
Proceedings of the National Conference on
Research and Development in Hardware & Systems

(CSI-RDHS 2008)
June 20-21, 2008, Kolkata, India

© Computer Society of India, 2008

AOMP: An Agent Based OpenMP Programming
Mostafa Ghazizadeh1,Hossein Deldari2 , Mohammad Hadi Zahedi3

1Ferdowsi University of Mashhad ,Mostafaa350@yahoo.com,
2Ferdowsi University of Mashhad ,hdeldari@yahoo.com

3 Ferdowsi University of Mashhad ,mhadi_zahedi@yahoo.com

Abstract

 This paper discusses some of the salient issues involved in
implementing the illusion of a shared-memory programming
model across a group of distributed memory processors on a
cluster of computers. This illusion can be provided by a Software
Distributed Shared Memory (SDSM) system implemented by using
autonomous agents.

Mechanisms that have the potential to increase the performance
by omitting consistency latency intra site messages & data
transfers are highlighted.

In this paper we describe the overall design/architecture of a
prototype system, AOMP which integrates DSM and Agent
paradigms and may be the target of an OpenMP compiler. Our
initial goal is to apply this to Cluster Computing Applications.

1. Introduction

One of the main objectives of parallel software research
has been the development of a standard programming
methodology for the development of efficient programs for
parallel machines. Such standardization would reduce the
effort needed to train programmers, facilitate the porting of
programs, and, in general, would reduce the burden of
adopting parallel computing.

So far the most popular way of programming parallel
machines, especially clusters and distributed memory
machines in general, is to write SPMD (Single Program
Multiple Data) programs and use Message-Passing Interface
(MPI) library routines [4] for communication and
synchronization. The second approach, which dominates
when the target machine is a Symmetric Multiprocessor
(SMP) with a few processors, is to use thread libraries or
OpenMP [3] to write parallel programs assuming a shared
memory model.

Shared memory is a simpler paradigm for constructing
parallel applications, as it offers uniform access methods to
memory for all user threads of execution. Therefore it offers
an easier way to construct applications when compared to a
corresponding message passing implementation.

Through the use of compiler directives, serial code can be
easily parallelized by explicitly identifying the areas of code
that can be executed concurrently.

We believe it is possible to use OpenMP to generate
efficient programs for distributed memory clusters. Clearly,
to achieve this goal the appropriate runtime systems, and
compiler techniques should be developed.

A possible approach to implement OpenMP is to use a
Software Distributed Shared Memory (SDSM) system such
a TreadMarks [1] to create a shared memory view on top of
the target system. The drawback is that the overhead typical
of SDSMs can affect speedup significantly.

A way to reduce the overhead is to translate OpenMP
programs so that the SDSM system is implemented by
agents.

This can be achieved by applying compiler techniques
similar to those developed by NavP [7]. This approach does
not suffer from the same overhead problems as the SDSM
approach in the case of faulting pages and moving pages
from one node to another.

Providing use of agents through extensions to OpenMP
will make it possible for the programmers to take advantage
of the compiler in order to optimize OpenMP and also avoid
the complexities of message-passing programming. The
main goal in this work is gaining good performance while
we provide easy programming environment without
changes in programming syntax .So we can execute any
program written with OpenMP directives on Cluster
environment without changes in program.

The rest of this paper is organized as follows. Section 2
and 3 introduce related works and some of optimization
techniques implemented by using agents. Section 4 details
the proposed idea in using agents with combination of
Clusters. Section 5 discusses our implementation of some
OpenMP directives. Performance evaluation for some
directives has shown in section 6 and in section 7 we have
conclusion.

2. Related Works

Many commercial compilers for modern hardware architectures
can compile OpenMP programs. There are also various open-
source implementations of the OpenMP standard for SMPs.
OdinMP/CCp [8], OmniOpenMP[16], and OpenUH[14]are
source-to-source compilers that preprocess source code with
OpenMP directives and create a source program that uses a
threading library (OdinMP uses pthreads; Omni OpenMP can use
different thread packages ;OpenUH can also compile to native
Itanium code.) The upcoming GCC version4.2 is expected to also
compile OpenMP (C/C++ and Fortran) code to native.

Two OpenMP specifications for Java are available. The JOMP
[9] source-to-source compiler transforms a subset of the OpenMP
standard to regular Java and uses the Java Threading API for
parallelism. In contrast to JOMP, JaMP[10] compiler benefits
from translating rather than rewriting the OpenMP directives,
because the Jackal[11] compiler is aware of the parallelization
applied. This enables various compiler optimizations, e.g., data
race analysis, use of explicit send/receive operations instead of the
DSM protocol, and the like.

There is little OpenMP-related work on clusters like JaMP. Intel
Cluster OMP[12]extends the OpenMP specification by a special
clause to share data between different cluster nodes. It is based on
an extended version of the TreadMarks DSM [14]. Omni/SCASH
[13] transparently executes OpenMP-enriched programs in the
SCASH-DSM [15].

mailto:,Mostafaa350@yahoo.com
mailto:,hdeldari@yahoo.com
mailto:,mhadi_zahedi@yahoo.com

Proceedings of the National Conference CSI-RDHS 2008

© Computer Society of India, 2008

3. Agent based optimizations

Some optimizations previously used for SDSM are as
follows:

3.1 Privatization optimization

In this kind of optimization , the focus is on read-only
access to data.The data that have read-only accesses is
privatized In general, two kinds of shared data can be
treated as private data [5,6]. The shared data with read-only
accesses in certain program sections can be made “private
with copy-in” during these sections. Similarly, the shared
data that are exclusively accessed by the same thread can be
privatized during such a program phase.

Our system provides this kind of optimization by using
agents. Firstly private data are agent’s variable which is
private to that agent. Secondly agents go toward data and
locally access data they need. So shared data is also
accessed locally and do not need any privatization.

3.2 Page Placement and data Distribution on the nodes

In this optimization, all shared variables of a program are
allocated after all the threads are created and before all the
slaves are suspended for the first time.

The first step makes all the pages of an allocation unit
distribute across all the execution threads averagely because
the allocation is done at the beginning of the execution.
Here “threads” are used instead of “nodes”, which means if
several threads are running on one node, the pages
associated with these threads are all located in this node.

The second step is to implement the first-touch placement
based on home migration provided by JIAJIA [2]. If the
page never migrated is referenced only by one thread in a
parallel region, it will be migrated into the node on which
the thread is running.

We implemented autonomous agents that migrate toward
data, so we do not need to use this technique.
Communication cost is almost reduced to migrating agents.

We also try to distribute computation at a coarse
granularity level and uniformly at the start of execution so
that agents do not need to migrate very soon. Fortunately,
many algorithms exhibit some degree of locality of access
and are coarse grained.

3.3 Overlapping data communication with computation

One of the other optimizations done in OpenMP is to
overlap communication and computation. This optimization
is used to reduce all spent time (communication time +
computation time) for that process.

At runtime when an access does not have its data
available on the same node (locally), the runtime optimizer
tries to bring its data before finishing the computation. Here
computation and communication overlapping is done.

Since in the agent based system, agents migrate toward
data, it is not possible to overlap communication with
computation unless we break the agent into two agents.
Breaking the agent into two agents should be done at the
point of where the agent needs a data not available on the
same node. But here we should consider other
circumstances such as dependencies of data.

According to NavP, programmer should distribute data.
Then programmer with respect to the distribution write a
program. One thing that programmer uses is Hop statement

which is used by programmer to verify where the
destination of migration is and when should an agent
migrate.

An important disadvantage is caused by this kind of
programming:the structure of the program should be
changed if the distribution of data is changed.

In this system no remote data accessing is allowed and all
accesses to data is done locally. And so is synchronization.

4. An Agent based OpenMP

As we discussed in the previous session, agent has
advantages to reduce communication cost and result in good
performance.

Our final goal is scaling OpenMP for distributed
machines. To achieve this goal we need some changes in
recent OpenMP. With respect to this, we decided to use
agents to resolve scalability of OpenMP and increase its
performance.

In AOMP, the concept of a mobile agent is used as a
programming model. This is like many Java mobile agent
systems, where the emphasis is on strong code mobility.
Here, strong mobility means that computation migrates
through the network. Here agents take the role of threads in
usual OpenMP with the autonomous migration option. A
preprocessor is used to create agents in the code instead of
OpenMP directives.

We introduce a Master Agent which has the role of
master thread and also has information of the distribution of
data. It is also used to synchronize other agents at the
barrier synchronization points.

The distribution of data has an important impact on
performance. Therefore, at first user should distribute data
between nodes. One of ways to distribute data among nodes
is to distribute data statically by user as said [16].

Our DSM implementation is as follows. When Master
Agent arrives at a worksharing block, it creates agents and
distributes tasks among agents. Each agent need to know
about the location of data it will require. So at first and
before any migration, each agent asks Master Agent for the
location of all data it needs. Agents get the data location
addresses and save them in their local agent variables.
Thereafter, each agent starts computations allocated to it
and migrates where necessary. This can be seen in Fig.1 (a)
and (b).

Here DSM is a local shared memory from the view of
each node and it is global in the view of each agent because
each agent knows where data are and can migrate to access
that data. Note that as we said before, agents will migrate
toward data but not the inverse due to the management
complexity.

5. AOMP Directives

Since AOMP directives follow the OpenMP standard, its
programming model is as expressive as the OpenMP
programming model. An OpenMP programmer can use
AOMP without learning a new syntax for directives.

Since they are missing in the Java specification, AOMP
provides its own implementation of pragmas. Moreover, we
have provided a preprocessor to translate directives and add
agents .

The parallel directive marks a section of a program as
parallel. When an agent reaches a parallel region, it
conceptually creates a team of agents that execute the

AOMP: An Agent Based OpenMP Programming

region’s code in parallel. At the end of each parallel region,
there is an implicit barrier. Only when all agents executing
the region reach the barrier, the Master Agent continues.

AOMP supports data-access types defined by OpenMP.
For variables marked as shared, the same memory location
in the DSM is used by all agents that are put to work on the
parallel region. This means that if an agent wants to access
a shared variable, it should migrate to the node where data
is placed, so we do not have any false sharing and we are
not worry about inconsistency. Private variables are really
agent’s variables which are local to that agent and other
agents can not access them.

(a)

(b)

Figure 1. Migration of agents to other nodes in cluster:

(a) Agents ask Master Agent to know data locations
(b) Migration of agents to access data
(c) Migrating all agents to one node to execute a critical section
The iteration space of a loop can be distributed among a

set of created agents by means of the Do directive. In a for
statement, init value is the initialization expression of the
loop, cond is a loop-invariant termination condition, and the
increment value specifies how to increment the loop

variable by some loop-invariant value. According to the
OpenMP standard, the loop variable is privatized to each
agent:

for (<init >; <cond>; <increament>) {
// some code

}
AOMP supports multiplication and summation types of

arithmetic reduction operations defined by the OpenMP
standard. This is done by communication among Master
Agent and the other agents.

With the single directive it is also possible to have code
that is executed by only one agent. single directive has also
an implicit barrier at the end of the construct. User-defined
barriers can be created by means of the barrier directive to
create program locations at which all agents wait for each
other. When an agent arrives at a barrier point, it will send a
brrier message to Master Agent. Master Agent collects
these messages and increases a counter 1 by each message.
When all of the agents arrive at the barrier point , Master
Agent will aware them with a message .The critical
directive can be used to mark critical sections that may be
executed by only one agent at a time. To ensure the
implementation of DSM as we said before, we were forced
to implement this directive such that if agents are to execute
a critical section, all of them should migrate to one node,
the node which has the critical data (data that agents want to
access in critical section). This is what is shown in Fig.1(c).
Critical directive has also an implicit barrier at the end of
the critical section.

6. Performance Evaluation

We have evaluated the performance of the AOMP
implementation with a set of microbenchmarks. The
microbenchmarks were run on a commodity cluster of Intel
machines (2.53GHz) with 700MB of main memory per
machine. The nodes are connected by Ethernet network.

To determine the speed of the basic AOMP operations,
we use the same set of micro-benchmarks that has been
used to assess the JOMP implementation [17]. As suggested
in [18], the microbenchmarks compute the overhead of a
particular directive by measuring the runtime of the
execution of an empty loop and the runtime of the same
loop with the directive added. Fig. 2 shows the execution
times of the individual AOMP directives.

The overhead of the barrier statement (see Fig.2(a)) is due
to barrier implementation, for which the master node
maintains the barrier’s counter. Whenever an agent reaches
the barrier, it communicates with the master agent and waits
until a reply is received. The master node sends reply
messages for all agents only after all agents have reached
the barrier. Since for large numbers of agents, this kind of
barrier algorithm become a bottleneck, a hierarchical
implementation will be better.

The time needed for a barrier consists of the time required
to send 2 communication messages per node. So
communications with Master Agent has a big latencies.

The single directive takes roughly the same time, as it is
currently implemented as a check of the thread ID plus a
barrier at the end of the construct (which is required by the
OpenMP specification).

In comparison with JaMP our critical directive has a very
high overhead, and this is because all agents should migrate
to where the critical data exists. So we have a very high

Proceedings of the National Conference CSI-RDHS 2008

© Computer Society of India, 2008

overhead in executing a critical section. And also whenever
a agent encounters a critical region, it sends a request to the
master node. If the region is currently not owned by any
agent, the master node immediately replies. Otherwise, the
grant message is deferred until the current owner leaves the
critical region.

Mutual Exclusion Overheads

0

1000

2000

3000

4000

5000

6000

1 2 4 8

Num of Nodes

O
ve

rh
ea

d(
m

ic
ro

 s
ec

)

Critical
Single
Barrier

(a)

Synchronization Overheads in Cluster

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

1 2 4 8

Num of Nodes

O
ve

rh
ea

d(
m

ic
ro

 s
ec

)

DO
Parallel
Parallel DO
Parallel Reduction

(b)

Figure 2.Overhead of AOMP directives

(a) Mutual exclusion overheads
(b) Synchronization overheads

The overhead caused by a parallel region is as shown in

Fig.2(b). The overhead consists of (1) creation and
initialization of the shared and private objects and also the
agents, (2) a sequence of communications between each
agent and Master Agent to get location addresses of the data
they require, (3) migrating agents toward data, and (4) the
final barrier.

The overhead of a for directive, mainly consists of a
barrier at the start of for loop to wait for the initialization of
the chunks. The second barrier at the end of the for region
which is required to synchronize agents.

The overhead of a parallel for region approximately
consists of the overhead needed to execute both parallel and
for region.

For the parallel reduction, the overhead consists of the
time needed for the parallel region and the time needed to
combine the partial results of the worker agents. In Fig.2(b)
reduction overhead is + reduction for a variable of type
long.

One of the most important overhead reductions that we
gain in this system is the overhead caused by consistency
model.

7. Conclusion

In this paper we introduced a new OpenMP environment
for programming on clusters. We have shown an
implementation of OpenMP for Java with adding agent
capabilities to it. A programmer can write a sequential Java
program and enrich it with parallelization directives to
make it a parallel AOMP program. We have also omitted

consistency overheads exist in previous DSM models and
have suggested extensions to the OpenMP specification to
make it fit better with Java programs. The overheads of the
individual AOMP directives are also small.

At the end we can say if this work is extended it can be a
good alternative for many proposed models and also can be
a good candidate to be used as a global programming
environment for GRID.

8. References
[1] P. Keleher, A.L. Cox, S. Dwarkadas, and W. Zwaenepoel.

TreadMarks: Distributed Shared Memory on Standard Workstations
and Operating Systems. In Proc. of the Winter 1994 Usenix Conf.,
pages 115–131,San Francisco, CA, January 1994.

[2] W. Hu, W. Shi, and Z. Tang. JIAJIA: An SVM System Based on A
New Cache Coherence Protocol, in Proc. of the High Performance
Computing and Networking (HPCN’99), LNCS 1593, pp. 463-472,
Springer, Apr. 1999.

[3] OpenMP Application Program Interface,
2008 .http://www.openmp.org/.

[4] Message Passing Interface Forum. MPI-2: Extensions to the
Message-Passing Interface, July 1997.

[5] A. Basumallik, S.-J. Min, and R. Eigenmann. Towards OpenMP
execution on software distributed shared memory systems, Int’l
Workshop on OpenMP: Experiences and Implementations
(WOMPEI’02), Lecture Notes in Computer Science 2327, Springer
Verlag, May, 2002.

[6] R. Eigenmann, J. Hoeflinger, R. Kuhn, D. Padua, A. Basumallik, S.-J.
Min and J. Zhu, Is OpenMP for GRIDs? Workshop on Next-
Generation Systems, Int’l Parallel and Distributed Processing
Symposium (IPDPS’02), May, 2002.

[7] LeiPan, Ming Kin Lai, KojiNoguchi, Javid J.Huseynov, Lubomir Bic,
and Michael B. Dillencourt. Distributed parallel computing using
navigational programming. International Journal of Parallel
Programming, 32(1):1–37, February 2004.

[8] C. Brunschen and M. Brorsson. OdinMP/CCp - a Portable
Implementation of OpenMP for C.
Concurrency and Computation: Practice and Experience,
12(12):1193–1203, 2000.

[9] J.M. Bull and M.E. Kambites , JOMP — an OpenMP-like Interface
for Java. In Proc. of the ACM 2000 Java Grande Conf., pages 44–53,
San Francisco, CA, USA, June 2000.

[10] M. Klemm, M. Bezold, R. Veldema, and M. Philippsen. JaMP: An
Implementation of OpenMP for a Java DSM. In M. Arenaz, R.
Doallo, B.Fraguela, and J. Tourino, editors, Proceedings of the 12th
Workshop on Compilers for Parallel Computers, pages 242–255, A
Coruna, Spain, January 2006.

[11] R. Veldema, R. Bhoedjang, and H. Bal. Jackal, A Compiler Based
Implementation of Java for Clusters of Workstations. Technical
report, Dept. of Mathematics and Computer Science, Vrije
Universiteit, Amsterdam, Netherlands.

[12] J.P. Hoeflinger. Extending OpenMP to
Clusters.http://www.intel.com/cd/software/products/
asmona/eng/compilers/285865.htm, 2006.

[13] Y. Ojima and M. Sato. Performance of Cluster-enabled OpenMP for
the SCASH Software Distributed Shared Memory System. In Proc. of
the 3rd Intl. Symp. on Cluster Computing and the Grid, pages 450–
456, Tokyo, Japan, May 2003.

[14] C. Liao, O. Hernandez, B. Chapman, W. Chen, and W. Zheng.
OpenUH: An Optimizing, Portable OpenMP Compiler. Concurrency
and Computation: Practice and Experience (this issue).

[15] H. Harada, Y. Ishikawa, A. Hori, H. Tezuka, S. Sumimoto, and T.
Takahashi. Dynamic Home Node Reallocation on Software
Distributed Shared Memory. In Proc. of the 4th Intl. Conf. on High-
Performance Computing in the Asia-Pacific Region, pages 158–163,
Bejing, China, May 2000.

[16] M. Sato, S. Satoh, K. Kusano, and Y. Tanaka. Design of OpenMP
Compiler for an SMP Cluster. In Proc. of the 1st European Workshop
on OpenMP, pages 32–39, Lund, Sweden, September 1999.

[17] J.M. Bull, M.D. Westbed, M.E Kambites, and J. Obdrzealek.
Towards OpenMP for Java. In Proc. Of the 2nd European Workshop
on OpenMP, pages 98–105, Edinburgh, Scotland, U.K., September
2000.

[18] J.M. Bull. Measuring Synchronization and Scheduling Overheads in
OpenMP. In Proc. of 1st European Workshop on OpenMP, pages 99–
105, Lund, Sweden, October 1999.

http://www.openmp.org/
http://www.intel.com/cd/software/products/

