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The construction of the well-known continuous wavelet transform has been extended
before to higher dimensions. Then it was generalized to a group which is topologically
isomorphic to a homogeneous space of the semidirect product of an abelian locally
compact group and a locally compact group. In this paper, we consider a more general
case. We introduce a class of continuous wavelet transforms obtained from the generalized
quasi-regular representations. To define such a representation of a group G , we need a
homogeneous space with a relatively invariant Radon measure and a character of G .

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

A wavelet is known as a square integrable function, ψ ∈ L2(R), which satisfies the condition Cψ = ∫ +∞
−∞

|ψ̂(ω)|2
|ω| dω < +∞,

where ψ̂ is obtained from ψ by the Plancherel theorem. A continuous wavelet transform (1-D CWT) of a function f ∈ L2(R)

has been defined by using a wavelet ψ as follows

Wψ f (b,a) = 1√|a|
∫
R

f (t)ψ

(
t − b

a

)
dt,

for almost all a,b ∈ R, a �= 0. The continuous wavelet transforms have been extended to higher dimensions (cf. [3, Chap-
ter 9]). The n-dimensional continuous wavelet transforms can be obtained through the action of a Lie group G , which can
be represented in the semidirect product form of two special Lie groups K and H , via a unitary representation on L2(K ).
In this case, K can be considered as a homogeneous space that G acts on it, and possesses a relatively invariant Radon
measure.

In [2] it has been mentioned that how the continuous wavelet transforms can be defined on the two-sphere, a two-
sheeted hyperboloid, and some other similar manifolds. Also, one may find in [5–7] some other aspects of generalization of
continuous wavelet transforms related to homogeneous spaces.
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In [4] and [8] a more general case has been discussed; for a locally compact abelian group K and a locally compact
group H , they have considered a continuous wavelet transform of the semidirect product K ×′ H on L2(K ) defined by

π(k,h) f (x) =
√

ΔG(h)

ΔH (h)
f
(
τh−1

(
k−1x

))
(almost all x ∈ K ),

where ΔG and ΔH are the modular functions on G and H , respectively. These kinds of wavelet transforms can be contained
in a class of continuous wavelet transforms obtained from a continuous unitary representation of a locally compact group G
on L2(S), where S is a homogeneous space that G acts on it. More specifically, when H is a closed subgroup of a locally
compact group G , we define the generalized quasi-regular representations of G on L2(G/H). We show that these repre-
sentations exist when G/H is attached to a relatively invariant Radon measure. In this case, all generalized quasi-regular
representations can be exactly determined with the continuous homomorphisms defined from G into the unit circle T. We
consider the continuous wavelet transforms obtained from these representations as a class of wavelet transforms containing
the above continuous wavelet transforms. To reach the goal we need first to prove some results on homogeneous spaces.

The outline of the rest of this paper is as follows: In Section 2, we introduce some notations and present some pre-
liminary results on homogeneous spaces which we need in the sequel. In Section 3, we define a continuous unitary
representation of G by using its action on a given homogeneous space, a generalized quasi-regular representation, which
plays the role of the left regular representation of G . In Theorem 3.1 a necessary and sufficient condition is offered to have
such a representation. We characterize this kind of representations of G in Theorem 3.3. In the last section, we consider
the class of continuous wavelet transforms that can be obtained from a generalized quasi-regular representation in a similar
way to what has been done in [10]. Finally, with a few examples, we show that in this manner we can get the n-dimensional
continuous wavelet transforms and also the continuous wavelet transforms on a group which is topologically isomorphic to
a homogeneous space of the semidirect product of an abelian locally compact group and a locally compact group, which
have been discussed in [4,8]. Also, we offer some examples of continuous wavelet transforms that cannot be obtained by
the way which has been introduced in [4,8].

2. Conditions for the existence of relatively invariant measures

Throughout this paper, when X is a locally compact Hausdorff space with a Radon measure μ, Cc(X) consists of all
continuous complex-valued functions on X with compact supports. Also, for each 1 � p < +∞, let (L p(X),‖ · ‖p) stand for
the Banach space of equivalence classes of μ-measurable complex-valued functions on X whose pth powers are integrable.
Moreover, G denotes a locally compact group with identity e, left Haar measure dx, and modular function ΔG . Furthermore,
we assume that H is a closed subgroup of G , then G/H is considered as a homogeneous space, and q : G → G/H denotes
the canonical map. It is well known that Cc(G/H) consists of all P f functions, where f is a continuous function on G with
compact support and

P f (xH) =
∫
H

f (xξ)dξ (1)

(cf. [9, Subsection 2.6]). Through the following lemma we illustrate a property of continuous functions with compact sup-
ports on homogeneous spaces, which will be required in Theorem 3.2. It is derived evidently in a similar way on groups.

Lemma 2.1. For each ϕ ∈ Cc(G/H) and ε > 0 there is a neighborhood V of e such that if x, y ∈ G and yx−1 ∈ V , then∣∣ϕ(xH) − ϕ(yH)
∣∣ < ε.

Definition 2.2. Suppose that μ is a Radon measure on G/H . For each x ∈ G we define the translation μx of μ by μx(E) =
μ(xE), where E is a Borel subset of G/H . μ is said to be G-invariant if μx = μ for all x ∈ G , and is said to be strongly
quasi-invariant provided that there is a continuous function λ : G × G/H → (0,+∞) which satisfies

dμx(yH) = λ(x, yH)dμ(yH) (x, y ∈ G).

If the functions λ(x, · ) reduce to constants, then μ is called relatively invariant under G .

We consider a rho-function for the pair (G, H) as a continuous function ρ : G → (0,+∞) for which

ρ(xξ) = ΔH (ξ)

ΔG(ξ)
ρ(x) (x ∈ G, ξ ∈ H).

It is well known that (G, H) admits a rho-function and for each rho-function ρ there is a strongly quasi-invariant measure μ
on G/H such that∫

P f (xH)dμ(xH) =
∫

f (x)ρ(x)dx
(

f ∈ Cc(G)
)
. (2)
G/H G
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μ also satisfies

dμx

dμ
(yH) = ρ(xy)

ρ(y)
(x, y ∈ G). (3)

Every strongly quasi-invariant measure on G/H arises from a rho-function in this manner, and all of these measures are
strongly equivalent (cf. [9, Subsection 2.6]). Moreover, G/H has a G-invariant Radon measure if and only if the constant
function ρ(x) = 1, x ∈ G , is a rho-function for the pair (G, H), or equivalently ΔG |H = ΔH (cf. [9, Theorem 2.49]). The next
lemma describes the condition under which G/H has a relatively invariant measure.

Lemma 2.3. The existence of a homomorphism rho-function ρ : G → (0,+∞), for the pair (G, H), is a necessary and sufficient
condition for the existence of a relatively invariant measure on G/H. More precisely, every relatively invariant measure on G/H is a
positive constant multiple of another one, which arises from a homomorphism rho-function.

Proof. Let μ be the strongly quasi-invariant measure which arises from a rho-function ρ . If ρ is a homomorphism, then
by (3) we get dμx = ρ(x)dμ, for all x ∈ G , which shows that μ is relatively invariant under G . Conversely, if μ is a relatively
invariant measure, then there is a continuous function λ : G → (0,+∞) such that dμx = λ(x)dμ, for all x ∈ G . So for each
x ∈ G and f ∈ Cc(G) we can write∫

G

f (y)ρ(xy)dy =
∫
G

f
(
x−1 y

)
ρ(y)dy

=
∫

G/H

P (Lx f )(yH)dμ(yH)

= λ(x)

∫
G/H

P f (yH)dμ(yH)

= λ(x)

∫
G

f (y)ρ(y)dy.

Thus for a fixed x ∈ G we have∫
G

f (y)
(
ρ(xy) − λ(x)ρ(y)

)
dy = 0,

for all f ∈ Cc(G). This leads to

ρ(xy)

ρ(y)
= λ(x) (x, y ∈ G).

Now define ρ0 : G → R by ρ0(x) = ρ(x)/ρ(e). An easy calculation shows that ρ0 is a homomorphism rho-function for
(G, H). Also, dμ = ρ(e)dμ0 where μ0 is the relatively invariant Radon measure on G/H which arises from ρ0. �

In the next proposition, we show that if G is the semidirect product of two locally compact groups K and H respectively,
then G/H has a relatively invariant Radon measure. For this, we need to fix some notations. Suppose that K and H are two
locally compact groups with neutral elements eK and eH respectively. If h 
→ τh is a homomorphism of H into the group of
automorphisms of K and the mapping (k,h) 
→ τh(k) from K × H onto K is continuous with respect to the usual product
topology, then the set K × H endowed with the operations

(k1,h1) · (k2,h2) = (
k1τh1 (k2),h1h2

)
and (k,h)−1 = (

τh−1

(
k−1),h−1)

is a locally compact group, with neutral element (eK , eH ), which is called the semidirect product of K and H respectively,
and is denoted by K ×′ H . From now on, the elements (k, eH ) and (eK ,h) will be represented by k and h, where k ∈ K and
h ∈ H . Because of the identity (k,h) = (k, eH ) · (eK ,h), by the abbreviation above, kh will be another presentation for the
element (k,h) of K ×′ H .

Proposition 2.4. Let G be the semidirect product of two locally compact groups K and H respectively; i.e. G = K ×′ H. Then G/H
has a relatively invariant Radon measure, which may arise from the rho-function ρ : G → R defined by ρ(x) = ΔH (h)/ΔG(h), where
x ∈ G, h ∈ H, and x = kh for some k ∈ K .

Proof. Define ρ : G → R by ρ(x) = ΔH (h)/ΔG(h), where x = kh ∈ G,k ∈ K ,h ∈ H . It is easy to show that ρ is a rho-function
for (G, H). Also, if x = k1h1 and y = k2h2, in which k1,k2 ∈ K and h1,h2 ∈ H , then we have
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ρ(xy) = ρ(k1h1k2h2)

= ρ(k1k′h1h2)

= ΔH (h1h2)

ΔG(h1h2)

= ρ(x) · ρ(y),

for some k′ ∈ K . Then it follows that ρ is a homomorphism rho-function for (G, H). �
3. Criteria for the construction of generalized quasi-regular representations

From now on, by “a representation” (π, H) of a locally compact group G we mean “a continuous unitary representation”;
i.e. a homomorphism π from G to the group of unitary operators on Hilbert space H, U (H), where U (H) is equipped with
the strong operator topology. Also, for a function f on G and for each x ∈ G , the left translation of f by x is defined by
Lx f (y) = f (x−1 y), y ∈ G . By using the action of a group G on itself, one can define a representation π : G → U (L2(G)), the
left regular representation, as follows:

π(x)( f ) = Lx f
(
x ∈ G, f ∈ L2(G)

)
.

For a closed subgroup H of G , if G/H has a G-invariant Radon measure μ which arises from the constant function ρ(x) = 1,
x ∈ G , then there exists a representation π : G → U (L2(G/H)), the quasi-regular representation, such that

π(x)(P f ) = P (Lx f )
(
x ∈ G, f ∈ Cc(G)

)
,

where P f satisfies (1). In other words,

π(x)ϕ(yH) = ϕ
(
x−1 yH

) (
μ-almost all yH ∈ G

H

)
,

where x ∈ G , ϕ ∈ L2(G/H) (cf. [9, Subsection 6.1]). With this representation, G acts on L2(G/H) in the same way that G acts
on L2(G) by the left regular representation. Obviously, in the special case that H is the trivial subgroup {e}, the quasi-regular
representation coincides with the left regular representation.

In the general case, via each x ∈ G , define⎧⎪⎨
⎪⎩

π(x) : L2
(

G

H

)
→ L2

(
G

H

)
,

π(x)ϕ(yH) = h(x)ϕ
(
x−1 yH

)
for μ-almost all yH ∈ G/H , in which h(x) is a complex number. Also for each ϕ ∈ Cc(G/H), take f ∈ C+

c (G) so that
|ϕ|2 = P f . Then

∥∥π(x)ϕ
∥∥2

2 =
∫

G/H

∣∣π(x)ϕ(yH)
∣∣2

dμ(yH)

=
∫

G/H

∣∣h(x)
∣∣2

P f
(
x−1 yH

)
dμ(yH)

=
∫
G

f
(
x−1 y

)∣∣h(x)
∣∣2

ρ(y)dy

=
∫
G

f (y)
∣∣h(x)

∣∣2
ρ(xy)dy.

Since ‖ϕ‖2
2 = ∫

G f (y)ρ(y)dy, π(x) will be unitary if and only if∫
G

f (y)
(∣∣h(x)

∣∣2
ρ(xy) − ρ(y)

)
dy = 0,

for all f ∈ C+
c (G). This leads to |h(x)|2ρ(xy) = ρ(y) for all y ∈ G . So π(x) will be unitary if and only if ρ(y)

ρ(xy)
= |h(x)|2 only

depends on x. It follows that we can define such a unitary representation π if and only if μ is relatively invariant. The
argument above can be summarized as follows:
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Theorem 3.1. The existence of a homomorphism rho-function for the pair (G, H) is a necessary and sufficient condition to have a
representation π : G → U (L2(G/H)), with

π(x)ϕ(yH) = h(x)ϕ
(
x−1 yH

) (
μ-almost all yH ∈ G

H

)
(4)

for some constants h(x) ∈ C. In other words, there exists such a representation π : G → U (L2(G/H)) if and only if the measure μ on
G/H is relatively invariant.

We call a representation π : G → U (L2(G/H)) which satisfies (4) a generalized quasi-regular representation of G . The
next theorem connects the generalized quasi-regular representations to the continuous homomorphisms defined from G
into the multiplicative group (C − {0}, · ).

Theorem 3.2. Consider (G/H,μ) as a measure space with relatively invariant measure μ that arises from a rho-function ρ .
Then a representation π : G → U (L2(G/H)) which satisfies (4) can be specified precisely with a continuous homomorphism
h : G → (C − {0}, · ) for which |h(x)| = √

ρ(e)/ρ(x), x ∈ G.

Proof. First suppose that π is a representation of G on L2(G/H) which satisfies the equality (4). Then by Theorem 3.1,
|h(x)| = √

ρ(e)/ρ(x) for all x ∈ G . Also, for each x, y, z ∈ G and ϕ ∈ Cc(G/H) we have

h(xy)ϕ
(

y−1x−1zH
) = π(xy)ϕ(zH)

= (
π(x)π(y)

)
ϕ(zH)

= h(x)
(
π(y)ϕ

)(
x−1zH

)
= h(x)h(y)ϕ

(
y−1x−1zH

)
.

It turns out that the scalars h(x), x ∈ G , define a homomorphism h : G → (C − {0}, · ). To show that h is continuous, assume
that a net {xα}α∈I tends to e in G . Take an open neighborhood U of e with compact closure. Suppose that xα ∈ U for
all α ∈ I , and let ϕ be a nonzero continuous function on G/H whose support is contained in q(U ). Then π(xα)ϕ → ϕ in
L2(G/H); i.e.∫

G/H

∣∣π(xα)ϕ(yH) − ϕ(yH)
∣∣2

dμ(yH) → 0,

as xα → e. Since supp(π(xα)ϕ − ϕ) ⊆ q(U 2), α ∈ I , it follows from Hölder’s inequality that∫
G/H

∣∣h(xα)ϕ
(
x−1
α yH

) − ϕ(yH)
∣∣dμ(yH) → 0 (5)

as xα → e. Because of the identity |h(xα)| = √
ρ(e)/ρ(xα) we get |h(xα)| → 1 as xα → e. In addition, by Lemma 2.1, we get∫

G/H

∣∣ϕ(
x−1
α yH

) − ϕ(yH)
∣∣dμ(yH) → 0 as xα → e. (6)

Now, we can write

∣∣h(xα) − 1
∣∣‖ϕ‖1 =

∫
G/H

∣∣h(xα)ϕ(yH) − ϕ(yH)
∣∣dμ(yH)

�
∣∣h(xα)

∣∣ ∫
G/H

∣∣ϕ(
x−1
α yH

) − ϕ(yH)
∣∣dμ(yH) +

∫
G/H

∣∣h(xα)ϕ
(
x−1
α yH

) − ϕ(yH)
∣∣dμ(yH)

which shows that h(xα) → 1, by (5) and (6), where {xα} approaches e.
For the converse, suppose that h : G → (C − {0}, · ) is a continuous homomorphism which satisfies |h(x)| = √

ρ(e)/ρ(x)
where x ∈ G . Define π(x) : L2(G/H) → L2(G/H), via each x ∈ G , by

π(x)ϕ(yH) = h(x)ϕ
(
x−1 yH

) (
μ-almost all yH ∈ G

H

)
. (7)

Then for each x, y ∈ G , |h(x)|2 = ρ(y)
ρ(xy)

only depends on x and so π(x), x ∈ G , will be unitary on L2(G/H). The equality

π(xy) = π(x)π(y), x, y ∈ G , results from the assumption that h is a homomorphism. Moreover, for each ϕ ∈ L2(G/H),
{π(xα)ϕ}α∈I approaches ϕ in L2(G/H), where {xα}α∈I tends to e in G . It suffices to prove this for each ϕ ∈ Cc(G/H).
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Let ϕ ∈ Cc(G/H) be a nonzero function and let {xα}α∈I approach e in G . Then there is a continuous function f with
compact support K for which ϕ = P f and supp(ϕ) = q(K ). Fix an open neighborhood V of e with compact closure and put
M = sup{|h(x)|: x ∈ V }. By Lemma 2.1, for a given ε > 0 there exists a neighborhood U of e such that U ⊆ V and∣∣ϕ(

x−1 yH
) − ϕ(yH)

∣∣ <
ε

s
(x ∈ U , y ∈ G),

where s =
√

‖ϕ‖2
2 + 2M‖ϕ‖1 + M2q(V K ). Take an α0 ∈ I for which xα ∈ U and |h(xα)−1| < ε/s provided that α � α0. Then

supp(π(xα)ϕ − ϕ) ⊆ q(V K ), for all α ∈ I , and hence we get

∥∥π(xα)ϕ − ϕ
∥∥2

2 =
∫

G/H

∣∣h(xα)ϕ
(
x−1
α yH

) − ϕ(yH)
∣∣2

dμ(yH)

�
∫

G/H

(∣∣h(xα)
∣∣∣∣ϕ(

x−1
α yH

) − ϕ(yH)
∣∣ + ∣∣h(xα) − 1

∣∣∣∣ϕ(yH)
∣∣)2

dμ(yH)

=
∫

q(V K )

(∣∣h(xα)
∣∣∣∣ϕ(

x−1
α yH

) − ϕ(yH)
∣∣ + ∣∣h(xα) − 1

∣∣∣∣ϕ(yH)
∣∣)2

dμ(yH)

<
ε2

s2

∫
q(V K )

(
M + ∣∣ϕ(yH)

∣∣)2
dμ(yH)

= ε2,

for all α � α0. Therefore, π : G → U (L2(G/H)) defined by (7) is a representation of G on L2(G/H). �
Let H be a closed subgroup of G and η be a unitary representation of H . We mean by IndG

H (η) the unitary representation
of G which is induced by η (cf. [9, Subsection 6.1]). We also recall that a character of G is a continuous homomorphism
from G to the unit circle T. Through the next theorem we show that each of the generalized quasi-regular representations
of G is the tensor product of a character of G and the induced representation IndG

H 1, where 1 is the trivial representation
of H on C.

Theorem 3.3. Let μ be a relatively invariant Radon measure on G/H which arises from a rho-function ρ . Then a generalized
quasi-regular representation of G can be uniquely determined by a character of G. More precisely, all generalized quasi-regular rep-
resentations of G can be written in the form σ ⊗ π0 , in which σ : G → T is a character of G and π0 is the induced representation
Ind H

G 1.

Proof. Let π : G → U (L2(G/H)) be a generalized quasi-regular representation of G . According to Theorem 3.2, there exists
a continuous homomorphism h : G → (C − {0}, · ) so that for each x ∈ G , |h(x)| = √

ρ(e)/ρ(x) and

π(x)ϕ(yH) = h(x)ϕ
(
x−1 yH

) (
μ-almost all yH ∈ G

H

)
,

where ϕ ∈ L2(G/H). We can write h = σ |h| in which σ : G → T is a character of G . If π0 is the induced representation
IndG

H 1 of G , then

π0(x)ϕ(yH) = ∣∣h(x)
∣∣ϕ(

x−1 yH
) (

μ-almost all yH ∈ G

H

)
,

where x ∈ G and ϕ ∈ L2(G/H) (cf. [9, Subsection 6.1]). Let πσ : G → U (C) be the representation defined by σ ; i.e. πσ (x) =
σ(x), x ∈ C. For simplicity, we denote this representation by σ . For each x ∈ G the following diagram commutes:

L2
( G

H

) π(x)−−−−→ L2
( G

H

)
ins

⏐⏐� ⏐⏐�ins

C ⊗ L2
( G

H

) −−−−−→
(σ⊗π0)(x)

C ⊗ L2
( G

H

)
where ins : L2(G/H) → C ⊗ L2(G/H) is the unitary defined by ins(ϕ) = 1 ⊗ ϕ . Since for each ϕ ∈ L2(G/H) we have(

ins oπ(x)
)
ϕ(λ ⊗ yH) = (

1 ⊗ π(x)ϕ
)
(λ ⊗ yH)

= λ ⊗ (
π(x)ϕ(yH)

)
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= λ ⊗ σ(x)
∣∣h(x)

∣∣ϕ(
x−1 yH

)
= σ(x)λ ⊗ π0(x)ϕ(yH)

= (
σ(x) ⊗ π0(x)

)
(1 ⊗ ϕ)(λ ⊗ yH)

= (
(σ ⊗ π0)(x)o ins

)
ϕ(λ ⊗ yH),

for all λ ∈ C and for μ-almost all yH ∈ G/H . Therefore, ins oπ(x) = (σ ⊗ π0)(x)o ins, for all x ∈ G , and hence π ∼= σ ⊗ π0.
For the reverse direction, let σ be a character of G . Then h : G → (C − {0}, · ) is a continuous homomorphism, where

h(x) = σ(x)
√

ρ(e)/ρ(x), x ∈ G . Theorem 3.2 guarantees that π : G → U (L2(G/H)) is a representation of G where

π(x)ϕ(yH) = σ(x)

√
ρ(e)

ρ(x)
ϕ

(
x−1 yH

) (
μ-almost all yH ∈ G

H

)
.

Trivially, |h(x)| = √
ρ(e)/ρ(x) for all x ∈ G , h = σ |h|, and by the first part of the proof we have π ∼= σ ⊗ π0. �

4. Conclusion and examples

Suppose that π is a representation of G on a Hilbert space H. A subrepresentation of π is a pair (M,π M) in which M
is a π -invariant closed subspace of H and π M is the restriction of π to M . An irreducible representation π of G on H
is square integrable if there exist two nonzero vectors u, v ∈ H for which the function on G defined almost everywhere by
x 
→ 〈u,π(x)v〉 is square integrable. Then v is called an admissible vector. When (π, H) is a square integrable representation
of G , we can define the continuous wavelet transforms in the same way to what has been done in [10]. More specifically, by
using an admissible vector v , a continuous wavelet transform W v is introduced as the isometry W v : H → L2(G), defined
by

W v u(x) = 1√
Cv

〈
u,π(x)v

〉
(almost all x ∈ G),

in which Cv is a positive real number satisfying

Cv = 1

‖v‖2

∫
G

∣∣〈v,π(x)v
〉∣∣2

dx.

In addition, we can reconstruct an element u of H via its image W v u as follows:

u = 1√
Cv

∫
G

(W v u)(x)π(x)v dx, (8)

where the equality holds in the weak-sense. In other words,

I H = 1

Cv

∫
G

〈·,π(x)v
〉
π(x)v dx.

Let (G/H,μ) be a measure space with a relatively invariant Radon measure μ and let π : G → U (L2(G/H)) be a gener-
alized quasi-regular representation which has a square integrable subrepresentation (π M , M). We consider the continuous
wavelet transforms arising from (π M , M) as above; i.e.⎧⎨

⎩
Wψ : M → L2(G),

Wψϕ(x) = 1√
Cψ

〈
ϕ,π(x)ψ

〉
.

If ρ is a homomorphism rho-function for the pair (G, H), we can define a generalized quasi-regular representation π : G →
U (L2(G/H)) by

π(x)ϕ(yH) = 1√
ρ(x)

ϕ
(
x−1 yH

)
.

Then π = IndG
H 1 and we have a class of continuous wavelet transforms provided that π has a square integrable subrep-

resentation. The following examples show that the n-dimensional continuous wavelet transforms can be obtained in this
way. Also, when G = K ×′ H for some locally compact abelian group K, we get the continuous wavelet transforms on L2(K )

which have been discussed in [4,8]. Furthermore, we offer some examples of continuous wavelet transforms of a group G on
L2(K ), by using a generalized quasi-regular representation, where K is a closed subgroup of G such that L2(K ) ∼= L2(G/H)

for some unimodular closed subgroup H of G , but G � K ×′ H .
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Note that if H is a unimodular closed subgroup of a group G , then the function ρ : G → R defined by ρ(x) = ΔG(x)−1 is a
homomorphism rho-function for the pair (G, H). So there is a generalized quasi-regular representation π : G → U (L2(G/H))

which satisfies

π(x)ϕ(yH) = √
ΔG(x)ϕ

(
x−1 yH

) (
μ-almost all yH ∈ G

H

)
.

One can easily check that every continuous function of G/H with compact support is an admissible vector for π pro-
vided that H is a compact subgroup of G . So we can define a continuous wavelet transform by using a square integrable
subrepresentation of π .

Example 4.1 (n-D CWT). Fix an element ψ ∈ L2(Rn) with condition

∫
Rn

|ψ̂(k)|
|k|n dnk < +∞. (9)

The n-dimensional continuous wavelet transform of an element f ∈ L2(Rn) has been defined, as a function on Rn × R+ ×
SO(n), by

Wψ f (b,a,ω) = a− n
2

∫
Rn

f (x)ψ
(
a−1ω−1(x − b)

)
dnx,

where SO(n) indicates the group of rotations around the origin of Rn (cf. [3, Chapter 9]). Evidently, Rn can be considered as
a homogeneous space of the similitude group, SIM(n) = Rn ×′ (R+ × SO(n)). Moreover, the function ρ : SIM(n) → (0,+∞),
defined by ρ(b,a,ω) = an , is a homomorphism rho-function for (SIM(n),R+ × SO(n)). Therefore, we can define a unitary
representation π : SIM(n) → U (L2(Rn)) by

π(b0,a0,ω0)ψ(b) = a−n/2
0 ψ

(
a−1

0 ω−1
0 (b − b0)

)
.

This representation is square integrable and (9) is the admissibility condition of a vector ψ (cf. [3]). An easy calculation
shows that

Wψ f = 〈
f ,π(b,a,ω)ψ

〉
.

Therefore, by (8), we can reconstruct an element f ∈ L2(Rn) from Wψ f as follows:

f (x) = 1

Cψ

∫
Rn

∫
R+

∫
SO(n)

(Wψ f )(b,a,ω)π(b,a,ω)ψ(x)
1

a|ω|n dωda db

= 1

Cψ

∫
Rn

∫
R+

∫
SO(n)

(Wψ f )(b,a,ω)ψ
(
a−1ω−1(x − b)

) 1

a1+ n
2 |ω|n dωda db,

where ψ is an admissible vector and the equalities hold for almost all x ∈ Rn .

Example 4.2. Let K and H be two locally compact groups and G = K ×′ H . By Proposition 2.4, the pair (G, H) admits a
homomorphism rho-function ρ such that ρ(x) = ΔH (h)/ΔG(h), where x = kh, k ∈ K , and h ∈ H . Therefore, we can offer a
continuous wavelet transform via the representation π : G → U (L2(G/H)), defined by

π(x)ϕ(yH) =
√

ΔG(h)

ΔH (h)
ϕ

(
x−1 yH

) (
μ-almost all yH ∈ G

H

)
,

where k ∈ K , h ∈ H , and x = kh. Since x−1 y = (τh−1 (k−1k1),h−1h1) for all y = k1h1, k1 ∈ K , and h1 ∈ H and L2(G/H) is
isometrically isomorphic to L2(K ), we can redefine the representation π as follows:⎧⎪⎪⎨

⎪⎪⎩
π : G → U

(
L2(K )

)
,

π(x)ϕ(k1) =
√

ΔG(h)

ΔH (h)
ϕ

(
τh−1

(
k−1k1

))
for almost all k1 ∈ K where k ∈ K , h ∈ H , and x = kh. The continuous wavelet transform which is obtained via this represen-
tation is the same wavelet transform that has been defined in [8], where K is abelian, and its admissibility condition has
been discussed in [4].
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Example 4.3. Let N be an even number and G be the group with two generators a and b satisfying |a| = N , |b| = 3, and
ba = ab2; i.e. G = 〈a,b: aN = b3 = e, ba = ab2〉. Also, let H = 〈b〉, K = 〈a〉, and π : G → U (L2(G/H)) be the quasi-regular
representation; i.e.

π
(
aib j)ϕ(

an H
) = ϕ

(
b− jan−i H

)
= ϕ

(
an−i H

)
,

for all 0 � i,n � N − 1 and 0 � j � 2. It is easy to check that L2(G/H) is isometrically isomorphic to L2(K ) and hence we
can rewrite the quasi-regular representation π as follows:{

π : G → U
(
L2(K )

)
,

π
(
aib j) f

(
an) = f

(
an−i).

It easy to see that every irreducible subrepresentation (π M , M) of π is square integrable and every function g ∈ M is an
admissible vector. In this case M should be one dimensional. For instance, if M is the closed subspace of L2(K ) generated
by f0 ∈ L2(K ), where f0(an) = (−1)n for all 0 � n � N − 1, then (π M , M) is a square integrable subrepresentation of π .
Therefore, we can define a continuous wavelet transform W g : M → L2(G), associated to a function g ∈ M , by

W g f
(
aib j) = 1√

C g

N−1∑
n=0

f
(
an)

g
(
an−i

)
(0 � i � N − 1, 0 � j � 2),

where

C g = 3

‖g‖2
2

N−1∑
i=0

∣∣∣∣∣
N−1∑
n=0

g
(
an)

g
(
an−i

)∣∣∣∣∣
2

.

Moreover, for all function f ∈ M we have

f
(
an) = 1√

C g

N−1∑
i=0

2∑
j=0

W g f
(
aib j)g

(
an−i),

for all 0 � n � N − 1. Note that, in this example, G � K ×′ H since K is not a normal subgroup of G . But H is a closed
normal subgroup of G and this causes that W g f is constant on the left cosets of H ; i.e. W g f (aib j) does not depend on j,
for all 0 � i � N − 1.

In the next example, we offer a group G with two closed subgroups H and K that none of them is normal in G , G = H K ,
and H ∩ K = 〈e〉. Then by using an irreducible subrepresentation of the quasi-regular representation of G on L2(G/H) we
can define a continuous wavelet transform. In this case, the continuous wavelet transform of a function is not constant on
the left cosets of H .

Example 4.4. Suppose that N is an odd number with N � 5. Take G = AN , the alternating group of degree N , H = AN−1,
and K = 〈α〉 where α ∈ AN is the N-cycle (1 2 . . . N) ∈ AN . Then G is a simple group and none of the closed subgroups H
and K is normal in G . Furthermore, G = H K and H ∩ K = 〈e〉 (cf. [1]). More precisely, for all γ ∈ G there exists a unique
β ∈ H such that γ = αiβ in which i = γ (N). Therefore,

γ H = αγ (N)H (γ ∈ G). (10)

Now, let π : G → U (L2(G/H)) be the quasi-regular representation. Also, let ψ ∈ L2(G/H) and ζ ∈ G . Then there exists some
β ∈ H and 1 � i � N for which ζ = αiβ . By using (10), for all 1 � n � N we get

π(ζ )ψ
(
αn H

) = ψ
(
β−1αn−i H

)
= ψ

(
αβ−1αn−i(N)H

)
=

{
ψ(αβ−1(N+n−i)H), n � i,

ψ(αβ−1(n−i)H), i < n.

As it has been done in Example 4.3, we can rewrite the representation π of G as π : G → U (L2(K )), where

π
(
αiβ

)
g
(
αn) =

{
g(αβ−1(N+n−i)), n � i,

β−1(n−i)
g(α ), i < n,
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for all 1 � i,n � N and β ∈ H . Moreover, by using an irreducible subrepresentation (π M , M) of π : G → U (L2(K )) and a
function g ∈ M , we can define a continuous wavelet transform W g : M → U (L2(K )), by

W g f
(
αiβ

) = 1√
C g

(
i∑

n=1

f
(
αn)

g
(
αβ−1(N+n−i)

) +
N∑

n=i+1

f
(
αn)

g
(
αβ−1(n−i)

))
,

where 1 � i � N , β ∈ H , and

C g = 1

‖g‖2
2

∑
β∈AN−1

N∑
i=1

∣∣∣∣∣
i∑

n=1

g
(
αn)

g
(
αβ−1(N+n−i)

) +
N∑

n=i+1

g
(
αn)

g
(
αβ−1(n−i)

)∣∣∣∣∣
2

.

Also, for all f ∈ M we have

f
(
an) = 1√

C g

∑
β∈AN−1

(
n−1∑
i=1

W g f
(
αiβ

)
g
(
αβ−1(n−i)) +

N∑
i=n

W g f
(
αiβ

)
g
(
αβ−1(N+n−i))),

where 1 � n � N .
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[1] A.L. Agore, A. Chirvăsitu, B. Ion, G. Militaru, Factorization problems for finite groups, arXiv:math/0703471v2 [math.GR], 2007.
[2] S.T. Ali, J.P. Antoine, J.P. Gazeau, Coherent States, Wavelets and Their Generalizations, Springer-Verlag, New York, 2000.
[3] J.P. Antoine, R. Murenzi, P. Vendergheynst, S.T. Ali, Two Dimensional Wavelets and Their Relatives, Cambridge University Press, Cambridge, 2003.
[4] A.A. Arefijamal, R.A. Kamyabi-Gol, A characterization of square integrable representations associated with CWT, J. Sci. Islam. Repub. Iran 18 (2) (2007)

159–166.
[5] S. Dahlke, G. Steidl, G. Teschke, Coorbit spaces and Banach frames on homogeneous spaces with applications to the sphere, Adv. Comput. Math. 21

(2004) 147–180.
[6] S. Dahlke, G. Steidl, G. Teschke, Weighted coorbit spaces and Banach frames on homogeneous spaces, J. Fourier Anal. Appl. 10 (5) (2004) 507–539.
[7] S. Dahlke, G. Steidl, G. Teschke, Frames and coorbit theory on homogeneous with a special guidance on the sphere, J. Fourier Anal. Appl. 13 (4) (2007)

387–404.
[8] M. Fashandi, R.A. Kamyabi-Gol, A. Niknam, M.A. Pourabdollah, Continuous wavelet transform on a special homogeneous space, J. Math. Phys. 44 (9)

(2003) 4260–4266.
[9] G.B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, FL, 1995.

[10] A. Grossmann, J. Morlet, T. Paul, Transforms associated to square integrable group representations I. General results, J. Math. Phys. 26 (10) (1985)
2473–2479.


	Wavelet transforms via generalized quasi-regular representations
	Introduction
	Conditions for the existence of relatively invariant measures
	Criteria for the construction of generalized quasi-regular representations
	Conclusion and examples
	References


