
Grid Scheduling with buddy-based resource discovery

 Mahmoud Naghibzadeh Javad Hamidzadeh

 Dept. of Computer Engineering Dept. of Computer Engineering

 Ferdowsi University Ferdowsi University

 Mashhad, Iran Mashhad, Iran

 naghibzadeh@um.ac.ir Ja_ha47@stu-mail.um.ac.ir

 Saied Abrishami Abdolreza Savadi

 Dept. of Computer Engineering Dept. of Computer Engineering

 Ferdowsi University Ferdowsi University

 Mashhad, Iran Mashhad, Iran

 s-abrishami@um.ac.ir savadi@ferdowsi.um.ac.ir

Abstract—Vast majority of computer users are
generously willing to share their computer resources with
needy organizations and individuals to solve their
computational, data storage, and communicational
problems. The recently emerging Grid technology is
providing the required platform for the coordinated
resource sharing and problem solving among individual
computer users as well as dynamic multi-institutional virtual
organizations. Resource discovery is a preliminary step
towards distribution of work load to resources in order to
reach the required quality of service, for example, to
minimize the completion time of tasks. In this research we
have introduced a buddy-based resource discovery
technique. Two, or more devices, are buddies if one can be
used in place of the other, whenever the former is
unavailable or it is so busy that by waiting for it the required
quality of service will not be achieved. The simulation results
of the proposed technique showed that buddy-based
resource discovery is a promising approach.

I. INTRODUCTION
Vast majority of computer users are generously

willing to share their computer resources with needy
organizations and individuals to solve their computational
and communicational problems. It is up to the field's
specialists to make this sharing pleasant, safe, efficient,
and economical to both parties. The recently emerging
Grid technology is providing the required platform for the
coordinated resource sharing and problem solving among
individual computer users as well as dynamic multi-
institutional virtual organizations.

Local resources are usually preferred over nonlocal
ones with similar capabilities and performance. When the

resources to be shared are processing power, there are two
general strategies to think about, load balancing and load
sharing.

In load balancing strategy, requested tasks are
distributed amongst all existing resources such that the all
resources’ load are equal. An ideal load balancing
algorithm thus distributes the requests into existing
resources so that all the resources finish their tasks
simultaneously [1].

The goal of load sharing strategy is to prevent the
situations in which some resources are idle where the
other some other resources have a queue of waiting tasks.
It tries to reduce the load on the heavily loaded resources,
only. The strategy doesn't seek to make sure all resources
are equally-loaded [2].

Both, load balancing and load sharing strategies, have
been extensively studied and it has been shown that their
usage greatly improves the average completion time of set
of tasks submitted to overall system being either a
distributed system or a Grid infrastructure. However, the
performance of these strategies is not necessarily the same
and one may outperform the other, given the
circumstances.

Load sharing algorithms are classified into static and
dynamic. Dynamic algorithms have the potential to
outperform static algorithms by using the current system
information for task allocation decisions. Different
approaches to dynamic load sharing are based on sender-
initiation, receiver-initiation and domain based load
sharing [1, 2]. Most of the new advanced in load sharing
algorithms are based on decentralization hierarchy. In [4],
a dynamic load sharing scheme called Dual Layered Load

Interconnecting
media

Sharing (DLLS) is proposed. It accomplishes its goal by
using two levels of load sharing. At the first level, load
sharing is done on neighboring nodes, and at the second
level, the sharing is done between different
neighborhoods. In [5] a size-based scheme called it Least
Flow-Time First (LFF-SIZE), is proposed in which a
multi-section queue is used to separate larger tasks from
smaller ones.

No matter what the load sharing/load balancing
technique is, resource discovery is a preliminary step
towards this purpose. An efficient resource discovery
technique significantly improves the performance of any
load balancing or load sharing technique.

In this paper we are proposing a buddy-based resource
discovery. Section II describes the concept of buddy
system and its implication to resource discovery. It
provides two algorithms, buddy-building and resource
discovery. In Section III, the proposed resource
assignment is simulated using the Gridsim simulator.
Section IV summarizes and suggests some immediate
future works.

II. BUDDY-BASED RESOURCE DISCOVERY
Two, or more devices, are buddies if one can be used

in place of the other, whenever the former is unavailable
or it is so busy that by waiting for it the required quality
of service is (probably) not achievable. The concept of
buddy has been used in many fields, especially in the field
of operating systems. One example is in assigning
contiguous memory partitions to processes. In this
method, the size of memory partitions is a power of two
kilobytes. The memory allocator may split a partition into
two equal size contiguous partitions called buddies. If
necessary, each new partition could be further split into
two smaller size buddies. A partition can be assigned to a
requester as a whole. When a partition is no longer
needed and it is freed, it is reunited with its buddy, if the
buddy is also free, to form a larger partition. Two
partition of the same size can be merged into one partition
if the partitions are buddies. The process of reuniting
buddies is continued as far as it is possible. In this
context, buddies have exactly the same properties and
each one can equally be assigned to the memory
requesting process. It is this similarity which will be of
our interest in developing computer buddies.

One or more buddies could be defined for every
resource for which there is a possibility that it might not
be up and running all the time or, in some circumstances,
it might be in a high demand so that not all competing
processes for the resource may perform timely or
accurately. Buddies of a device must be selected so that,
besides having the functional capabilities of the device
itself, everyone has a high availability when needed.
Although the ultimate goal of this research is to use the
concept of buddy in Grid systems, we are considering a

simplified scenario for the time being. A resource under
investigation is a personal computer with standard units
like CPU (or PUs), cache memory, main memory,
secondary storage, etc. It might have other
complementing units like tape CD drives, as well. A body
of a PC is, hence, another PC with similar facilities. All
computers are connected together via a network
interconnection hardware and protocol. The whole
structure should resemble a simplified Grid structure
where nodes are all independent personal computers with
different capabilities and, theoretically, spread over the
globe. In this research we decided to define two buddies
for every computer. Figure 1 shows the model of this
organization.

Figure 1: A simple model of a grid with buddies being connected

It is the case that the buddies of a system are not
selected randomly, but rather it is most important to
carefully agree upon the required criteria to guarantee a
high probability of the availability of a buddy whenever it
is needed. Buddy designation criterion should be so
developed to match the overall goals of the system being
designed.

For simplicity, here, we consider the case where every
process runs a sequential program, rather than a parallel
one. The required quality of service is defined around the
expected turnaround time of the process which runs the
program. The buddy building criteria are considered to be
the degree of the availability of the buddy and the degree
of the matching of the properties of the buddy and the
resource. For every resource we designate two buddies
with the first one being preferred over the second. Figure
2 shows the buddy building algorithm. This algorithm has
to be executed by every computer whenever it decides to
find his buddies. It is usually executed once when the
computer is connected, or reconnected, to the Grid.
Besides, it could be executed whenever the availability of
a computer’s buddies are very low.

In buddy-building algorithm, for each resource Ri,
i=1, 2, … n, a vector Si (si0 , si1, si2, …, sij) represents its

attributes. For example, if the resource is a CPU then the
attributes could be CPU power in instruction per second,
cache size etc. Besides, another vector Ai (ai0, ai1, ai2, …,
ai23) represents the availability of the resource in each 24-
hour time intervals of a 24-hour day. Therefore, we have
assumed that the availability of a resource is fixed for
each whole hour of a 24-hour. In addition, since the A-
vector has only 24 components the availability of a
resource is the same for all days of a year. These
restrictions may be relaxed to better match with the real
world’s situation. This relaxation will be done in our
future research as the system is completed and the test
phase is successful. One more vector called MinReq
represents the minimum requirements needed for a
resource to be considered as a buddy of this resource. The
proposed buddy-building method is formalized in Figure
2.

Figure 2: A h

Whenever a request is received, if the required quality
of service is not obtainable by the local resource, the first
buddy is checked, first. This resource is selected if the
required quality of service is attainable. Otherwise, the
second buddy is checked. If the required quality of service
is not attainable by the second buddy, we then use a
different technique for selecting a resource to do the task.
The overall resource discovery algorithm is summarized
in Figure 3.

Resource-discovery ()

1- Compute LocalExpectedTurnaroundTime for
the current task on the local machine

2- if (LocalExpectedTurnaroundTime <=
DesiredTurnaroundTime) then

 assign this task to local machine and exit

3- Compute Buddy1ExpectedTurnaroundTime for
the current task on the first buddy

4- if (Buddy1ExpectedTurnaroundTime <=
DesiredTurnaroundTime) then

 assign this task to the first buddy and exit

5- Compute Buddy2ExpectedTurnaroundTime for
the current task on the second buddy

6- if (Buddy2ExpectedTurnaroundTime <=
DesiredTurnaroundTime) then

 assign this task to the second buddy and exit

1- Compute R0 (S

2- Obtain Ri (Si,
same-type re
Information

3- for i=1 to n-1

 3-1 if (Ri< M

 next i

 3-2 Compu

 specifica

 Spe

 where cj is the

 specifica

 3-3 Compu

 availabi

 AvailDiff

 3-4 Compu

 as:

 A

4- Select two
availability_
buddies of th

Figure 3: The proposed resource discovery algorithm

III. SIMULATION RESULTS

The novel proposal of resource discovery which is
presented here is simulated to make sure it is worth being
considered for further research and development. Twenty
four time zones are considered around the globe. For each
time zone five computers with random properties
(operating system, CPU speed, cache memory capacity,
and main memory capacity) are generated. Each computer
is considered to have the capability of process migration
(from or to).

We used the GridSim software (from the GridBus
Project [6]) for performing simulations. Simulations are
done for four cases. In the first case, we used Poisson
distribution with mean equal to 1500 million instructions
Buddy-building()

0, A0) and MinReq for the resource

 Ai), i=1,2, …, n-1, for all other
sources in the grid from the Grid
System (GIS)

 do

inRequire) then continue with the

te the pair wise difference between

tions of R0 and Ri as:

()jij
j

ji ssccDiff
0−=∑

importance level of the jth

tion of the resource.

te the difference between

lity of R0 and Ri as:

 ∑ >−=
j

jijjiji aaifaa 00),(

te the similarity between R0 and Ri

i

i
i SpecDiff

AvailDiff
vaDiff =

resources that have the highest
difference, AvaDiff, as the two
is resource.
igh-level algorithm for building buddies

for the tasks length. Each task has a deadline equals to its
execution time on a 100 MIPS computer. In this case,
arrival rate also had a Poisson distribution but its mean is

considered to be variable. Figure 4 shows the simulation
results. The horizontal axis represents the arrival rate
mean. As it can be seen, the percentage of tasks assigned
to the local processor decreases as the arrival rate mean
increases. On the other hand, as the arrival rate mean
increases the percentage of tasks being assigned to
buddies increases. At some point, about 0.04 arrival rate
mean, the increasing nature of the assignment to the first
buddy has stopped and the assignment if mostly
forwarded to the second buddy. At some other point,
about 0.08 arrival rate mean, there in no increase in the
percentages of tasks assigned to either buddies. From here
on, the percentage of tasks assigned to either buddies does
not show any increase. Therefore, the percentage of tasks
being rejected starts to increase in a higher rate. This
result matches very well with what is expected.

0
20
40
60
80

100
120

0.01
0.04

0.06
0.08 0.1

Arrival Rate

Pe
rc

en
t ownerPercent

 buddy1Percent
buddy2Percent
totalRejPercent

0

20

40

60

80

100

0.0
1

0.0
3

0.0
5

0.0
7

0.0
9

Arrival Rate

Pe
rc

en
t ownerPercent

 buddy1Percent
buddy2Percent
totalRejPercent

0

20

40

60

80

100

500
800

1000
1300

1500
1700

2000

Job Length

Pe
rc

en
t ownerPercent
 buddy1Percent
buddy2Percent
totalRejPercent

0
20
40
60
80

100
120

500
700

800
1000

1200
1500

Job Length

Pe
rc

en
t ownerPercent

 buddy1Percent
buddy2Percent
totalRejPercent

Figure 4: The percentage of assigned task for fixed task length and
variable arrival rate

In the second case, arrival rate’s mean time is fixed on
0.05 and the tasks length mean is considered as variable.
Figure 5 shows the result. The results shows that with the
increase in tasks length, the percentage of tasks assigned
to the local processor decreased and this percentage
increased for the buddies.

Figure 5: The percentage of assigned task for fixed arrival rate and
variable task length

Figure 6: The percentage of assigned task for fixed task length and
variable arrival rate with twice deadline time as Figure 4

Figure 7: The percentage of assigned task for fixed arrival rate and
variable variant task length with twice deadline time as Figure 5

Case 3 and 4 are analogous to case 1 and 2,
respectively, except that the deadline is twice as the Case
1 and Case 2, respectively. The simulation results show
that the second buddy has a lower significant in these two
cases. See Figures 6 and 7.

 The results show the reasonably high availability of
buddies whenever a resource needs assistant from other
resources. The low rejection rate signals that the need to
use complementary resource discovery is low. The
communication overhead used to discover a required
resource is very low compared to blind search resource
discovery algorithms.

IV. SUMMARY AND FUTURE WORKS

Within the Grid infrastructure resource discovery is a
major step towards distribution of work load to resources
in order to reach the required quality of service. We
proposed a buddy-based resource discovery technique.
Whenever a resource is unavailable, its buddy is a good
choice to perform the required task. Two algorithms are
developed for buddy-building and resource discovery.
The proposed resource discovery based on buddies is

simulation and the results are presented. In the simulation
the globe is divided into 24 time zones and for each time
zone a small number of computers, i.e., five, is
considered. It was concluded that buddy-based resource
discovery is a promising approach. It is well understood
that the actual number of computers in all time zones are
not the same. A separate investigation is required to
estimate these numbers and redo all the simulations with
respect to this new information. Due to unavailability of
high performance computes, in our experiments, the total
number of nodes were 120. It is desirable to do the
simulation for systems with higher number of computers.

REFERENCES
[1] B. Veeravalli, and W. Han Min, “Scheduling Divisible Loads on

Heterogeneous Linear Dasiy Chain Networks with Arbitrary
Processor Release Times,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 15(3), March 2004.

[2] O. Krem, and J. Kramer, “Methodical Analysis of Adaptive Load
Sharing Algorithms,” IEEE Transactions on High Performance
Computing, Vol. 4(3), 1992.

[3] G. Cybenko, “ Dynamic Load Balancing for Distributed Memory
Multiprocessors,” Journal of Parallel and Distributed Computing,
Vol. 7, pp. 279-301, 1989.

[4] G. Hura, S. Mohan, and T. H. Srikanthan, “On Load Sharing in
Distributed Systems: A Novel Approach,” Tranactions SDPS, Vol.
6, No. 1, pp. 59-81, 2002.

[5] G. Tari, J. Broberg, A.Y. Zomaya, and R. Baldoni, “A Least
Flow-Time First Load Sharing Approach for Distributed Server
Farm,” J. of Parallel and Distributed Computing, Vol. 65, pp.
832 – 842, 2005.

[6] http://www.gridbus.org/gridsim/

http://www.gridbus.org/gridsim/

	Introduction
	References

