 
Then programmer with respect to the distribution write a 
program. One thing that programmer uses is Hop statement 

which is used by programmer to verify where the 
destination of migration is and when should an agent 
migrate. 

An important disadvantage is caused by this kind of 
programming:the structure of the program should be 
changed if the distribution of data is changed. 

In this system no remote data accessing is allowed and all 
accesses to data is done locally. And so is synchronization.  

4. An Agent based OpenMP  

As we discussed in the previous session, agent has 
advantages to reduce communication cost and result in good 
performance. 

Our final goal is scaling OpenMP for distributed 
machines. To achieve this goal we need some changes in 
recent OpenMP. With respect to this, we decided to use 
agents to resolve scalability of OpenMP and increase its 
performance. 

In AOMP, the concept of a mobile agent is used as a 
programming model. This is like many Java mobile agent 
systems, where the emphasis is on strong code mobility. 
Here, strong mobility means that computation migrates 
through the network. Here agents take the role of threads in 
usual OpenMP with the autonomous migration option. A 
preprocessor is used to create agents in the code instead of 
OpenMP directives. 

We introduce a Master Agent which has the role of 
master thread and also has information of the distribution of 
data. It is also used to synchronize other agents at the 
barrier synchronization points. 

The distribution of data has an important impact on 
performance. Therefore, at first user should distribute data 
between nodes. One of ways to distribute data among nodes 
is to distribute data statically by user as said [16]. 

Our DSM implementation is as follows. When Master 
Agent arrives at a worksharing block, it creates agents and 
distributes tasks among agents. Each agent need to know 
about the location of data it will require. So at first and 
before any migration, each agent asks Master Agent for the 
location of all data it needs. Agents get the data location 
addresses and save them in their local agent variables. 
Thereafter, each agent starts computations allocated to it 
and migrates where necessary. This can be seen in Fig.1 (a) 
and (b).  

Here DSM is a local shared memory from the view of 
each node and it is global in the view of each agent because 
each agent knows where data are and can migrate to access 
that data. Note that as we said before, agents will migrate 
toward data but not the inverse due to the management 
complexity. 

5. AOMP Directives 

Since AOMP directives follow the OpenMP standard, its 
programming model is as expressive as the OpenMP 
programming model. An OpenMP programmer can use 
AOMP without learning a new syntax for directives. 

Since they are missing in the Java specification, AOMP 
provides its own implementation of pragmas. Moreover, we 
have provided a preprocessor to translate directives and add 
agents .  

The parallel directive marks a section of a program as 
parallel. When an agent reaches a parallel region, it 
conceptually creates a team of agents that execute the 
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region’s code in parallel. At the end of each parallel region, 
there is an implicit barrier. Only when all agents executing 
the region reach the barrier, the Master Agent continues. 

AOMP supports data-access types defined by OpenMP. 
For variables marked as shared, the same memory location 
in the DSM is used by all agents that are put to work on the 
parallel region. This means that if an agent wants to access 
a shared variable, it should migrate to the node where data 
is placed, so we do not have any false sharing and we are 
not worry about inconsistency. Private variables are really 
agent’s variables which are local to that agent and other 
agents can not access them. 

 

 
(a) 

 
(b) 

 

Figure 1. Migration of agents to other nodes in cluster: 

(a) Agents ask Master Agent to know data locations 
(b) Migration of agents to access data 
(c) Migrating all agents to one node to execute a critical section 
The iteration space of a loop can be distributed among a 

set of created agents by means of the Do directive. In a for 
statement, init value is the initialization expression of the 
loop, cond is a loop-invariant termination condition, and the 
increment value specifies how to increment the loop 

variable by some loop-invariant value. According to the 
OpenMP standard, the loop variable is privatized to each 
agent: 

for (<init >; <cond>; <increament>) { 
// some code 

} 
AOMP supports multiplication and summation types of 

arithmetic reduction operations defined by the OpenMP 
standard. This is done by communication among Master 
Agent and the other agents. 

With the single directive it is also possible to have code 
that is executed by only one agent. single directive has also 
an implicit barrier at the end of the construct. User-defined 
barriers can be created by means of the barrier directive to 
create program locations at which all agents wait for each 
other. When an agent arrives at a barrier point, it will send a 
brrier message to Master Agent. Master Agent collects 
these messages and increases a counter 1 by each message. 
When all of the agents arrive at the barrier point , Master 
Agent will aware them with a message .The critical 
directive can be used to mark critical sections that may be 
executed by only one agent at a time. To ensure the 
implementation of DSM as we said before, we were forced 
to implement this directive such that if agents are to execute 
a critical section, all of them should migrate to one node, 
the node which has the critical data (data that agents want to 
access in critical section). This is what is shown in Fig.1(c). 
Critical directive has also an implicit barrier at the end of 
the critical section. 

6. Performance Evaluation 

We have evaluated the performance of the AOMP 
implementation with a set of microbenchmarks. The 
microbenchmarks were run on a commodity cluster of Intel 
machines (2.53GHz) with 700MB of main memory per 
machine. The nodes are connected by Ethernet network. 

To determine the speed of the basic AOMP operations, 
we use the same set of micro-benchmarks that has been 
used to assess the JOMP implementation [17]. As suggested 
in [18], the microbenchmarks compute the overhead of a 
particular directive by measuring the runtime of the 
execution of an empty loop and the runtime of the same 
loop with the directive added. Fig. 2 shows the execution 
times of the individual AOMP directives. 

The overhead of the barrier statement (see Fig.2(a)) is due 
to barrier implementation, for which the master node 
maintains the barrier’s counter. Whenever an agent reaches 
the barrier, it communicates with the master agent and waits 
until a reply is received. The master node sends reply 
messages for all agents only after all agents have reached 
the barrier. Since for large numbers of agents, this kind of 
barrier algorithm become a bottleneck, a hierarchical 
implementation will be better. 

The time needed for a barrier consists of the time required 
to send 2 communication messages per node. So 
communications with Master Agent has a big latencies. 

The single directive takes roughly the same time, as it is 
currently implemented as a check of the thread ID plus a 
barrier at the end of the construct (which is required by the 
OpenMP specification). 

In comparison with JaMP our critical directive has a very 
high overhead, and this is because all agents should migrate 
to where the critical data exists. So we have a very high 
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overhead in executing a critical section. And also whenever 
a agent encounters a critical region, it sends a request to the 
master node. If the region is currently not owned by any 
agent, the master node immediately replies. Otherwise, the 
grant message is deferred until the current owner leaves the 
critical region. 
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Synchronization Overheads in Cluster

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

1 2 4 8

Num of Nodes

O
ve

rh
ea

d(
m

ic
ro

 s
ec

)

DO
Parallel
Parallel DO
Parallel Reduction

 
(b) 

Figure 2.Overhead of AOMP directives 

(a) Mutual exclusion overheads 
(b) Synchronization overheads 
 
The overhead caused by a parallel region is as shown in 

Fig.2(b). The overhead consists of (1) creation and 
initialization of the shared and private objects and also the 
agents, (2) a sequence of communications between each 
agent and Master Agent to get location addresses of the data 
they require, (3) migrating agents toward data, and (4) the 
final barrier. 

The overhead of a for directive, mainly consists of a 
barrier at the start of for loop to wait for the initialization of 
the chunks. The second barrier at the end of the for region 
which is required to synchronize agents. 

The overhead of a parallel for region approximately 
consists of the overhead needed to execute both parallel and 
for region. 

For the parallel reduction, the overhead consists of the 
time needed for the parallel region and the time needed to 
combine the partial results of the worker agents. In Fig.2(b) 
reduction overhead is + reduction for a variable of type 
long. 

One of the most important overhead reductions that we 
gain in this system is the overhead caused by consistency 
model. 

7. Conclusion 

In this paper we introduced a new OpenMP environment 
for programming on clusters. We have shown an 
implementation of OpenMP for Java with adding agent 
capabilities to it. A programmer can write a sequential Java 
program and enrich it with parallelization directives to 
make it a parallel AOMP program. We have also omitted 

consistency overheads exist in previous DSM models and 
have suggested extensions to the OpenMP specification to 
make it fit better with Java programs. The overheads of the 
individual AOMP directives are also small. 

At the end we can say if this work is extended it can be a 
good alternative for many proposed models and also can be 
a good candidate to be used as a global programming 
environment for GRID.  
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