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Abstract. In this article it is shown that a finite group satisfying [y,n x] =

[x,n y] (n > 1) is nilpotent and that if G is a group satisfying [y, x] = [x, y],
then

[γ3(G), γ2(G)] = [γ2(G), γ2(G), G] = 1.

Also, we investigate groups satisfying both [y, x] = [x, y] and [y,n x] = [x,n y]

for small n.
Our results can be applied to obtain special commutators, which can be

expressed as the product of commutators squares.

Introduction

Let G be a finite group. A word w = w(x, y) is called symmetric on the group G
if w(g1, g2) = w(g2, g1), for all g1, g2 ∈ G. Now, let En = En(x, y) = [y,n x] be the
nth Engel word. Then G is said to be an En-symmetric group if En is symmetric
on G. If G is finite and En ≡ 1, then it is known that G is nilpotent. In this paper
we shall generalized this result by showing that G is still nilpotent if En (n ≥ 2) is
symmetric on G.

If P is an elementary abelian 2-group and φ is a fixed-point-free automorphism
of P of odd prime order p then semi-direct product G = P o 〈φ〉 is clearly a finite
E1-symmetric group, which is not nilpotent. So, E1-symmetric groups are not
necessarily nilpotent. We will show that an E1-symmetric group is near metabelian
and in finite case it is an extension of a 2-group by an abelian group of odd order.
We will also present some more results concerning groups, which are both E1- and
En-symmetric for small n and we give conditions, on which some commutators of
weight > 1 can be expressed as the product of commutators squares.

1. En-symmetric groups, n ≥ 2

It is well-known that a finite Engel group is nilponent (see [4, Theorem 12.3.4]).
Now, we generalize this result by showing that a finite group satisfying a symmetric
n-Engel word (n ≥ 2) is also nilpotent.

Theorem 1.1. If G is a finite En-symmetric group (n ≥ 2), then G is nilpotent.

Proof. First, suppose that G is solvable. Clearly, [y, x] ∈ G(1) and if [y,1+kn x] ∈
G(k+1) then

[y,1+(k+1)n x] = [y,1+kn x,n x] = [x,n [y,1+kn x]] ∈ G(k+2).
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Hence, we reach to [y,1+(m−1)n x] = 1 by choosing m to be the solvability length
of G that is G is an Engel group. Using [4, Theorem 12.3.4] we conclude that G
is nilpotent. Now, suppose that G is a finite En-symmetric group and the result
holds for all groups of order less than |G|. Since, the proper subgroups of G inherit
the same property as G does, each of which should be nilpotent. Hence, by [4,
Theorem 9.1.9], G is solvable and consequently G is nilpotent. �

Theorem 1.1 can be generalized in the following form.

Corollary 1.2. Let G be a finite group. If for each x, y ∈ G there exist integers
mx,y, nx,y > 1 such that [y,mx,y

x] = [x,nx,y
y], then G is nilpotent.

2. E1-symmetric groups

E1-symmetric groups are different from En-symmetric groups (n ≥ 2) as they
are not nilpotent in general. We show that every E1-symmetric group is solvable of
length at most 3. But, we have no proof that whether they are metabelian or not.

Example. Let F be a field of characteristic 2 and let G = U(n, F ) be the Unitri-
angular group of matrices of dimension n ≤ 4 over F . Then G is an E1-symmetric
group.

To prove our main results we first need some elementary properties of E1-
symmetric groups.

Lemma 2.1. Let G be an E1-symmetric group. Then
i) [[x,m y], [x,n y]] = 1;
ii) [[x, y], [x, z]] = 1;
iii) [[x, y1, . . . , ym], [x, z1, . . . , zn]] = 1;
iv) [[x1, x2], [x3, x4]] = [[xπ

1 , xπ
2 ], [xπ

3 , xπ
4 ]];

v) [[x, y], [z, w]] = [x, y, z, w][x, y, w, z],
where x, y, z, w, x1, . . . , x4, y1, . . . , ym, z1, . . . , zn ∈ G, π ∈ S4 and m,n are natural
numbers.

Proof. i) We proceed by induction on n to prove that [[x, y], [x,n y]] = 1 and
[x, yn] = [x, y]ε1 [x,2 y]ε2 · · · [x,n y]εn for each x, y ∈ G, n ≥ 1 and for some εi ∈ {0, 1}
depending on n and εn = 1, by which part (i) would follow. Clearly, the result holds,
when n = 1. Now, we assume that n ≥ 1 and the the result holds for 1, . . . , n. Thus,
we have

[x, yn+1] = [x, yn][x, y][x, y, yn]
= [x, y]ε1 · · · [x,n y]εn [x, y][x,2 y]ε1 [x,3 y]ε2 · · · [x,n+1 y]εn

= [x, y]ε1+1[x,2 y]ε1+ε2 · · · [x,n y]εn−1+εn [x,n+1 y]εn

for some ε1, . . . , εn−1 ∈ {0, 1} and εn = 1. Let ε′1, . . . , ε
′
n+1 ∈ {0, 1} be equal to

ε1 + 1, ε1 + ε2, . . . , εn−1 + εn, εn modulo 2, respectively. Then, we get [x, yn+1] =
[x, y]ε

′
1 · · · [x,n+1 y]ε

′
n+1 , where ε′1, . . . , ε

′
n ∈ {0, 1} and ε′n+1 = 1. On the other hand,
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we have

[x, yn+1] = [yn+1, x]−1

= ([y, x][y, x, yn][yn, x])−1

= ([x, y][x, y, yn][x, yn])−1

= ([x, y][x,2 y]ε1 · · · [x,n+1 y]εn [x, y]ε1 · · · [x,n y]εn)−1

= [x,n y]εn · · · [x, y]ε1 [x,n+1 y]εn · · · [x,2 y]ε1 [x, y]
= [x,2 y]ε1+ε2 · · · [x,n y]εn−1+εn [x, y]ε1 [x,n+1 y]εn [x, y].

By comparing these two identities we obtain that [x,n+1 y][x, y] = [x, y][x,n+1 y], as
was claimed.

ii) Let x, y, z ∈ G. If g ∈ G then [x, g] = [g, x] that is g−1gx = g−xg. Hence,
gx = gg−xg. As (yz)x = yxzx we have

yz(yz)−xyz = yy−xyzz−xz,

which implies that [y−xy, zz−x] = 1. Replacing z by z−1 in the last identity and
using the fact that [z, x] = [x, z], we observe that [[x, y], [x, z]] = [y−xy, z−1zx] = 1,
as required.

iii) To prove this part, we proceed by induction on (m,n). The case that (m,n) =
(1, 1) follows by (ii). Now, assume that the result holds for (m,n). Then, expanding
[[x, y1, . . . , ym−1, ymym+1], [x, z1, . . . , zn]] = 1 we obtain the result for (m + 1, n).
Similarly, we can get the result for (m,n + 1), by which we conclude the result for
all (m,n).

iv) The result would follow easily by expanding the identity [[xy, z], [xy,w]] = 1
in conjunction with (iii).

v) Let x, y, z, w ∈ G. Then, we have

[x, y, zw] = [x, y, w][x, y, z][x, y, z, w]

and by applying (iii),

[x, y, zw] = [x, y, wz[z, w]]

= [[x, y], [z, w]][x, y, wz][z,w]

= [[x, y], [z, w]][x, y, z][z,w][x, y, w][z,w][x, y, w, z][z,w]

= [[x, y], [z, w]][x, y, z][x, y, w][x, y, w, z].

From these two identities and applying (iii) once more we obtain the result. �

Theorem 2.2. Let G be an E1-symmetric group. Then
i) [γ3(G), γ2(G)] = 1;
ii) [γ2(G), γ2(G), G] = 1.

Proof. i) It is well-known in the literature that any commutator is a product of
squares. In fact, for x, y ∈ G we have [x, y] = x−1y−1xy = x−2(xy−1)2y2. Now, if
a, b, c, d, e ∈ G, then

[a, b, c] = [c, [a, b]] = [c, u2v2w2]

= [c, w2][c, v2]w
2
[c, u2]v

2w2
= [x1, y

2
1 ][x2, y

2
2 ][x3, y

2
3 ]

for some u, v, w, x1, y1, x2, y2, x3, y3 ∈ G. By Lemma 2.1(iii,iv), we have

[[xi, y
2
i ], [d, e]] = [[xi, yi, yi], [d, e]] = [[d, yi], [xi, yi, e]] = 1.
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Therefore,

[[a, b, c], [d, e]] = [[x1, y
2
1 ][x2, y

2
2 ][x3, y

2
3 ], [d, e]] = 1.

ii) Let a, b, c, d, e ∈ G. Then, by Lemma 2.1(v)

[[a, b], [c, d, e]] = [a, b, [c, d], e][a, b, e, [c, d]] = [[a, b], [c, d], e][[a, b, e], [c, d]].

Now, by applying part (i), we obtain [[a, b], [c, d], e] = 1, as required. �

It is investigated by several authors that, when a commutator (or an expression
involving commutators) can be expressed as the product of special elements of the
group, say squares, cubes etc? For example, it is proved that any commutator [y, x]
is the product of squares, [y, x, x] is the product of cubes and the fifth Engel word
[y, x, x, x, x, x] is the product of forth powers (see [1, 2]).

Using Theorem 2.2, we observe that in an arbitrary group G the commutators
of the form [[a, b, c], [d, e]] and [[a, b], [c, d], e] can be expressed as the product of
commutators squares. Also, one should be able to prove that if F/F ′2 is centerless,
where F is the free group of rank 4, then [[a, b], [c, d]] can be expressed as the
product of commutators squares.

The structure of finite E1-symmetric groups can be describe in an alternative
way as follows.

Theorem 2.3. If G is a finite E1-symmetric group, then G is a semidirect product
of a normal Sylow 2-subgroup by an abelian subgroup of odd order.

Proof. Let x ∈ G be a 2-element of order 2n. Then, [y,2n x] = [y, x2n

] = 1 for
each y ∈ G and consequently x is a right Engel element. By [3] the set of all right
Engel elements of G coincides with the Fitting subgroup F (G) of G. Thus, F (G)
possesses all Sylow 2-subgroups of G. Let P be a Sylow 2-subgroup of G (hence of
F (G)). As F (G) is a characteristic nilpotent subgroup of G its Sylow 2-subgroup
P is normal in G and hence by Schur-Zassenhaus theorem [4, Theorem 9.1.2], P
has a complement H in G. Since H is of odd order it is abelian and the proof is
complete. �

3. E1- and En-symmetric groups, n ≥ 2

In this section, we investigate groups satisfying both E1- and En-symmetric
properties for small n. We will show that in an E1-symmetric group both E2- and
E3-symmetric properties are equivalent to the 2- and 3-Engel properties, respec-
tively.

Lemma 3.1. If G is an E1- and En-symmetric group (n ≥ 2), then G is an
(n + 1)-Engel group.

Proof. Let x, y ∈ G. Then, by Lemma 2.1(i)

[y,n+1 x] = [[y, x],n x] = [x,n [y, x]] = [[y, x, x], [y, x],n−2 [y, x]] = 1.

�

Lemma 3.2. If G is an E1-symmetric group, then [y, x, x, y] = [x, y, y, x], for all
x, y,∈ G.
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Proof. If x, y ∈ G, then

[y, x, x, y] = [y, x2, y] = [x2, y, y] = [x2, y2]

and
[x, y, y, x] = [x, y2, x] = [y2, x, x] = [y2, x2],

from which the result follows. �

Theorem 3.3. If G is both E1- and E2-symmetric group, then G is nilponent of
class at most 2.

Proof. Since [y, x, x] = [x, y, y] holds for all x, y ∈ G, then by expanding [xy, x, x] =
[x, xy, xy] we obtain [y, x, x] = 1, that is G is a 2-Engel group. Now, let x, y, z ∈ G.
Then

[x, y, z] = [z, [x, y]] = [z, u2v2w2]

= [z, w2][z, v2]w
2
[z, u2]v

2w2
= [z, w, w][z, v, v]w

2
[z, u, u]v

2w2
= 1,

for some u, v, w ∈ G. Hence, G is nilpotent of class at most 2. �

Theorem 3.3 asserts that in an arbitrary group G and elements x, y, z ∈ G, there
always exist elements xi, yi and zi, wi such that

[x, y, z] =
∏

[xi, yi]2
∏

[zi, wi, wi][wi, zi, zi]−1.

Thus, the commutators [x, y, z] can be expressed as the product of commutators
squares if and only if the elements [y, x, x][x, y, y]−1 have the same property.

Theorem 3.4. If G is both E1- and E3-symmetric group, then G is a 3-Engel
group.

Proof. For all x and y ∈ G, by expanding the identity [y, yx, yx, yx] = [yx, y, y, y]
and utilizing Lemmas 3.1 and 3.2, we obtain

[y, x, x, x] = [y, x, y, x, y][y, x, y, x, y, x] = [y, x, y, x, y]x,

which implies that
[y, x, x, x] = [y, x, y, x, y].

By replacing y by y2 in the last identity we get

[x, y, x, y, x] = [y, x, x, y, x] = [x, y, y, x, x] = [x, y2, x, x] = [y2, x, x, x]
= [y2, x, y2, x, y2] = [x, y2, y2, x, y2] = [x, y, y, y, y, x, y2] = 1,

from which we also get [y, x, y, x, y] = 1 and consequently [y, x, x, x] = 1, as re-
quired. �

Theorem 3.5. If G is both E1- and E3-symmetric group, then G′′ = 〈1〉.

Proof. Expanding the identity [z, xy, xy, xy] = 1 in conjunction with the fact that
[a, b, c, d] = [a, b, d, c] by Lemma 2.1(ii,v), when a, b, c, d ∈ {x, y, z} we would obtain
[z, x, y, y] = [z, y, x, x]. Moreover

[z, y, y, x, x] = [z, y2, x, x] = [z, x, y2, y2] = [z, x, y, y, y, y] = 1,

from which we deduce that [w, z, y, x, x] = 1, for all x, y, z, w ∈ G.
Now, expanding [w, z, xy, xy] = [w, xy, z, z] in conjunction with the previous

identities we reach to [w, z, x, y] = [w, z, y, x]. Therefore G′′ = 〈1〉. �



6MOHAMMAD REZA R. MOGHADDAM FACULTY OF MATHEMATICAL SCIENCES AND CENTRE OF EXCELLENCE IN ANALYSIS ON ALGEBRAIC STRUCTURES, FERDOWSI UNIVERSITY OF MASHHAD, MASHHAD-IRAN

From Theorem 3.5, we conclude that each commutator [[x, y], [z, w]] can be ex-
pressed as

[[x, y], [z, w]] =
∏

[xi, yi]2
∏

[zi, wi, wi, wi][wi, zi, zi, zi]−1.

Hence, in an arbitrary group G, the commutators [[x, y], [z, w]] can be expressed as
the product of commutators squares if the elements [y, x, x, x][x, y, y, y]−1 have the
same property.
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