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Vortex-induced vibrations (VIV) are a well-known phenomenon to engineers. The practical sig-
nificance of VIV has led to a large number of fundamental studies. In this paper, the behavior of an 
elastically mounted cylinder, subjected to (VIV), is investigated by a wake oscillator model. First 
the spectral analysis of the model is used as a criterion for the predicting of the lock-in range, in 
both low and high mass-damping ratios. Then the validity of using a combined mass-damping pa-
rameter for predicting of the maximum structure displacement amplitude at lock-in, is analytically 
investigated. 

1. Introduction 
The VIV phenomenon is result of the interaction between fluid and structure. In explanation 

of its occurance procedure it can be said that, a cross-flow blowing over bluff bodies is usually un-
steady. Beyond a critical Reynolds number, the boundary layer will separate from each side of the 
body to form the so-called Kármán vortex street. The alternately shed vortices from the body gener-
ate periodic forces on the structure, causing a structural vibration. The structural motion in turn in-
fluences the flow field, giving rise to nonlinear fluid–structure interaction1. 

The fluid structure interaction (coupling of fluctuating lift force and vibrating structure) can 
be modeled by the simple concept of a wake oscillator. In such models the wake dynamics follow a 
van der Pol equation. In fact it is sufficient to have a self sustained oscillator with a limit cycle. The 
bluff body is then considered as another oscillator excited by the wake variable2. Conversely the 
effect of the solid motion on the wake is represented by a forcing on the van der Pol equation that 
can be proportional to displacement, velocity or acceleration of bluff body. Facchinetti et al.3 have 
shown that the most appropriate forcing is proportional to the acceleration of the bluff body. 

In the dynamics of coupled fluid-structure systems, the phenomenon of frequency lock-in is 
often referred to. The lock-in range and the maximum structure displacement amplitude at lock-in, 
are two important topics of this field. The later is expressed as a function of a single combined 
mass-damping parameter, namely the Skop-Griffin parameter SG, yielding the so-called Griffin 
plot4. The validity of the Griffin plot is one of important questions that have been debated over last 
three decades5. The main aims of this paper, using a wake oscillator model, are to find the lock-in 
range and to analytically verify the Griffin plot. 
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2. VIV model 
The structure is an elastically mounted cylinder of diameter D. It is subjected to fluid flow of 

steady velocity U and can oscillate transversely to fluid flow, Fig. 1. The motion of this cylinder can 
be modelled by a simple linear equation that is affected by fluid loading, Eq. (1), 
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Figure 1. Model of elastically mounted cylinder coupled with wake oscillators for 2-D vortex-

induced vibrations. 
 

where overdots means derivatives with respect to dimensional time T and Y is the in-plane dis-
placement of cylinder, transversely to fluid flow. ms and k are, respectively, the mass and the stiff-
ness of the cylinder in absence of fluid. cs models viscous dissipations in supports. mf is fluid-added 
mass which models invisid inertia effects of fluid1 and cf is the fluid-added damping. The forcing 
term S models the effects of vortices on structure and reads, 
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where ρ is the fluid density, Cm is the added mass coefficient that for a circular cylinder it reads 
Cm=1 1, St is the Strouhal number and γ is the fluid added damping coefficient depending on the 
mean sectional drag coefficient CD 1 and we assume that3 γൌ0.8. CL  is the fluctuating lift coeffi-
cient.   

The fluctuating nature of the vortex street can be modelled by a van der Pol oscillator6 
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where Ωfൌ2πUSt/D is the vortex-shedding frequency, ε and A are the parameters that can be de-
rived from experimental results, such as εൌ0.3 and Aൌ12 3. q is the dimensionless wake variable 
and is defined as qሺtሻൌ2CLሺtሻ/CL0, where CL0 is the reference lift coefficient of a stationary cylin-
der subjected to vortex shedding that is usually taken as CL0ൌ0.3 1. 
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Eqs. (1) and (3) lead to the coupled fluid-structure dynamical system. There are different cou-
pling methods, such as displacement coupling, velocity coupling and acceleration coupling. Facchi-
netti et al3. have shown that the most appropriate coupling is the acceleration coupling. So in the 
present paper, an acceleration coupling is used. 

The Eqs. (1) and (3) can be put in a dimensionless form by introducing the dimensionless 

terms of T
m
kt =  and y=Y/D that reads, 
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where ΩൌΩf/Ωsൌ StUr is the dimensionless frequency of a self-sustained oscillation of the wake2, 
Ur=U/fνD is the reduced velocity and fν is the vortex-shedding frequency. λ is the damping coeffi-
cient and M is a mass number which scales the effects of the wake on the structure3. They read, 
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where ξ is the structure reduced damping, ߦ ൌ ௖ೞ
ଶ√௞௠

     

3. Prediction of lock-in domain 
During lock-in phenomenon, the frequency of vortex shedding and the frequency of the struc-

tural oscillations synchronize and lock into each other. Therefore, as it is expected and demon-
strated by the experimental results, for the self-excited vibrations in the lock-in region, nearly har-
monic oscillations will occur7. The spectral analysis is used as a criterion for identifying the har-
monic and periodic behavior of a system. For harmonic motion, the spectrum has peaks of a funda-
mental and its harmonics. The deviation of the system from this behavior gives broad band compo-
nents to the spectrum. In this section, using spectral analysis, the lock-in domain at both low and 
high mass damping ratios is predicted. 

The experimental results of Feng8 and Branković and Bearman9, that were conducted at high 
and low mass-damping ratios, respectively, are shown in Fig. 2. As seen, the behavior of the system 
at low and high mass-damping ratios is different. At high mass-damping ratio, the experimental 
results indicate that in low reduced velocities the system follow Strouhal law. The power spectrum 
of the system at this mass ratio and for λ=0.1 2 and in Ur=4.5 is provided in Fig. 3 (a). As seen, the 
power spectrum has broad band components and illustrates the deviation of the system from har-
monic and periodic behavior. Therefore, the system is out of lock-in range, that is consistent with 
the experimental results. The Feng’s8 experimental data, shows that at higher reduced velocities, 
from Ur=5 to Ur=6.5, the system deviates from the Strouhal law and oscillates at a fixed frequency 
of ω=1, where ω is the ratio of the frequency of the structural oscillations the vortex-shedding fre-
quency. Therefore the behavior of the system is periodic. The power spectrum of the system, at this 
range, is depicted in Fig. 3 (b) to 3 (e). As can be seen, the spectral analysis not only predicts the 
periodic behavior for the system, but also in Fig. 3 (b), at the beginning of the lock-in region,  pre-
dicts one of its harmonics at the frequency of 0.156, corresponding to ω=1 and  shows a big peak at  
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Figure 2. The experimental frequency response. ○, Feng’s8 experimental results at high mass-

damping ratio µ=194.55 and λ=0.1; □, experimental results of Branković and Bearman9 at low 
mass-damping ratio; ---, the Strouhal law; -.-, the lock-in frequency. 

 
there. The Fig. 3 (d) shows a spectrum with broad band components. It suggests that in the lock-in 
domain, From Ur=5 to Ur=6.5, in a short range of reduced velocity the system will oscillate out of 
lock-in manner. Referring  to the experimental  results of Feng8 shows that in this  range of  reduced    

 
Figure 3. The power spectrum of the system corresponding to Feng’s experimental data. (a) 

Ur=4.5; (b) Ur=55; (c) Ur=5.5; (d) Ur=6; (e) Ur=6.5; (f) Ur=7. 
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velocity the system have leaved the lock-in domain and followed the Strouhal law. Fig. 3 (f) shows 
the power spectrum of the system at Ur=7, where the system have leaved the lock-in domain and 
follows the Strouhal law again. As it is expected the spectrum has broad band components. 

Fig. 2 also shows the experimental results of Branković and Bearman9 that was conducted at 
low mass-damping ratio. According to this experimental results, it is expected that first the power 
spectrum of the system has broad band components. Then when the system undergoes the lock-in 
phenomenon, the power spectrum predicts periodic behavior for the system. Finally, when the sys-
tem leaves the lock-in range, the power spectrum will have broad band components again. Fig. 4 
shows the power spectrum at µ=1.1615 and ξ=1.5×104, corresponding to these experimental re-
sults. It illustrates that the spectral analysis not only predicts the lock-in domain precisely, but also 
accurately predicts the lock-in frequency and the change of the behavior of the system. For exam-
ple, Fig 4 (b), at the beginning of the lock-in range, shows a big peak at the frequency of 0.23, cor-
responding to ω=1.4. 

 
Figure 4. The power spectrum of the system corresponding to Branković and Bearman’s9 

experimental data. (a) Ur=8; (b) Ur=9; (c) Ur=10; (d) Ur=11; (e) Ur=12; (f) Ur=13. 

Therefore the spectral analysis of the wake oscillator model can be used as a criterion for pre-
dicting of the lock-in range in both low and high mass-damping ratios. 

4. Verification of the Griffin plot 
The maximum structure displacement amplitude at lock-in is expressed as a function of a single 

combined mass-damping parameter, namely the Skop-Griffin parameter SG
 3, 
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yielding the so-called Griffin plot . Verifying the validity of the Griffin plot by analytical analysis 
of wake oscillator model, a reference resonance state is defined as ω=1 and Ωൌ1 3. By this defini-
tion, Eq. (4) yields 
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The appropriate analytical procedure to find the oscillatory solutions of Eq. (7) is the averag-

ing method6. For this purpose, let us express q and y in the form 
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Using this method, we can show that the amplitudes R1 and R2 and the phase difference 
φ=θ1+ θ2 between y and q satisfy the following set of first order differential equations 
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In the stationary state, Eqs. (9) lead to the following solutions depending on the value of the 

phase difference ϕ between q and y. With the ϕ=π/2 and ϕ=-π/2 the solutions, respectively, are 
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Substituting Eq. (10) in Eq. (11), yields 
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The λ/M can be written in the terns of the Skop-Griffin parameter SG. Using Eqs. (5) and (6) 

and considering M=0.05/µ3, then λ/M is obtained as 
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Therefore the Eq. (12) shows the maximum amplitude of structure R1 as a function of SG, a 
combined mass-damping parameter. Fig. 5 shows the comparison of the analytical results of the 
classical wake oscillator model, Eq. (12), with the experimental results of the Griffin plot. It illus-
trates that the analytical results agree with the trend of the experimental data. But the oscillatory 
states are not always realized even if from Eqs. (10) and (11) we obtain values for R1 and R2. Their 
realization is physically interesting only so long as they are stable10. To study the stability of these 
fixed points, the linearization method is used. In this method the behavior of the system linearized 
in the neighborhood of these points, is determined by the eigenvalues of the Jacobian matrix. The 
Jacobian matrices of the system of the slow-flow equations, at fixed points, are 
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Figure 5. The Griffin plot. –, based on the classical wake oscillator model. Empirical data in 
water: ○; Empirical data in air: □. 

 
Where Jπ/2 and J-π/2, respectively, are the Jacobian matrices when ϕ=π/2 and ϕ=-π/2. Assum-

ing λ=0.1, Fig. 6 shows the eigenvalues of Jπ/2 and J-π/2 with respect to SG. 
 

 
Figure 6. The eigenvalues of Jπ/2 and J-π/2  
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 As seen all eigenvalues are negative, therefore the oscillatory states obtained in Eqs. (10) and 
(11) are stable. So the results of Eq. (12), which express the maximum amplitude of the structural 
oscillations as a function of SG, are valid. Therefore it can be said that a combined mass-damping 
parameter, SG, can reasonably collapse peak amplitude in the Griffin plot. 

 
Conclusions  

This paper dealt with the lock-in phenomenon as one of important subjects in the dynamics of 
coupled fluid-structure systems. In the first part of the paper, the spectral analysis of the wake oscil-
lator model was used as a criterion for predicting the lock-in domain. This analysis showed that the 
spectral analysis predicts a periodic motion at lock-in and gives peak at the frequency in which 
lock-in occurs. Non-synchronized dynamics of the coupled system, gives broad band components to 
the spectrum. Despite of the different behaviors of the system in low and high mass ratios, the re-
sults of the spectral analysis, in both high and low mass ratios, was quite consistent with the ex-
perimental results. 

In the next section, the validity of the Griffin plot was analytically investigated. First, using an 
averaging method, the slow-flow equations of the system were derived. Then, their solutions in the 
stationary state, were obtained. To show that these solutions are physically interesting, their stability 
was analyzed. These analytical investigations showed that a combined mass-damping parameter can 
reasonably collapse peak amplitude data in the Griffin plot. 

These numerical and analytical investigations, respectively, can be used for practically predicting 
of lock-in range and verification of extensive use of the Griffin plot by practical engineers. 
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