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1 Introduction

Wavelet analysis is a comparatively new mathematical tool for probability and statistics research.
In early years of the past decade, many wavelets results have been introduced to statistical research
fields and many interesting results may be found in periodicals and books. The reader may refer
to Härdle et al.(1998) and Vidakovic (1999) for a detailed coverage of wavelet theory in statistics
ants valuable robust properties and to Prakasa Rao (1999) for a recent comprehensive review and
application of these and other methods of nonparametric functional asestimation. In this paper,
our purpose is to extend the results in Prakasa Rao (1996) for estimating the derivatives of a
density using wavelets to the case of a ρ∗-mixing sequence along the lines in Prakasa Rao (2003).
Definition: Let S, T ⊂ N be nonempty and define Fs = σ(Xk, k ∈ S), and the maximal correlation
coefficient ρ∗n = sup corr(f, g) where the supremum is taken over all (S, T ) with dist(S, T ) ≥ n and
all f ∈ L2(Fs), g ∈ L2(Fs), where dist(S, T ) = infx∈S,y∈T |X −Y |. A sequence of random variables
{X}n≥1 on a probability space {Ω, F, P} is said to be ρ∗-mixing if

lim
n→∞ ρ∗n < 1

In the setup considered by Prakasa Rao (1996), we assume that φ is a scaling function generating
an r−regular multiresolution analysis and f (d) ∈ L2(R), for some r ≥ (d + 1). Furthermore, we
assume that there exists Cm ≥ 0 and βm ≥ 0 such that

|f (m)(x)| ≤ Cm(1 + |x|)−βm , 0 ≤ m ≤ r. (1)

Prakasa Rao (1996) showed that the projection of f (d) on Vj0 is

f
(d)
j0

(x) =
∑

k∈Kj0

aj0,kφj0,k(x),

where
aj0,k = (−1)d

∫
φ

(d)
j0,k(x)f(x)dx.

So its estimator is
f̂

(d)
j0

(x) =
∑

k∈Kj0

âj0,kφj0,k(x), (2)

where

âj0,k =
(−1)d

n

n∑
i=1

φ
(d)
j0,k(Xi).

The estimator in Eq. (2) will be used as an estimator for f (d)(x).
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2 Main Results

First, we consider the sequence of random variables {Xi, i = 1, . . . , n} and extend the results of
Prakasa Rao (1996) to integrated squared error, when the error is measured in p−norm. Therefore,
one obtains his result by letting p = 2. Also, by considering d = 0, we obtain the results obtained
in Kerkyacharian and Picard (1992), Leblanc (1996) and Tribouley (1995). Next, we consider the
case of sequences with ρ∗-mixing condition and obtain similar results.

Before we discuss the main theorem of this paper, we state the following results that will be re-
quired in subsequent proofs, which are readily obtained by using the results of Sergey and Peligrad
(2003):

For positive numbers q ≥ 2 and 0 ≤ r < 1, there exists a positive constant D = D(q, r) such
that if {Xn}n≥1 is a sequence of ρ∗-mixing centered random variables with finite absolute moments
of order q and with ρ∗ ≤ 1, then for all n ≥ 1,

E|
k∑

i=1

Xi|q = D(
n∑

i=1

EXq
i + (

n∑
i=1

EX2
i )q/2)

Theorem Let f (d)(x) ∈ Fs,p,q with s ≥ max (1/p, d), p ≥ 1, and q ≥ 1. Consider the linear
wavelet density estimator in Eq. (2.4) for an i.i.d. sequence of random variables X1, ..., Xn. Then
for p′ ≥ max(2, p), there exists a constant C such that

E‖f̂ (d)
j0

(x)− f (d)(x)‖2p′ ≤ C n−
2(s′−d)
1+2s′

where s′ = s + 1/p′ − 1/p and 2j0 = n
1

1+2s′ .
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