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On the Devroye–Mitran–Tarokh Rate Region for the
Cognitive Radio Channel

Ghosheh Abed Hodtani and Mohammad Reza Aref

Abstract—An achievable rate region for the genie-aided cog-
nitive radio channel is obtained using the celebrated Han-
Kobayashi jointly decoding strategy for the interference channel
and the Gel’fand-Pinsker coding scheme for channels with side
information known at the transmitter. The achievable rate region
is then simplified by Fourier-Motzkin elimination. The obtained
achievable rate region (i) extends the Chong-Motani-Garg region
for the interference channel to the cognitive channel and (ii) is a
simplified description of the Devroye-Mitran-Tarokh rate region
for the genie-aided cognitive radio channel.

Index Terms—Interference channel, cognitive radio channel,
rate region, simplified description.

I. INTRODUCTION

AGenie-aided cognitive radio channel (Fig.1) is defined to
be an interference channel (Fig.2) in which two senders

TX1 and TX2 can transmit simultaneously over a common
channel to two independent receivers RX1 and RX2 , when
TX2 is non-causally aware of the message to be sent by TX1
(in the figures 1,2 and 3 the solid black lines show the wireless
channels and the dotted lines denote the interference).

A. Interference Channel

The interference channel is a common channel between
several pairs of sender-receivers, where each sender com-
municates with its respective receiver interfering with com-
munications of the other sender-receivers. The study of this
channel was initiated by Shannon [1], and furthered by
Ahlswede [2]. Sato [3] obtained various inner and outer
bounds by considering the associated multiple access and
broadcast sub-channels in the interference channel. Carleial
[4] established an improved achievable rate region (with one
auxiliary random variable for every sender in Fig.2) by using
sequential decoding and convex hull operation based on the
superposition coding of Cover [5]. Han and Kobayashi [6],
[7] generalized Cover’s superposition coding to the many
variable case, applied jointly or simultaneous decoding strat-
egy (instead of sequential decoding) and the time-sharing
formulation (instead of convex hull operation) for the general
interference channel, thereby establishing the best achievable
rate region to date. Chong, Motani, Garg and H. El Gamal
[8], by slightly modifying the decoding error definition and
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Fig. 1. Cognitive radio channel.

Fig. 2. Interference channel.

reducing the number of auxiliary random variables, derived a
simplified description of the Han-Kobayashi rate region. The
problem of determining the capacity region for the general
interference channel is still open and has been solved for some
very special cases (Han and Kobayashi [6], Carleial [9], Sato
[10], Chung and Cioffi [11], Liu and Ulukus [12], Benzel [13],
A. El Gamal and Costa [14], [15], Maric,Yates and Kramer
[16]).

B. Cognitive Radio Channel

The idea of cognitive radio is a novel approach in wireless
communications and was first presented by Mitola [17]. In
cognitive radio either a network or a wireless node changes
its transmission or reception parameters (every possible pa-
rameter or only the radio frequency spectrum) to efficiently
communicate with licensed or unlicensed users.

Despite the explosive growth of interest in cognitive radios,
many of the fundamental theoretical questions on the limits of
such technology remain unanswered. The information theory
for cognitive radio has been studied in [18] – [20]. Specifically,
Devroye, Mitran and Tarokh [21] obtained an achievable rate
region, in the information –theoretic sense, for cognitive radio
channel by using the Han-Kobayashi jointly decoding strategy
[6] (with four auxiliary random variables) and the Gel’fand-
Pinsker coding [22]. Also, Jiang and Xin [23] derived a new
achievable rate region (including several previously known
rate regions) for cognitive radio channel.

C. Definitions

We denote random variables by X, Y, W1, · · · with values
x, y, w1, · · · in finite sets X ,Y,W1, · · · ; n-tuple vectors of
X1, X2, W1, · · · are denoted with x1, x2, w1, · · · . We use the
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Fig. 3. Modified cognitive radio channel.

symbol An
ε (X1, X2, · · · , Xl) to indicate the set of ε- typical

n-sequences (x1, x2, · · · , xl) [24].
In the discrete memoryless interference channel (Fig.2) and

the cognitive radio channel (Fig.1), random variables X1, X2

are the inputs to the channels characterized by the conditional
probabilities p (y1 | x1x2) , p (y2 | x1x2) with output random
variables Y1 , Y2.

As in [6], we introduce a modified genie-aided cognitive
radio channel (Fig.3) with auxiliary random variables W1 and
W2 , representing the public information to be sent from TX1
to (RX1, RX2) with the rate T1 and from TX2 to (RX1, RX2)
with the rate T2, respectively; and also serving as cloud centers
that can be decoded by both receivers. The private information
to be sent from TX1 to RX1 (with the rate S1) and from
TX2 to RX2 (with the rate S2) is included in the random
variables X1 and X2, respectively. Also, as in [6], Q ∈ Q
is a time-sharing random variable whose n-sequences q =
(q1, q2, · · · , qn) are generated independently of the messages.
The n-sequences q are given to both senders and receivers.

For the modified genie-aided cognitive radio channel with
four auxiliary random variables [21], the code and the achiev-
able rate pair (R1, R2) are defined the same as in [21], but
for the same channel with two auxiliary random variables, we
can define the code as follows.

An
(
n,

⌊
2nT1

⌋
,
⌊
2nS1

⌋
, �2nt2� , �2ns2� , ε

)
code for the

modified genie-aided cognitive radio channel (Fig.3) consists
of

⌊
2nT1

⌋
codewords w1 (j),

⌊
2nS1

⌋
codewords x1 (j, k) for

TX1 ; and �2nt2� codewords w2 (l), randomly thrown into⌊
2nT2

⌋
bins, �2ns2� codewords x2 (b, l), randomly thrown into⌊

2nS2
⌋

bins, for TX2 ; j ∈ {
1, 2, · · · ,

⌊
2nT1

⌋}
, k ∈{

1, 2, · · · ,
⌊
2nS1

⌋}
, l ∈ {1, 2, · · · , �2nt2�} , b ∈

{1, 2, · · · , �2ns2�} , such that the average probability of de-
coding error is less than ε .

A quadruple (T1, S1, T2, S2) of nonnegative real numbers
is achievable if there exists a sequence of codes such that the
average error probabilities under some decoding scheme are
less than ε. An achievable region for the modified genie-aided
cognitive radio channel is the closure of a subset of the positive
region of R4 of achievable rate quadruples (T1, S1, T2, S2).

II. THE MAIN RESULT

In this paper, first, we establish an achievable quadruple
(T1, S1, T2, S2) for the genie-aided cognitive radio channel
(theorem 1), and then describe the quadruple as the set of rate
pairs (R1, R2) in theorem 2 which (i) includes the achievable
rate pairs of Chong-Motani-Garg for the interference channel
[8], and (ii) presents a simple description for Devroye-Mitran-
Tarokh achievable rates in [21].

Theorem 1: For the modified genie-aided cognitive radio
channel (Fig.3), let Z = (QW1W2X1X2Y1Y2) and let P be

the set of distributions on Z that can be decomposed into the
general form:

p (qw1w2x1x2y1y2) =p (q) p (x1w1 | q) p (x2w2 | qx1w1)
. p (y1y2 | x1x2) (i)

For any Z ∈ P let S (Z) be the set of all quadruples
(T1, S1, T2, S2) of nonnegative real numbers such that

S1 ≤I (W2; X1 | W1Q) + I (X1; Y1 | W1W2Q)
=a1 (a)

S1 + T2 ≤I (Y1; X1W2 | W1Q) − I (W2; X1W1 | Q)
= b1 (b)

S1 + T1 ≤I (W2; X1 | Q) + I (Y1; X1 | QW2)
= c1 (c)

S1 + T1 + T2 ≤I (Y1; W2X1 | Q) − I (W2; X1W1 | Q)
=d1 (d)

S2 ≤I (W2; X2 | W1Q) + I (Y2; X2 | W1W2Q)
− I (X2; X1W1 | Q) = a2 (e)

S2 + T1 ≤I (W2; X2W1 | Q) + I (Y2; X2W1 | QW2)
− I (X2; X1W1 | Q) = b2 (f)

S2 + T2 ≤I (Y2; X2 | W1Q) − I (W2; X1W1 | Q)
− I (X2; X1W1 | Q) = c2 (g)

S2 + T2 + T1 ≤I (Y2; X2W1 | Q) − I (W2; X1W1 | Q)
− I (X2; X1W1 | Q) = d2 (h)

S1 ≥0 , S2 ≥ 0 , T1 ≥ 0 , T2 ≥ 0 (j)

Let S be the closure of
⋃

Z∈P S (Z). Then any element of
S is achievable.

Proof: See the Appendix A.
Corollaries:
Corollary 1: The quadruple (T1, S1, T2, S2) for the inter-

ference channel in [8, the lemma 3] is readily obtained from
the quadruple (T1, S1, T2, S2) in theorem 1 if we consider the
distribution (i) in the following special case as in [8]:

p (qw1w2x1x2y1y2) =p (q) p (x1w1 | q) p (x2w2 | q)
. p (y1y2 | x1x2) (ii)

Corollary 2: The quadruple (T1, S1, T2, S2), with two aux-
iliary random variables satisfying eight constraints in theorem
1, is a simplified description of the achievable rates with
four auxiliary random variables satisfying sixteen constraints
in [21, theorem 1,the constraints 6-21] for the genie-aided
cognitive radio channel.

Theorem 2: For a fixed P ∈ P in theorem 1, let R (P ) be
the set of rate pairs (R1 = S1 + T1 , R2 = S2 + T2) satisfy-
ing
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R1 ≤ c1 , R1 ≤ a1 + b2 , R2 ≤ c2

R2 ≤ a2 + b1 , R1 + R2 ≤ a2 + d1

R1 + R2 ≤ a1 + d2 , R1 + R2 ≤ b1 + b2

R1 + 2R2 ≤ a2 + d2 + b1

2R1 + R2 ≤ a1 + d1 + b2

R1 ≤ d1 , R1 + R2 ≤ b1 + d2

R1 ≥ 0 , R2 ≥ 0 .

where ai , bi , ci , di , i = 1, 2 are all the same as
in theorem 1. Then, R =

⋃
P∈P R (P ) is an achievable rate

region for the genie-aided cognitive radio channel.
Proof: See the Appendix B.
Corollaries:
Corollary 1: It can be shown that by considering the special

distribution (ii) instead of (i), theorem 2 is reduced to the
lemma 4 in [8].

Corollary 2: As mentioned before (corollary 2 to theorem
1), theorem 1 gives a simple description of the achievable rates
in [21] with the constraints on (T1, S1, T2, S2). Therefore,
theorem 2 as a consequence of theorem 1 demonstrates the
corresponding simplified description on the rate pair (R1, R2).

APPENDIX A
THE PROOF OF THEOREM 1

It is sufficient to show that any element of S (Z) for each
Z ∈ P is achievable. So, fix Z = (QW1W2X1X2Y1Y2)
and take any (T1, S1, T2, S2) satisfying the constraints of the
theorem.

Codebook generation: Consider n > 0 , some distribution
of the form (i) and

p (w2 | q) =
∑

x1,w1

p (w1 | q) p (x1 | qw1) p (w2 | x1w1q)

p (x2w2 | q) = p (w2 | q) p (x2 | qw2)

=
∑

x1,w1

p (w1 | q) p (x1 | qw1) p (x2w2 | x1w1q).

Therefore, by using random binning we can generate the
sequences of w2 and x2 independently of w1 and x1 . So,
1. generate a n-sequence q , i.i.d. according to

∏n
i=1 p (qi) ,

2. for the codeword q , generate
⌊
2nT1

⌋
conditionally indepen-

dent codewords w1 (j) , j ∈ {
1, 2, · · · ,

⌊
2nT1

⌋}
according to∏n

i=1 p (w1i |qi ) ,
3. for the codeword q and each of the codewords w1 (j), gen-
erate

⌊
2nS1

⌋
n-sequence x1 (j, k) , k ∈ {

1, 2, · · · ,
⌊
2nS1

⌋}
,

i.i.d. according to
∏n

i=1 p (x1i | w1i (j) , qi),
4. for the codeword q , generate �2nt2� n-sequence
w2 (l) , l ∈ {1, 2, · · · , �2nt2�}, i.i.d. according to∏n

i=1 p (w2i |qi ), and throw them randomly into
⌊
2nT2

⌋
bins

such that the sequence w2 (l) in bin s21 is denoted as
w2 (s21, l) , s21 ∈ {

1, 2, · · · ,
⌊
2nT2

⌋}
,

5. for the codeword q and each of the code-
words w2 (s21, l), generate �2ns2� n-sequences
x2 (b, l) , b ∈ {1, 2, · · · , �2ns2�}, i.i.d. according to

∏n
i=1 p (x2i | w2i (l) , qi), and throw them randomly into⌊

2nS2
⌋

bins such that the sequence x2 (b, l) in bin s22 is
denoted as x2 (s22, b, l) , s22 ∈ {

1, 2, · · · ,
⌊
2nS2

⌋}
.

Encoding: The aim is to send a four dimensional message
(j, k, s21, s22) whose first two components j and k are mes-
sage indices and whose last two components s21 and s22 are
bin indices. The messages actually sent over the genie-aided
cognitive radio channel are x1 and x2 . The message and bin
indices are mapped into x1 and x2 as follows.

The sender TX1 to send j and k looks for w1 (j) , x1 (j, k)
and sends x1 (j, k) .

The cognitive sender TX2 knowing w1 (j) , x1 (j, k) non-
causally and q , to send (s21, s22) finds a sequence w2 (l)
in bin s21 such that (q , w1 (j) , x1 (j, k) , w2 (l)) ∈ An

ε

and then finds a sequence x2 (b, l) in bin s22 such that
(q , w1 (j) , x1 (j, k) , w2 (l) , x2 (b, l)) ∈ An

ε and sends
x2 (s22, b, l).

Decoding and analysis of error probability: The receivers
RX1 and RX2 decode the corresponding messages indepen-
dently, based on strong joint typicality [6]. The inputs x1 and
x2, to the genie-aided cognitive radio channel are received
at the receivers as y1 and y2 , according to the conditional
distributions p (y1 | x1x2) and p (y2 | x1x2), respectively. It is
assumed that all messages are equiprobable. Without loss of
generality it is assumed that (j = 1, k = 1; s21 = 1, s22 = 1)
is sent with the codeword q , known to both receivers and
senders. Notice that the first two components, j and k, are
message indices, whereas the last two components, s21 and
s22, are bin indices. Now, we can find the constraints in the-
orem 1 such that the average probability of error P

(n)
e −→ 0

as the block length n −→ ∞ .
The receiver RX1 , by receiving y1 and knowing q ,

decodes j = 1, k = 1; s21 = 1 or jk (s21, l) = 11 (1, l) simul-
taneously [6]. Therefore, we can define the event Ejk(s21,l)

and P
(n)
e as follows, thereby establishing the constraints that

lead to (P (n)
e −→ 0 as the block length n −→ ∞). (The state

j = k = 1 ; s21 	= 1 is not considered as error).

Ejk(s21,l) = {(q, w1 (j) , x1 (j, k) , w2 (s21, l) , y1) ∈ An
ε }

P (n)
e = P

{
Ec

11(1,l) ∪ Ejk(s21,l) �=11(1,l̂)
}

≤ P
(
Ec

11(1,l)

)
+

∑
jk(s21,l) �=11(1,l)

P
(
Ejk(s21,l)

)

≤ ε +

|1|∑
j �=1,k=s21=1

· · · +
|2|∑

j=s21=1,k �=1

· · · +
|3|∑

j �=1,k �=1,s21=1

· · ·

+

|4|∑
j �=1,s21 �=1,k=1

· · · +
|5|∑

k �=1,s21 �=1,j=1

· · · +
|6|∑

j �=1,k �=1,s21 �=1

· · · ,

from where in order to (P (n)
e −→ 0 as the block length

n −→ ∞), in accordance with the codebook it is necessary
and sufficient that:

S1 ≤ I (Y1W2; X1 | QW1) (1)
S1 + t2 ≤ I (Y1; W2X1 | W1Q) (2)
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S1 + T1 ≤ I (Y1W2; X1W1 | Q) (3)
S1 + T1 + t2 ≤ I (Y1; X1W2 | Q) (4)

Similarly, for the receiver RX2 that receives y2, knows q
and decodes j = 1 , s21 = 1 , s22 = 1 or j (s22, b) (s21, l) =
1 (1, b) (1, l) simultaneously [6], we can define the similar
event and P

(n)
e as follows: (The state j 	= 1 ; s21 = s22 = 1

is not considered as error).

Ej(s22,b)(s21,l)

= {(q, w1 (j) , x2 (s22, b, l) , w2 (s21, l) , y2) ∈ An
ε }

P (n)
e ≤ ε +

∑
j(s22,b)(s21,l) �=1(1,b)(1,l)

P
(
Ej(s22,b)(s21,l) |· · ·

)

≤ ε +
∑

j(s22,b)(s21,l) �=1(1,b)(1,l)

· · ·

= ε +

|1́|∑
j=1=s21,s22 �=1

· · · +
|2́|∑

j=1=s22,s21 �=1

· · ·

+

|3́|∑
j �=1,s22 �=1,s21=1

· · · +
|4́|∑

j=1,s22 �=1,s21 �=1

· · ·

+

|5́|∑
j �=1,s22=1,s21 �=1

· · · +
|6́|∑

j �=1,s21 �=1,s22 �=1

· · · ,

from where in order to (P (n)
e −→ 0 as the block length

n −→ ∞), in accordance with the codebook it is necessary
and sufficient that:

s2 ≤ I (Y2W2; X2 | W1Q) (5)
T1 + s2 ≤ I (Y2W2; W1X2 | Q) (6)
s2 + t2 ≤ I (Y2; X2 | W1Q) (7)
s2 + t2 + T1 ≤ I (Y2; X2W1 | Q) (8)

On the other hand, in accordance with the used codebook
and Gel’fand-Pinsker coding [22], we have:

I (W2; X1W1 | Q) ≤ t2 − T2

=⇒ T2 − t2 ≤ −I (W2; X1W1 | Q) (9)
I (X2; X1W1 | Q) ≤ s2 − S2

=⇒ S2 − s2 ≤ −I (X2; X1W1 | Q) (10)

Then, the constraints (a)-(h) in theorem 1 are obtained by
eliminating t2 and s2 from (1)-(10) as follows:

(1) =⇒ (a) ; (2) and (9) =⇒ (b) ; (3) =⇒ (c)
(4) and (9) =⇒ (d) ; (5) and (10) =⇒ (e)
(6) and (10) =⇒ (f) ; (9) , (7) and (10) =⇒ (g)
(8) , (9) and (10) =⇒ (h) .

APPENDIX B
THE PROOF OF THEOREM 2

We put S1 = R1 − T1 and S2 = R2 − T2 in all of the
relations (a)-(j) in theorem 1.Then, by using Fourier-Motzkin
elimination technique as in [7] and eliminating redundant
relations, we reach to the constraints in theorem 2 (for brevity
the details are omitted).
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