GROUPS SATISFYING A SYMMETRIC ENGEL WORD

MOHAMMAD REZA R. MOGHADDAM
FACULTY OF MATHEMATICAL SCIENCES AND
CENTRE OF EXCELLENCE IN ANALYSIS ON ALGEBRAIC STRUCTURES, FERDOWSI UNIVERSITY OF MASHHAD, MASHHAD-IRAN

Abstract

In this article it is shown that a finite group satisfying $\left[y,{ }_{n} x\right]=$ $[x, n y](n>1)$ is nilpotent and that if G is a group satisfying $[y, x]=[x, y]$, then $$
\left[\gamma_{3}(G), \gamma_{2}(G)\right]=\left[\gamma_{2}(G), \gamma_{2}(G), G\right]=1
$$

Also, we investigate groups satisfying both $[y, x]=[x, y]$ and $\left[y,{ }_{n} x\right]=\left[x,{ }_{n} y\right]$ for small n.

Our results can be applied to obtain special commutators, which can be expressed as the product of commutators squares.

Introduction

Let G be a finite group. A word $w=w(x, y)$ is called symmetric on the group G if $w\left(g_{1}, g_{2}\right)=w\left(g_{2}, g_{1}\right)$, for all $g_{1}, g_{2} \in G$. Now, let $E_{n}=E_{n}(x, y)=\left[y,{ }_{n} x\right]$ be the nth Engel word. Then G is said to be an E_{n}-symmetric group if E_{n} is symmetric on G. If G is finite and $E_{n} \equiv 1$, then it is known that G is nilpotent. In this paper we shall generalized this result by showing that G is still nilpotent if $E_{n}(n \geq 2)$ is symmetric on G.

If P is an elementary abelian 2-group and ϕ is a fixed-point-free automorphism of P of odd prime order p then semi-direct product $G=P \rtimes\langle\phi\rangle$ is clearly a finite E_{1}-symmetric group, which is not nilpotent. So, E_{1}-symmetric groups are not necessarily nilpotent. We will show that an E_{1}-symmetric group is near metabelian and in finite case it is an extension of a 2-group by an abelian group of odd order. We will also present some more results concerning groups, which are both E_{1} - and E_{n}-symmetric for small n and we give conditions, on which some commutators of weight > 1 can be expressed as the product of commutators squares.

$$
\text { 1. } E_{n} \text {-SYMMETRIC GROUPS, } n \geq 2
$$

It is well-known that a finite Engel group is nilponent (see [4, Theorem 12.3.4]). Now, we generalize this result by showing that a finite group satisfying a symmetric n-Engel word ($n \geq 2$) is also nilpotent.
Theorem 1.1. If G is a finite E_{n}-symmetric group $(n \geq 2)$, then G is nilpotent.
Proof. First, suppose that G is solvable. Clearly, $[y, x] \in G^{(1)}$ and if $[y, 1+k n x] \in$ $G^{(k+1)}$ then

$$
\left[y,_{1+(k+1) n} x\right]=\left[y, 1+k n x,_{n} x\right]=\left[x,_{n}[y, 1+k n x]\right] \in G^{(k+2)} .
$$

[^0]Hence, we reach to $\left[y,{ }_{1+(m-1) n} x\right]=1$ by choosing m to be the solvability length of G that is G is an Engel group. Using [4, Theorem 12.3.4] we conclude that G is nilpotent. Now, suppose that G is a finite E_{n}-symmetric group and the result holds for all groups of order less than $|G|$. Since, the proper subgroups of G inherit the same property as G does, each of which should be nilpotent. Hence, by [4, Theorem 9.1.9], G is solvable and consequently G is nilpotent.

Theorem 1.1 can be generalized in the following form.
Corollary 1.2. Let G be a finite group. If for each $x, y \in G$ there exist integers $m_{x, y}, n_{x, y}>1$ such that $\left[y, m_{x, y} x\right]=\left[x, n_{x, y} y\right]$, then G is nilpotent.

2. E_{1}-SYMMETRIC GROUPS

E_{1}-symmetric groups are different from E_{n}-symmetric groups ($n \geq 2$) as they are not nilpotent in general. We show that every E_{1}-symmetric group is solvable of length at most 3 . But, we have no proof that whether they are metabelian or not.

Example. Let F be a field of characteristic 2 and let $G=U(n, F)$ be the Unitriangular group of matrices of dimension $n \leq 4$ over F. Then G is an E_{1}-symmetric group.

To prove our main results we first need some elementary properties of E_{1} symmetric groups.

Lemma 2.1. Let G be an E_{1}-symmetric group. Then
i) $\left[[x, m y],\left[x,{ }_{n} y\right]\right]=1$;
ii) $[[x, y],[x, z]]=1$;
iii) $\left[\left[x, y_{1}, \ldots, y_{m}\right],\left[x, z_{1}, \ldots, z_{n}\right]\right]=1$;
iv) $\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]=\left[\left[x_{1}^{\pi}, x_{2}^{\pi}\right],\left[x_{3}^{\pi}, x_{4}^{\pi}\right]\right]$;
v) $[[x, y],[z, w]]=[x, y, z, w][x, y, w, z]$,
where $x, y, z, w, x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{n} \in G, \pi \in S_{4}$ and m, n are natural numbers.

Proof. i) We proceed by induction on n to prove that $\left[[x, y],\left[x,{ }_{n} y\right]\right]=1$ and $\left[x, y^{n}\right]=[x, y]^{\epsilon_{1}}[x, 2 y]^{\epsilon_{2}} \cdots\left[x,{ }_{n} y\right]^{\epsilon_{n}}$ for each $x, y \in G, n \geq 1$ and for some $\epsilon_{i} \in\{0,1\}$ depending on n and $\epsilon_{n}=1$, by which part (i) would follow. Clearly, the result holds, when $n=1$. Now, we assume that $n \geq 1$ and the the result holds for $1, \ldots, n$. Thus, we have

$$
\begin{aligned}
{\left[x, y^{n+1}\right] } & =\left[x, y^{n}\right][x, y]\left[x, y, y^{n}\right] \\
& =[x, y]^{\epsilon_{1}} \cdots\left[x,{ }_{n} y\right]^{\epsilon_{n}}[x, y][x, 2 y]^{\epsilon_{1}}\left[x,{ }_{3} y\right]^{\epsilon_{2}} \cdots\left[x,_{n+1} y\right]^{\epsilon_{n}} \\
& =[x, y]^{\epsilon_{1}+1}\left[x,,_{2} y\right]_{1}^{\epsilon_{1}+\epsilon_{2}} \cdots[x, n y]^{\epsilon_{n-1}+\epsilon_{n}}\left[x,_{n+1} y\right]^{\epsilon_{n}}
\end{aligned}
$$

for some $\epsilon_{1}, \ldots, \epsilon_{n-1} \in\{0,1\}$ and $\epsilon_{n}=1$. Let $\epsilon_{1}^{\prime}, \ldots, \epsilon_{n+1}^{\prime} \in\{0,1\}$ be equal to $\epsilon_{1}+1, \epsilon_{1}+\epsilon_{2}, \ldots, \epsilon_{n-1}+\epsilon_{n}, \epsilon_{n}$ modulo 2, respectively. Then, we get $\left[x, y^{n+1}\right]=$ $[x, y]^{\epsilon_{1}^{\prime}} \cdots\left[x,_{n+1} y\right]^{\epsilon_{n+1}^{\prime}}$, where $\epsilon_{1}^{\prime}, \ldots, \epsilon_{n}^{\prime} \in\{0,1\}$ and $\epsilon_{n+1}^{\prime}=1$. On the other hand,
we have

$$
\begin{aligned}
{\left[x, y^{n+1}\right] } & =\left[y^{n+1}, x\right]^{-1} \\
& =\left([y, x]\left[y, x, y^{n}\right]\left[y^{n}, x\right]\right)^{-1} \\
& =\left([x, y]\left[x, y, y^{n}\right]\left[x, y^{n}\right]\right)^{-1} \\
& =\left([x, y][x, 2 y]^{\epsilon_{1}} \cdots\left[x,{ }_{n+1} y\right]^{\epsilon_{n}}[x, y]^{\epsilon_{1}} \cdots\left[x,_{n} y\right]^{\epsilon_{n}}\right)^{-1} \\
& =\left[x,{ }_{n} y\right]^{\epsilon_{n}} \cdots[x, y]^{\epsilon_{1}}\left[x,,_{n+1} y\right]^{\epsilon_{n}} \cdots[x, 2 y]^{\epsilon_{1}}[x, y] \\
& =[x, 2 y]^{\epsilon_{1}+\epsilon_{2}} \cdots\left[x,{ }_{n} y\right]^{\epsilon_{n-1}+\epsilon_{n}}[x, y]^{\epsilon_{1}}\left[x,_{n+1} y\right]^{\epsilon_{n}}[x, y] .
\end{aligned}
$$

By comparing these two identities we obtain that $\left[x,_{n+1} y\right][x, y]=[x, y]\left[x,{ }_{n+1} y\right]$, as was claimed.
ii) Let $x, y, z \in G$. If $g \in G$ then $[x, g]=[g, x]$ that is $g^{-1} g^{x}=g^{-x} g$. Hence, $g^{x}=g g^{-x} g$. As $(y z)^{x}=y^{x} z^{x}$ we have

$$
y z(y z)^{-x} y z=y y^{-x} y z z^{-x} z
$$

which implies that $\left[y^{-x} y, z z^{-x}\right]=1$. Replacing z by z^{-1} in the last identity and using the fact that $[z, x]=[x, z]$, we observe that $[[x, y],[x, z]]=\left[y^{-x} y, z^{-1} z^{x}\right]=1$, as required.
iii) To prove this part, we proceed by induction on (m, n). The case that $(m, n)=$ $(1,1)$ follows by (ii). Now, assume that the result holds for (m, n). Then, expanding $\left[\left[x, y_{1}, \ldots, y_{m-1}, y_{m} y_{m+1}\right],\left[x, z_{1}, \ldots, z_{n}\right]\right]=1$ we obtain the result for $(m+1, n)$. Similarly, we can get the result for $(m, n+1)$, by which we conclude the result for all (m, n).
iv) The result would follow easily by expanding the identity $[[x y, z],[x y, w]]=1$ in conjunction with (iii).
v) Let $x, y, z, w \in G$. Then, we have

$$
[x, y, z w]=[x, y, w][x, y, z][x, y, z, w]
$$

and by applying (iii),

$$
\begin{aligned}
{[x, y, z w] } & =[x, y, w z[z, w]] \\
& =[[x, y],[z, w]][x, y, w z]^{[z, w]} \\
& =[[x, y],[z, w]][x, y, z]^{[z, w]}[x, y, w]^{[z, w]}[x, y, w, z]^{[z, w]} \\
& =[[x, y],[z, w]][x, y, z][x, y, w][x, y, w, z] .
\end{aligned}
$$

From these two identities and applying (iii) once more we obtain the result.
Theorem 2.2. Let G be an E_{1}-symmetric group. Then
i) $\left[\gamma_{3}(G), \gamma_{2}(G)\right]=1$;
ii) $\left[\gamma_{2}(G), \gamma_{2}(G), G\right]=1$.

Proof. i) It is well-known in the literature that any commutator is a product of squares. In fact, for $x, y \in G$ we have $[x, y]=x^{-1} y^{-1} x y=x^{-2}\left(x y^{-1}\right)^{2} y^{2}$. Now, if $a, b, c, d, e \in G$, then

$$
\begin{aligned}
{[a, b, c] } & =[c,[a, b]]=\left[c, u^{2} v^{2} w^{2}\right] \\
& =\left[c, w^{2}\right]\left[c, v^{2}\right]^{w^{2}}\left[c, u^{2}\right]^{v^{2} w^{2}}=\left[x_{1}, y_{1}^{2}\right]\left[x_{2}, y_{2}^{2}\right]\left[x_{3}, y_{3}^{2}\right]
\end{aligned}
$$

for some $u, v, w, x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3} \in G$. By Lemma 2.1(iii,iv), we have

$$
\left[\left[x_{i}, y_{i}^{2}\right],[d, e]\right]=\left[\left[x_{i}, y_{i}, y_{i}\right],[d, e]\right]=\left[\left[d, y_{i}\right],\left[x_{i}, y_{i}, e\right]\right]=1
$$

Therefore,

$$
[[a, b, c],[d, e]]=\left[\left[x_{1}, y_{1}^{2}\right]\left[x_{2}, y_{2}^{2}\right]\left[x_{3}, y_{3}^{2}\right],[d, e]\right]=1
$$

ii) Let $a, b, c, d, e \in G$. Then, by Lemma 2.1(v)

$$
[[a, b],[c, d, e]]=[a, b,[c, d], e][a, b, e,[c, d]]=[[a, b],[c, d], e][[a, b, e],[c, d]] .
$$

Now, by applying part (i), we obtain $[[a, b],[c, d], e]=1$, as required.
It is investigated by several authors that, when a commutator (or an expression involving commutators) can be expressed as the product of special elements of the group, say squares, cubes etc? For example, it is proved that any commutator $[y, x]$ is the product of squares, $[y, x, x]$ is the product of cubes and the fifth Engel word $[y, x, x, x, x, x]$ is the product of forth powers (see [1, 2]).

Using Theorem 2.2, we observe that in an arbitrary group G the commutators of the form $[[a, b, c],[d, e]]$ and $[[a, b],[c, d], e]$ can be expressed as the product of commutators squares. Also, one should be able to prove that if F / F^{2} is centerless, where F is the free group of rank 4 , then $[[a, b],[c, d]]$ can be expressed as the product of commutators squares.

The structure of finite E_{1}-symmetric groups can be describe in an alternative way as follows.

Theorem 2.3. If G is a finite E_{1}-symmetric group, then G is a semidirect product of a normal Sylow 2-subgroup by an abelian subgroup of odd order.

Proof. Let $x \in G$ be a 2 -element of order 2^{n}. Then, $\left[y, 2^{n} x\right]=\left[y, x^{2^{n}}\right]=1$ for each $y \in G$ and consequently x is a right Engel element. By [3] the set of all right Engel elements of G coincides with the Fitting subgroup $F(G)$ of G. Thus, $F(G)$ possesses all Sylow 2-subgroups of G. Let P be a Sylow 2-subgroup of G (hence of $F(G))$. As $F(G)$ is a characteristic nilpotent subgroup of G its Sylow 2-subgroup P is normal in G and hence by Schur-Zassenhaus theorem [4, Theorem 9.1.2], P has a complement H in G. Since H is of odd order it is abelian and the proof is complete.

3. E_{1} - AND E_{n}-SYMMETRIC GROUPS, $n \geq 2$

In this section, we investigate groups satisfying both E_{1-} and E_{n}-symmetric properties for small n. We will show that in an E_{1}-symmetric group both $E_{2^{-}}$and E_{3}-symmetric properties are equivalent to the 2- and 3-Engel properties, respectively.

Lemma 3.1. If G is an E_{1} - and E_{n}-symmetric group ($n \geq 2$), then G is an $(n+1)$-Engel group.

Proof. Let $x, y \in G$. Then, by Lemma 2.1(i)

$$
\left[y,_{n+1} x\right]=\left[[y, x],_{n} x\right]=\left[x,_{n}[y, x]\right]=\left[[y, x, x],[y, x]_{{ }_{n-2}}[y, x]\right]=1 .
$$

Lemma 3.2. If G is an E_{1}-symmetric group, then $[y, x, x, y]=[x, y, y, x]$, for all $x, y, \in G$.

Proof. If $x, y \in G$, then

$$
[y, x, x, y]=\left[y, x^{2}, y\right]=\left[x^{2}, y, y\right]=\left[x^{2}, y^{2}\right]
$$

and

$$
[x, y, y, x]=\left[x, y^{2}, x\right]=\left[y^{2}, x, x\right]=\left[y^{2}, x^{2}\right]
$$

from which the result follows.
Theorem 3.3. If G is both E_{1} - and E_{2}-symmetric group, then G is nilponent of class at most 2 .

Proof. Since $[y, x, x]=[x, y, y]$ holds for all $x, y \in G$, then by expanding $[x y, x, x]=$ $[x, x y, x y]$ we obtain $[y, x, x]=1$, that is G is a 2-Engel group. Now, let $x, y, z \in G$. Then

$$
\begin{aligned}
{[x, y, z] } & =[z,[x, y]]=\left[z, u^{2} v^{2} w^{2}\right] \\
& =\left[z, w^{2}\right]\left[z, v^{2}\right]^{w^{2}}\left[z, u^{2}\right]^{v^{2} w^{2}}=[z, w, w][z, v, v]^{w^{2}}[z, u, u]^{v^{2} w^{2}}=1
\end{aligned}
$$

for some $u, v, w \in G$. Hence, G is nilpotent of class at most 2 .
Theorem 3.3 asserts that in an arbitrary group G and elements $x, y, z \in G$, there always exist elements x_{i}, y_{i} and z_{i}, w_{i} such that

$$
[x, y, z]=\prod\left[x_{i}, y_{i}\right]^{2} \prod\left[z_{i}, w_{i}, w_{i}\right]\left[w_{i}, z_{i}, z_{i}\right]^{-1}
$$

Thus, the commutators $[x, y, z]$ can be expressed as the product of commutators squares if and only if the elements $[y, x, x][x, y, y]^{-1}$ have the same property.
Theorem 3.4. If G is both E_{1} - and E_{3}-symmetric group, then G is a 3-Engel group.
Proof. For all x and $y \in G$, by expanding the identity $[y, y x, y x, y x]=[y x, y, y, y]$ and utilizing Lemmas 3.1 and 3.2, we obtain

$$
[y, x, x, x]=[y, x, y, x, y][y, x, y, x, y, x]=[y, x, y, x, y]^{x}
$$

which implies that

$$
[y, x, x, x]=[y, x, y, x, y] .
$$

By replacing y by y^{2} in the last identity we get

$$
\begin{aligned}
{[x, y, x, y, x] } & =[y, x, x, y, x]=[x, y, y, x, x]=\left[x, y^{2}, x, x\right]=\left[y^{2}, x, x, x\right] \\
& =\left[y^{2}, x, y^{2}, x, y^{2}\right]=\left[x, y^{2}, y^{2}, x, y^{2}\right]=\left[x, y, y, y, y, x, y^{2}\right]=1
\end{aligned}
$$

from which we also get $[y, x, y, x, y]=1$ and consequently $[y, x, x, x]=1$, as required.
Theorem 3.5. If G is both E_{1} - and E_{3}-symmetric group, then $G^{\prime \prime}=\langle 1\rangle$.
Proof. Expanding the identity $[z, x y, x y, x y]=1$ in conjunction with the fact that $[a, b, c, d]=[a, b, d, c]$ by Lemma 2.1(ii,v), when $a, b, c, d \in\{x, y, z\}$ we would obtain $[z, x, y, y]=[z, y, x, x]$. Moreover

$$
[z, y, y, x, x]=\left[z, y^{2}, x, x\right]=\left[z, x, y^{2}, y^{2}\right]=[z, x, y, y, y, y]=1
$$

from which we deduce that $[w, z, y, x, x]=1$, for all $x, y, z, w \in G$.
Now, expanding $[w, z, x y, x y]=[w, x y, z, z]$ in conjunction with the previous identities we reach to $[w, z, x, y]=[w, z, y, x]$. Therefore $G^{\prime \prime}=\langle 1\rangle$.

From Theorem 3.5, we conclude that each commutator $[[x, y],[z, w]]$ can be expressed as

$$
[[x, y],[z, w]]=\prod\left[x_{i}, y_{i}\right]^{2} \prod\left[z_{i}, w_{i}, w_{i}, w_{i}\right]\left[w_{i}, z_{i}, z_{i}, z_{i}\right]^{-1}
$$

Hence, in an arbitrary group G, the commutators $[[x, y],[z, w]]$ can be expressed as the product of commutators squares if the elements $[y, x, x, x][x, y, y, y]^{-1}$ have the same property.

References

[1] A. Abdollahi, Powers of a products of a commutators as products of squares, Int. J. Math. Math. Sci., 7 (2004), 373-375.
[2] G. Havas, Commutators in groups expressed as products of powers, Comm. Algebra, $\mathbf{9}(2)$ (1981), 115-129.
[3] T.A. Peng, Normal p-subgroups of finite groups, J. London Math. Soc., 2(8) (1971), 301-306.
[4] D.J. Robinson, A Course in the Thoery of Groups, Springer-Verlag, Berlin, 1982.
Faculty of Mathematical Sciences and Centre of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Mashhad-IRAN

E-mail address: rezam@ferdowsi.um.ac.ir

[^0]: 2000 Mathematics Subject Classification. Primary 20F45;Secondary 20F12.
 Key words and phrases. Symmetry, Engel word.

