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ABSTRACT

The problem of estimation of the squared derivative of a probability density f is 

considered using wavelet orthogonal bases. We obtain the precise asymptotic expression 
for the mean integrated error of the wavelet estimators when the process is strongly 
mixing. We show that the proposed estimator attains the same rate as when the 
observations are independent. Certain week dependence conditions are imposed to the 
{ }iX defined in { , , }N P .
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1. INTRODUCTION

The motivation for estimation 
2( )( ) = ( )d

dI f f x dx , where f is a probability density 

and ( )df is the d-th derivative is well known. Kernel-type estimation for the functional 

2 ( )I f has been investigated by Hall and Marron (1987), Rao (1997) and Bickel and 

Ritov (1988) among others. In Prakasa Roa (1996), we have studied nonparametric 
estimation of the derivative of a density by wavelets and a precise asymptotic expression 
for the mean integrated squared error, following techniques of Masry (1994). Prakasa 
Roa (1999) also obtained the precise asymptotic expression integrated squared error of 
the wavelet estimators.

We now extend the result to the case of strongly mixing process. We show that the 
proposed estimator attains the same rate as when the observations are independent. 
Certain week dependence conditions are imposed to the { }iX defined in { , , }N P .

Let m
kN denote the  -algebra generated by events { ,..., }k k m mX A X A  . We consider 

the following classical mixing conditions:

1. Uniformly strong mixing (u.s.m.), also called mixing  :

,1

| ( ) ( ) ( ) |
= ( ) 0           sup sup

( )mm A N B Nm s

p AB p A p B
s as s

p A  


   .
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2.  -mixing: 

   2 2,1

| ( , ) |= ( ) 0               sup sup
mm X L N Y L Nm s

corr X Y s as s
  

   .

A very well known measure of dependence in probabilistic literature is described 
by the mixing conditions. Among various mixing conditions used in the literature, 
 -mixing is reasonably weak, and has many practical applications. Many stochastic 
processes and time series are known to be mixing. Under certain weak assumptions 
autoregressive and more generally bilinear time series models are strongly mixing with 
exponential mixing coefficients.

The problem of density estimation from dependent samples is often considered. For 
instance quadratic losses were considered by Ango Nze and Doukhan (1993). Bosq 
(1995), and Doukhan and Loen (1990). Linear wavelet estimators were also used in 
context: Doukhan (1998) and Doukhan and Loen (1990). Leblance (1994,1996) also 
established that the pL  -loss (2 < )p  of the linear wavelet density estimators for a 

stochastic process converges at the rate (2 1)

s

sN


 ( = 1/ 1/ )s s p p   , when the density 

of f belongs to the Besov space ,
s
p qB . Doosti et.al (2006) extended the above result for 

derivative of a density.

2. DISCUSSION OF THEOREM'S ASSUMPTIONS

Consider the following conditions:

1C : The distribution of ( , )i jX X has a joint density ,i jf such that for all i and j , 

i j 1/
, ,( | ( , ) | ) = (.,.) <      > 2v v

i j i j vf x y dxdy f F for some v 

1M : The process is  -mixing and =1 ( ) <t t R    .

2M : The process is  -mixing and 1/2
=1 ( ) <t t     .

Since the inequality 1/2( ) 2 ( )t t   holds (see Doukhan (1994)), 2M implies 1M . 

Also note that if X and Y are random variables, then the following covariance 
inequalities hold.(see Doukhan (1994), section 1.2.2)

2 2
( , ) 2 ( ) .i jcov X Y j i X Y   , (2.1)

1/( , ) 2 ( ) .p
i j p q

cov X Y j i X Y   ,

for any , 1p q  and 1/ 1/ = 1p q .
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3. INTRODUCTION TO WAVELET

A wavelet system is an infinite collection of translated and scaled versions of 
functions  and  called the scaling function and the primary wavelet function 

respectively. The function ( )x is a solution of the equation 

=
( ) = (2 )k

k
x C x k




  

with 

( ) = 1x dx


and the function ( )x is defined by 

1( ) = ( 1) (2 )k
kx C x k



 


    .

Note that the choice of the sequence kC determines the wavelet system. It is easy to 

see that 

=
= 2k

k
C




 .

Define 
/2

, ( ) = 2 (2 ), < , <j j
j k x x k j k     (3.1)

and 
/ 2

, ( ) = 2 (2 ). < , <    j j
j k x x k j k .

Suppose that the coefficients kC satisfy the condition 

2 = 2     = 0K k lC C if l






= 0.     0if l .

It is known that, under some additional condition on  , the collection 

,{ , < , < }j k j k   is an orthonormal basis for 2 ( )L R and ,{ , < < }j k k   is an 

orthonormal system in 2 ( )L R for each < <j  (cf. Doubachies (1992)).

Definition 3.1.

A scaling function ( )rc is said to be r-regular for an integer 1r  if for every 

non-negative integer l r and for any integer k, 

( )| ( ) | (1 | |) ,   < <l k
kx c x x    

for some 0kc  depending only on k where ( ) (.)l denotes the l-th derivative of  .
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Definition 3.2.

A multiresolution analysis of 2 ( )L R contains of increasing sequences of closed 

subspaces jV of 2 ( )L R such that

i) = = {0};jj V


ii) 2
= = ( );jj V L R




iii) there is a scaling function 0V such that 

( ), < <x k k   

is an orthonormal basis for 0V ; and for all 2 ( )h L R ,

iv) For all 0 0< < , ( ) ( )k h x V h x k V     

v) 1( ) (2 )j jh x V h x V    .

Let 2H  denote the space of all functions (.)g in 2 ( )L R whose first ( 1)S 
derivatives are absolutely continuous and define the norm 

( ) 2 1/2

2
= [ | ( ) | ]j

H
g g t dt





  .

Lemma 3.1.
(Mallat (1989)) Let a multiresolution analysis be r-regular. Then for every 0 < <s r , 

any function 2 ( )g L R belongs to 2H  iff 

2 2

=
<sl

t
t

e e



 ,

where 
2

22 =l l
e g g and lg is the orthogonal projection of g on tV .

Remarks. 
The above introduction is based on Antoniadis (1994). For a detailed introduction to 

wavelet, see Chui (1994) or Daubechies (1992). For a brief survey, see Strang (1989).

4. ESTIMATION BY THE METHODS OF WAVELETS

Suppose 1,... nX X is a mixing, identically distributed random variables with 

density f , f is d-times differentiable and ( )df denotes the d-th derivative of f . We 

interpret (0)f as f . The problem of interest is the estimation of 
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2( )( ) = ( )d
dI f f x dx

 .

Assume that ( ) 2 ( )df L R and there exist 0jD  , 0j  such that 

( )| ( ) | | |    | | 1, 0j j
jf x D x for x j d


    ,

where > 1 .

Consider a mulitiresolution as discussed in Section 3. Let  be the corresponding 

scaling function. Suppose that the multiresolution is r-regular for some r d . Then by 

definition, ( )rC ,  and its derivative ( )j up to order r are rapidly decreasing i.e., 

for every integer 1m  , there exists a constant > 0mA such that 

( )| ( ) | , 0
(1 | |)

j m
m

A
x j r

x
   


.

Let 
/2

, = 2 (2 ), < , <l l
l k x k k t     .

Then 

( ) /2 ( )
, = 2 (2 ), 0j l lj j l

l k x k j r     

and 
( / 2)

( )
,

2
| ( ) | . 0

(1 | |)



   


l lj
j m

l k m

A
x j r

x
. (4.1)

If 1d  , then it is clear that 

( ) ( 1)
,

| |
( ) = 0, 0 1lim

j d j
l k

x
f x j d 


    ,

for any fixed l and k . Let ldf is the orthogonal projection of ( )df on lV . Note that 

,
=

( ) = ( )ld l j lj
j

f x a x



 ,

where 

( )
,= ( ) ( )d

lj l ja f u u du
  ( )

,= ( 1) ( ) ( )dd
l jf u u du

  . (4.2)

by (3.1) for 1d  . Clearly the equation (4.2) holds for = 0d . Hence for all 0d 

( )
1,= ( 1) ( )dd

lj l ja E X    .

Further more 
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2 22 ( ) ( ) 2

2 2 =
= 0    d d

l ld lk
k

e f f f a as l



     ,

by the properties of multiresolution decomposition. Hence 1/= | | , 1p p
p

g g dx p
  . 

Note that 

2( )

2
( ) = d

dI f f .

Let 

, , ,
=

( ) = ( )
K

K l d lk l k
k K

f x a x


 ,

where = nK K is a sequence of positive integers depending on = nl l tending to infinity 

as n  and = nl l  as n  . Note that , , ( )K l df x is a truncated projection of 
( )df on tV . Given a sample 1,... nX X , let

( ) ( )

=1 =1

1
= ( ) ( )

( 1)

n n
d d

lk i jlk lk
i j j

A x x
n n 

 


  ,

and we estimate ( )dI f by 

=

ˆ ( ) =
K

d lk
k K

I f A

 . (4.3)

Note that 

2( ) =lk lkE A a

and 

2

=

ˆ( ( )) =
K

d lk
k K

E I f a

 .

5. MAIN RESULTS

Suppose that as nl 

{(2 1) 2 2 }{ /(2 1)}}0 0= 2 log
d s ln

nk n
     

.

Define ˆ ( )dI f as an estimator of ( )dI f where ˆ ( )dI f is given by the equation (4.3), 

then we have the following two results:

Theorem 5.1.
If { }nX satisfies the condition 1C , then 

42 ( ) 2
2 (1 2 )

( 1) ˆ| ( ) ( ) | ( )        
2

d
d dl dn

n n
E I f I f x dx as n




    .
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Theorem 5.2.
If { }nX satisfies the condition 1M , then 

42 ( ) 2
2 (1 2 )

( 1) ˆ| ( ) ( ) | ( )        
2

d
d dl dn

n n
E I f I f x dx as n




    .

6. PROOFS

Let 

   22 2ˆ ˆ ˆ= | ( ) ( ) | = ( ) ( ) ( )n d d d d dJ E I f I f Var I f EI f I f  

 
222 ( )ˆ= ( ( ) ( )

n

d
d l kVar I f a f x dx   

 
 

 
222 ( )

, , 2 2
ˆ= ( )

n

d
d k l dVar I f f f   

 
.

Following along the lines of Roa (1999), we get

 
222 4( )

, , 2 2
= 2

n

sld n
k l df f o

  
 

. (6.1)

Proof of Theorem 5.1.

Observe that 

   ˆ ( ) = = ,
n n n

k

d l k l k l k
k k k

Var I f Var A cov A A 


 
 
 
  , (6.2)

where ( , )cov X Y is interpreted as ( )var X . It is straightforward to check that

       ( ) ( ) ( ) ( )
2 2

1
=

( 1)n n n n n n

d d d d
l k l k i j i jl k l k l k l k

k k k k
EA A E x x x x

n n
  

 
    


  , (6.3)

where the last summation runs over all , , ,i j i j  . Using (2.1) in (6.2) leads to

n nl k l k
k k

EA A 




1/2 1/24 4( ) ( )
2 2

1

1
( ) ( ) ( ) ( ) ( )

( 1) n n

d d
i i i i i il k l k

i j n k k
j i x f x dx x f x dx

n n


  

          
   

   

2 2( ) ( )
2 2

<

1
( ) ( )

( 1) n n

d d
i il k l k

i j k k
E x E x

n n



  


  . (6.4)

Note that it suffices to bound the right-hand side of (6.3). By (4.1) and Masry (1994), 
one may easily get
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1/2 1/24 4( ) ( )( ) ( ) ( ) ( ) ( ) ( )
n n

d d
i i i i i il k l k

k k
x f x d x x f x d x



       
   

  

1/2 1/2
4 44 4( ) ( )2 ( ) ( ) 2 ( ) ( )

2 2
n n n n

n n

l l d l l dd d
i il k l k

k kn n

k u k v
x f d u x f d v

l l
 




       
                 
  

42 4 ( )= 2 ( )
2

n n

n

l l k d
l

k

u k
u f du    

 


 42 4 ( )= 2 ( ) 1 (2 )n n nl l k ld u du O   . (6.5)

By similar argument as in Rao (1999), we get

 22 2 42 (1 2 )( ) ( ) ( )( ) ( ) 2 ( )n

n n

l dd d d
i il k l k

k k
E x E x u du




     

2 (1 2 ) 2 2
2 (1 2 )

1
2

2
n

n n n

l d
l k l k l d

k k
a a O 

 


    
 

 . (6.6)

Substituting (6.5) and (6.6) in (6.4), one may easily obtain

 
2 4 4( )

2 2

2 2
( ) ( ) 1 (2 )

( 1)

n n
n

n n

l l d
ld

l k l k
k k k

EA A k u du O
nn n







   


  

 242 (1 2 ) ( ) 2 2
2 (1 2 ) 2 (1 2 )

2 1 1
2 ( )

( 1) 2 2
n

n nn n

l d d
l k l kl d l d

k k
u du a a O

n n
 

 


          
 .

Since ( ) <k k  and 2 2
2 (1 2 )

1
= (1)

2 n nn
l k l kk kl d

a a o   , (Roa (1999)),

   243 ( )
2 (1 2 ) 2 2

1 1
= ( ) (1) (1)

( 1)2 n nn

d
l k l kl d

k k
EA A O n u du o O

n n





   


  . (6.7)

So we may easily conclude

   242 ( )
2 (1 2 ) 2 (1 2 )

( 1) 1ˆ ( ) = ( ) (1)
2 2n n

d
dl d l d

n n
VarI f O n u du o O

 
       

 
 . (6.8)

Applying (6.8) in (6.1), yields the desired result.

Proof of Theorem 5.2.
Applying Holder inequality for v and v with 1/ 1/ = 1v v , one may obtain
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2 2( ) ( )( ) ( ) ( , )
n n

d d
i j i j i jl k l kx x f x x dx dx 

1/2 1/24 44 ( ) ( )2 ( ) ( )n n

n n

v v
l l d d v d v

v l k l kF u du v dv
 

          
   
 

1/2 1/24 4
4

4 4
2

(1 ) (1 )
n n

v vv v
l l d m m

v mv mv

A A
F du dv

u v

  


 

   
           

  .

So it is easy to obtain

2 2( ) ( )( ) ( ) ( , )
n n

d d
i j i j i jl k l k

k k
x x f x x dx dx


 

1/2 1/2
4 4

4 4
2 n n

v v
l l d v

v m mv mv
k k

du dv
F A du dv

u v

 


 
       
   

  

1/2 1/2
4 4

4 4
= 2 n n

v v
l l d v

v m mv mv
u v

du dv
F A du dv

u v

 


 
   
   
   

  

1/2 1/2( 4 ) ( 4 )
4 42

1 4 1 4
n n

v vmv mv
l l d v

v m
u v

u v
F A

mv mv

   


  
 

2 1/ 2 1/
4 4

1 12
1 4 1 4

n n

m v m v
k kl l d v

v m
u v

F A du dv
mv mv

    


   

2
1

2 1
2

2 4 4= 2
1

(1 4 ) 2 1
2

n

m
v

l d v
v m

k
F A

mv m
v

  




 
  
        

4= (2 ) = (1)n nl l dO o . (6.9)

Using (6.6), (6.9) and (6.2) in (6.1), conclude the result.
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3. Introduction to Wavelet
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Remarks. 



The above introduction is based on Antoniadis (1994). For a detailed introduction to wavelet, see Chui (1994) or Daubechies (1992). For a brief survey, see Strang (1989).
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5. Main Results
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6. Proofs


Let 






[image: image162.wmf](


)


{


}


2


22


ˆˆˆ


=|()()|=()()()


nddddd


JEIfIfVarIfEIfIf


-+-









[image: image163.wmf](


)


2


2


2()


ˆ


=(()()


n


d


dlk


VarIfafxdx


æö


+-


ç÷


èø


å


ò









[image: image164.wmf](


)


2


2


2


()


,,


2


2


ˆ


=()


n


d


dkld


VarIfff


æö


+-


ç÷


èø


.


Following along the lines of Roa (1999), we get
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Proof of Theorem 5.1. 



Observe that 
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Note that it suffices to bound the right-hand side of (6.3). By (4.1) and Masry (1994), one may easily get
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By similar argument as in Rao (1999), we get
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Substituting (6.5) and (6.6) in (6.4), one may easily obtain
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So we may easily conclude
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(6.8)


Applying (6.8) in (6.1), yields the desired result.


Proof of Theorem 5.2. 



Applying Holder inequality for 
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So it is easy to obtain
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 (6.9)


Using (6.6), (6.9) and (6.2) in (6.1), conclude the result.
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