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Abstract - It is very important for the participants in a 
competitive electricity market, which is concerned to 
various uncertainties, to develop an optimal bidding to 
achieve maximum profit, especially in a discriminatory 
pricing (Pay-as-Bid) auction. In this research, the market 
clearing price (MCP) of each hour assumed to be known as 
a probability density function (pdf). In this paper, the 
bidding problem is modeled from a supplier viewpoint and 
its optimal solution is obtained analytically based on the 
classical optimization theory. Also, the analytical solution 
for a multi step bid protocol is generalized and properties 
of the generalized solution will be discussed. The model is 
developed to consider concept of risk in the bidding 
decision making problem. Two different methods for 
handling the risk are introduced. The proposed two 
methods are compared using some numerical examples 
and the results are interpreted. In addition, the effect of 
variation of MCP's pdf parameters on supplier profit is 
studied and the results are presented.   

Keywords: power market, discriminatory pricing 
auctions, optimal bidding, supplier profit, risk. 
 
 

1. INTRODUCTION 
 

The electricity industry worldwide has experienced 
unprecedented restructuring for breaking traditional 
monopoly, introducing competition and establishing 
power market. Master concept of restructuring is that 
electricity can be traded as a commodity with 
unbundling the transmission and distribution as 
ancillary services [1]. Increasing the customer choice 
flexibilities, more social welfare and asset absorption of 
private sector are the general destinations of this 
process. 

 Auction is one of the useful mechanisms for 
establishing competition. Under auction based 

electricity market environment, the participants submit 
their buy and sell bids on an hourly basis, which are 
then aggregated to form the total supply and demand 
curves. Based on the bid curves, an independent 
systems operator (ISO) determines the hourly market 
clearing price (MCP) and the power awarded to each 
bidder by solving a price-based unit commitment 
problem [2]. In this process, how well a participant 
garners profits depends, to a large extent, on how good 
its bidding strategy is. As a result, how to develop the 
optimal bidding strategy to obtain a maximum profit has 
became a major concern of generation companies 
(GenCos).  

Because of strategic behavior of rival, demand 
fluctuation, forced outage of network components and 
uncertainty is underlying inherent in the market. 
Therefore, price volatility is unavoidable that result in 
more price forecasting complexities and importance. 
Thus, risk management is most important item that 
should be taken into account in bidding decision making 
problem.   

There are two pricing rules, uniform price auction 
(UPA) and Pay-as-Bid (PAB) auction. Payments by the 
auctioneer to the producers differ across the two auction 
forms; under UPA all producer which bid below or at 
the MCP obtain this price, whilst under PAB producer 
are paid their bids, as long as this is below or equal to 
the MCP. According to this, it is seen that decision 
making in bidding strategy is more important in PAB 
auction than UPA. 

So far, many research works have been done in 
building bidding strategies in the power market. In [3] 
under the assumption that the probabilistic distributions 
of competitors’ offering prices are known, an optimal 
offering strategy for a single step bidding at a particular 
hour is derived by ignoring intertemporal unit 
constraints. Since bid information is revealed with a 
significant delay (e.g., five months in New England), 
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assuming that the probabilistic distributions of offering 
prices for hundreds of generators are known may not be 
practical. An iterative auction structure is recommended 
in [4] and [5], where GenCos are allowed to revise their 
offers iteratively, and the MCPs are updated and made 
public during the process until the market closes. Under 
this structure, a method based on genetic programming 
and finite state automata is presented in [5] for 
iteratively revising the offers. in [4] a Lagrangian 
relaxation-based method is presented for iteratively 
revising offers considering revenue adequacy. 
Unfortunately, there currently exist no power markets 
with the iterative auction structure. A literature survey 
on strategic bidding in competitive electricity markets is 
presented in [6]. 

The recently developed ordinal optimization 
approach is applied to select “good enough with high 
probability” offers in [7]. Game theory has also been 
applied to model market competitors in simplified 
systems [8-9]. In view of the problem complexity, it 
may have difficulties to derive payoff matrices.  

 In [10] based on cobweb equilibrium theory in 
market using residual demand, optimal strategy for a 
price taker GenCo is derived. Linear formulation for the 
bidding problem with self-scheduling according to 
residual demand is suggested in [11]. In [12] the 
congestion influence on bidding strategy is studied. 
Congestion represented as an opportunity to mark up 
bid price even in perfect competition. However taking 
into account this opportunity need a lot of data. Risk 
management and self-scheduling are considered 
simultaneously in [13]. Reserve and energy markets are 
modeled as a Markov joint process and the variance of 
MCP for each of markets considered as risk index. In 
[14], GenCos are divided into three groups (risk taker, 
risk neutral, risk averse) using there's utility function 
and optimal strategy is derived for each participant.     

The electricity market in IRAN started to operate on 
October 2003. The pricing rule in this market is based 
on PAB auction. In this paper, regarding IRAN 
electricity market structure, at first the bidding problem 
is modeled from the viewpoint of a supplier in a PAB 
based market. The analytical solution of this bidding 
problem is obtained based on the classical optimization 
theory. Also, the analytical solution for a multi step bid 
protocol is generalized and properties of the generalized 
solution are discussed. 

To introduce uncertainty in bidding problem, a 
probability density function (pdf) for MCP is 
considered. The parameters of this pdf are supposed to 
be known, which can be forecasted through historical 
data and statistical techniques.   

In another part of this paper the above model is 
developed to consider concept of risk in the bidding 
decision making problem. Two different methods for 
handling the risk are introduced. In the first method, the 
risk concept is defined based on probability of winning 
and is taken into account as a nonlinear inequality 
constraint in the optimization problem. Using Kuhn-
Tucker theory, the optimal solution is determined 

according to whether or not the risk constraint is 
activated. 

In the second method, the risk is considered by 
variance of the profit random variable and is formulated 
by adding a penalty term in the objective function of the 
optimization problem. 

The proposed two methods are explained using some 
numerical examples and the results are interpreted. 
Effect of market parameter integrated in variables of pdf 
of MCP is analyzed and discussed.      
 

2. PROBLEM DESCRIPTION AND 
FORMULATION 

 
Generally, GenCos have some generation units. 

Profit of GenCo is depending on position of units in 
merit list of auction. Therefore, optimal bidding 
decision making problem is to find the optimal bid 
(price and quantity) for each unit to offer to the market. 
Since market rules and structure affect the bidding 
problem, assuming a particular structure is necessary for 
formulating the problem. 
 
2.1. Market structure 

 The bidding problem in this research is studied 
under perfect competition market assumption. In the 
oether word, it is assumed there is no apparent effect of 
the genco bid decision on market prices. 

According to the market rules, bids in step wise 
protocol should be offered hourly for each generating 
unit separately (fig.1). 

 
Figure 1: Two step bidding function 

 
where, ρi and Gi are price and product quantity 

correspond to ith step  respectively. 
Offering price has upper and lower bounds. Winning 

units and power quantities to be produced by each unit 
are determined by running the PAB auction.  
 
2.2. Problem formulation  

If the most appropriate estimation of MCP is 
possible, it is sufficient that the offering price be fewer 
than estimated MCP. However, exact MCP forecasting 
is very difficult due to existence of different 
uncertainties. In this area many research works have 
been done to frecast and probabilistic modeling [15-17].  

In this paper, MCP of each hour assumed to be 
known as a pdf (f ρm (ρm) and ρm is the MCP). 
In one hour of bidding period, profit of GenCo can be 
formulated as (1). 
 

 Price 
($/Mwh)

Production  
   (Mwh) G1 G1+G2 

1ρ
2ρ
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ρi , ci and Gi are the bid price, average cost and the 

production quantity for ith step respectively. ρ  and G  
are the price and product quantity vectors that contain ρi 
and Gi .  

Due to uncertainty, deterministic profit is not 
computable. Since the profit is depend on whether the 
bid will be accepted or not. Therefore, profit is naturally 
probabilistic variable. Since the pdf of MCP considered 
to be known, the profit can be defined like below as a 
mixed probabilistic variable.  
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cmin is the minimum average cost that can be offered 
to market without profit. Ii(ρm,ρi) is a discrete random 
variable that shows the probabilistic nature of price 
acceptance according to ρm and ρi . when ρm is lower 
than  ρi, bid price will not be accepted.                      . 

Since each bidding step is independent from the 
others, expected value of profit probabilistic variable 
can be computed separately as follows. 

∫
∞

∞−
−= mmimiiiiiimi dfIGcGfE

m
ρρρρρρρ ρ )(),()()),,( (

 
(3) 

based on definition of  Ii in eq.2, we have: 
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 E(fi(ρm,ρi,Gi)) the expected value of profit for ith step 
and Fρm(• ) is the cumulative density function (cdf) of 
MCP.  

Probability of acceptance of ith step price in the 
auction is equal to P(ρi ≤ ρm) and can be expressed on 
cdf of MCP. 
Probability of acceptance = )(1 im

F ρρ−       (5) 
As a result of eq.3, calculated expected profit is the 

function of offering bid. If GenCo's objective is to 
obtain the maximum profit without considering the risk, 
it will face with the following problem. 
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To maximization the above objective function, each 
step profit should be maximized independently. If 
production quantity of each step were fixed, driving the 
optimal price Using first order derivative rule is 
achievable as follows. 
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Then we can obtain ρi
* , the optimal offering price as 

follows: 
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We know the sequence of { }ic , regarding to the 
nature of generating unit cost function, is a monotone 

increasing sequence. Furthermore, the right side of eq.8 
is positive. Therefore, it is obvious that the sequence of 
optimal bid price { }*

iρ  is also monotone increasing. 
This fact is illustrated in fig.2 where the left and right 
side of eq.8 are drown to solve graphically this 
equation. 
 

 
Figure 2: Graphical solution of eq.8 for different c and typical 

normal pdf (N~(30,16)) 
 

3. RISK CONSIDERATION 
 

To this point the discussion focused on presenting 
methods to find the optimal bid price without 
considering the risk. But this concept is an important 
subject from GenCo's viewpoint. In this section two 
different methods for handling the risk are introduced. 
In the first method, the risk concept is defined based on 
probability of winning and in the second method, the 
risk is considered by variance of the profit random 
variable. 
 
3.1. Method І 

A simple and proper definition of risk is the 
probability that offered price ρi is not accepted in the 
auction. Therefore we define: 

)()( immii FPRisk ρρρρ =>=  (9) 
Formulation of eq.6 can be generalized in order to 

considering the risk as a constraint. 
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In eq.10 (1-Fρm(ρi)) is acceptance probability of ρi in 
auction according to pdf of MCP.  

 
Figure 3: Graphical interpretation for acceptance probability 

)(1 ρρ m
F−

ρ
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Graphic interpretation of  1-Fρm(ρi) is shown in fig.3. 
Considering  1-Fρm(ρi)≥ αi  as a constraint in 
optimization problem, lead to introduce the acceptance 
probability as risk management in solving the bidding 
problem. 
αi is the measure of degree of risk for a participant in 

the bidding of step i (e.g. for risk averse participant, αi is 
large). 

The solution of eq.10 depends on whether constraint 
is active or not (let one step bidding (αi=α)). 

Case 1: Constraint is not active. Therefore eq.10 and 
eq.6 are the same. Thus, the optimal bid price can be 
obtained from eq.8. 

Case 2: Constraint is active. Optimal bid price is 
obtained as follows: 

)1()(1 1 αραρρ υ −=⇒=− −∗∗∗∗
m

FF m
 (11) 

Where ρ** is the optimal bid price obtained from 
eq.10. 

Therefore the solution of eq.10 can be summarized as 
follows:  
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In this equation, α* is the smallest value of α which 
activate the constraint, and it can be calculated from the 
following equation: 
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Since the steps are independent, the procedure for ρ** 
calculation can be easily developed for multi step 
bidding,. 

 
3.2. Method ІІ 

Considering the variance of the profit as a measure of 
risk is another way to introducing the risk. Variance 
represents the diversity of probabilistic variable, so that 
greater variance is index for greater risk. Since profit 
has been defined as a probabilistic variable, its variance 
can be calculated as follows: 
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after manipulating this equation we have: 
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Var(fi(ρm,ρi,Gi)) is the profit variance of step i. 
If a finance problem is formulated as a decision 

making problem, decision based only on variance 
quantity is not appropriate [18]. Because variance 
quantity in comparison with expected value represent 
the risk (fig.4) 

For example in fig.4 two finance options have 
different profit pdfs. Expected value of option ‘b’ is 
larger than option ‘a’. However, variance of option ‘b’ 
is greater too. Consequently, the risk index for bidding 
problem can be defined as the ratio of variance to 
expected value. 
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Ri is the risk measure in step i. 
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Figure 4: Two pdf for two finance options 

 
The risk index can be considered as a penalty term in 

bidding decision making problem. Therefore we have: 
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ωi is a weighting factor that represents the 
importance of risk index in comparison with expected 
profit in step i . ωi  can change within [0,∞].  

In single step bidding, eq.17 will be as follows: 
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To obtain the optimal solution we have: 
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This equation is similar to eq.8 for different values of 
ω, we have different optimal solutions. Consequently, ω 
is a parameter which can represent the degree of risk of 
a GenCo. 
ω=0 is refer to a risk neutral GenCo. If the function 

(1-Fρm(ρ))/fρm(ρ) is a descending function, increasing ω 
lead to decreasing the optimal bid price because of 
decreasing the right side of eq.19 for a specific ρ (fig. 
5). 

       
Figure 5: Different solutions for eq.19 relevant to different ω 
for a typical normal pdf(N~(30,16)) (intersection of left and 

right side of eq.19)  
 
If function (1-Fρm(ρ))/fρm(ρ) is an ascending function 

increasing of ω cause to optimal price increasing. 
Therefore, selection of ω in order to risk management 
depend on the behavior of (1-Fρm(ρ))/fρm(ρ) function.   
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4. NUMERICAL EXAMPLES 
 
Assume a GenCo with one generation unit and single 

step bidding strategy. To achieve on maximum profit, 
GenCo will offer maximum power to market. Let 
maximum power of generator be 250MW with 
15$/MWh as the average cost of production. In 
addition, the pdf of MCP is assumed to be normal. 

In order to consider the variation of MCP's 
parameters in the calculation process, different cases are 
taken into account as table 1. 

 
N~(30,36) N~(30,16) N~(30,9) µm=cte 
N~(35,16) N~(30,16) N~(27,16) σm

2=cte 
 

Table 1: Different constant variable for pdf 
 

4.1. Optimal bidding without considering the risk 
GenCo profit as a function of bid price is:  

))(1)(15(250)( ρρρ ρ m
Ffprofit −−==              (20) 

GenCo profit is shown in figs. 6 and 7 as a function 
of bid price for different values of µm and σm. The bid 
price correspond to the maximum profit is the optimal 
bid price. According to these figures, the optimal bid 
price, the probability of acceptance and the maximum 
profit are presented in tables 2 and 3. 

Second order derivative of expected profit  is shown  
in fig. 8 for µm=30. It is clear that, for different σm , the 
prices less than µm are maximized the objective 
function. 

From figs. 6 and 7, it can be seen that in the PAB 
auction, optimal bid price is not equal to generation 
average cost contrary to the UP auction. Since GenCo's 
profit is determined by its bid price, the proposed price 
should as high as possible. However, greater price has 
lower acceptance probability. Consequently, GenCo 
must be sought a judicious compromise between bid 
acceptance probability and expected profit. 

 
 

σm=6 σm=4 σm=3 µm=30 

26.917 26.570 26.709 Optimal price 

0.6963 0.8043 0.8637 
Acceptance 

Probability 

2074.5 2326.7 2528.2 Expected profit 
 

Table 2: Optimal price property for different σm and constant 
µm 

µm=35 µm=30 µm=27 σm=4 

30.658 26.587 24.341 Optimal price 

0.8611 0.8043 0.7469 
Acceptance 

Probability 

3370.1 2326.7 1744.2 Expected profit 
 
Table 3: Optimal price quantity different µm and constant σm 

 
Figure 6: Expected profit for different σm and constant µm 

 

 
Figure 7: Expected profit for different µm  and constant σm 

 
 

 
Figure 8: Second order derivative of expected profit function 

for different σm and µm=30 
 
According to fig. 6, increasing σm that is equivalent 

to increasing uncertainty in the market, while keeping 
µm constant, constitutes a decrease in the acceptance 
probability of optimal price and finally a decrease in the 
maximum expected profit. 

It is evident from fig.7 that the optimal bid price and 
the maximum profit increase due to increase in µm. 
Since for two different µm, the acceptance probability 
for larger µm is greater in each price. Note that by 
increasing expected profit, acceptance probability is 
increasing too. This is the result of lower uncertainty. 

   
4.2. Introducing the risk: method І 

In method I that was proposed for risk consideration, 
at first α* must be calculated. For different conditions α* 
is calculated and presented in tables 4 and 5. According 
to the presented results in table 4, it can be seen that 
increase in uncertainty (i.e. increase in σm), leading to 
decrease in α*. Increasing µm while keeping σm constant, 
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µm/ σm is increased and consequently uncertainty is 
decreased relatively. Thus α* will be increased (table 5). 

 
σm=6 σm=4 σm=3 µm=30 

0.7745 0.8043 0.8637 α* 
 

Table 4: α* for different σm and constant µm 
 

µm=35 µm=30 µm=27 σm=4 

0.8308 0.8043 0.7469 α* 

 
Table 5: α* for different µm and constant σm 

 
For a GenCo, α is determined according to risk 

profile (risk averse, risk lover and risk neutral). Using 
eq. 10 and comparing the α and α* the optimal bid price 
(ρ**) will be obtained. 

The maximum expected profit as a function of α is 
drawn in fig. 9 (σm=4,µm=30). It is clear that when α is 
less than α*, the optimal bid price is constant and equal 
to ρ* and when α is greater than α* the optimal bid price 
is equal to )1(1 αρ −−

m
F that is depend on α. 

 

 
Figure 9: Maximum expected profit as a function of α. 

(σm=4, µm=30) 
 

4.3. Introducing the risk: method ІІ 
Objective function of GenCo with introducing the 

risk using method ІІ is rewritten as below. 
 

))()1(1)(15(250),(    ρωρρ ρm
FGfMax +−−=   (21) 

 
Because of similarity between eqs. 17 and 16, for a 

constant ω, effect of market parameters (σm,µm) 
variations on optimization process is similar too. 

Fig. 10 shows the objective function as a function of 
bid price for different value of ω. It is obvious that with 
increasing ω, optimal bid price decreases. Since 
increasing ω, in a specific bid price (ρ), result in 
decreasing (1-(1+ω)Fρm(ρ)) and consequently f(ρ,G) 
decreases too.  

It can be shown that with increasing ω GenCo is 
forced to offer the price which is near or equal to the 
average cost of power generation. Consequently in a 
PAB auction, the profit of GenCo is diminished. 

Therefore, risk averse GenCos must select greater ω.  
GenCo can manage the risk with choosing a suitable ω 
and obtain the optimal bid price from maximization of 
eq. 21 

 

 
Figure 10:  f(ρ,G) for different value of ω 

 
 

5. CONCLUSION 
 

In this research, bidding decision making problem in 
a Pay-as-Bid electricity auction is formulated from the 
supplier viewpoint. The profit of a GenCo is modeled as 
a random variable and its expected value is considered 
as the objective function of bidding decision making 
problem. When considering a risk neutral GenCo, the 
optimal bid price is derived from the maximization of 
expected profit considering single and multi step 
bidding protocols. The effect of variations of MCP’s 
parameters (mean and variance) on the expected profit 
of a GenCo is also studied. The results show that the 
optimal bid price is more sensitive to mean value of 
MCP than its variance. Therefore, forecasting the mean 
value of MCP is a critical issue in electricity PAB 
auction.  

Risk concept is taken into account in the bidding 
problem using two proposed methods. In the first 
method risk is considered as a constraint in the 
optimization problem. The numerical example shows   
the area of permissible bidding price is limited through 
this risk constraint. In the second method, according to 
the managerial finance theory the risk index is defined 
as the ratio of variance to expected value of the profit 
and added to the problem as a penalty. The numerical 
examples illustrate this method is more flexible and the 
risk can be continuously managed.  
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