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ABSTRACT

The problem of estimation of the squared derivative of a probability density [ is

considered using wavelet orthogonal bases. We obtain the precise asymptotic expression
for the mean integrated error of the wavelet estimators when the process is strongly
mixing. We show that the proposed estimator attains the same rate as when the
observations are independent. Certain week dependence conditions are imposed to the
{X;} defined in {QQ, N, P}.
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1. INTRODUCTION

2
The motivation for estimation /,(f) = j f(d) (x)dx , where f is a probability density

and f @ s the d-th derivative is well known. Kernel-type estimation for the functional
I,(f) has been investigated by Hall and Marron (1987), Rao (1997) and Bickel and

Ritov (1988) among others. In Prakasa Roa (1996), we have studied nonparametric
estimation of the derivative of a density by wavelets and a precise asymptotic expression
for the mean integrated squared error, following techniques of Masry (1994). Prakasa
Roa (1999) also obtained the precise asymptotic expression integrated squared error of
the wavelet estimators.

We now extend the result to the case of strongly mixing process. We show that the
proposed estimator attains the same rate as when the observations are independent.
Certain week dependence conditions are imposed to the {X;} defined in {QQ, N, P} .

Let N;' denote the o -algebra generated by events {X, € 4,,...,X,, € 4,,} . We consider
the following classical mixing conditions:

1. Uniformly strong mixing (u.s.m.), also called ¢ —mixing :

AB)— p(A)p(B
sup  sup | p(4B) - p(A)p(B) | —4(s) >0
m AeN™BeN®, p(4)

as s —> .
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2. p-mixing:
sup sup | corr(X,Y) = p(s) >0 as s —> o,

m XeLz(Nlm),YeLz(Nw
m+s

A very well known measure of dependence in probabilistic literature is described
by the mixing conditions. Among various mixing conditions used in the literature,
o -mixing is reasonably weak, and has many practical applications. Many stochastic
processes and time series are known to be mixing. Under certain weak assumptions
autoregressive and more generally bilinear time series models are strongly mixing with
exponential mixing coefficients.

The problem of density estimation from dependent samples is often considered. For
instance quadratic losses were considered by Ango Nze and Doukhan (1993). Bosq
(1995), and Doukhan and Loen (1990). Linear wavelet estimators were also used in
context: Doukhan (1998) and Doukhan and Loen (1990). Leblance (1994,1996) also

established that the L, -loss (2< p' <) of the linear wavelet density estimators for a

'
-5

stochastic process converges at the rate N**V (s'=s+1/p—1/p'), when the density
of f belongs to the Besov space B;,q . Doosti et.al (2006) extended the above result for

derivative of a density.

2. DISCUSSION OF THEOREM'S ASSUMPTIONS
Consider the following conditions:

C;:  The distribution of (X;, X;) has a joint density f; ; such that forall i and j,

i#j (1 f,; )] dedy)” =

fi,j(.,.)” <F,<o forsomev>2

M, : The process is p -mixing and Y.~ p(f)<S R <.

M, : The process is ¢ -mixing and Z;’ild)l/z H<p<w.

Since the inequality p(¢) < 2(1)1/ 2(t) holds (see Doukhan (1994)), M , implies M, .

Also note that if X and Y are random variables, then the following covariance
inequalities hold.(see Doukhan (1994), section 1.2.2)

cov(X,,Y;) < 2p(j -] x|, Y], 2.1)

127

cov(X,,Y;) 20" (= X|| Y

’

forany p,g>1and 1/ p+1/g=1.
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3. INTRODUCTION TO WAVELET

A wavelet system is an infinite collection of translated and scaled versions of
functions ¢ and vy called the scaling function and the primary wavelet function

respectively. The function @(x) is a solution of the equation

o(x) = ki C,oQ2x—k)

=—0

with
[70(x)dx =1

and the function y(x) is defined by
W) = XD C o w@x—k) .

Note that the choice of the sequence C, determines the wavelet system. It is easy to

see that
> C.=2.
k=—0
Define
0,4 (x) =222 x—k),—0 < jk <o 3.1
and

V() =272 y(@ x—k).moo < jik <o
Suppose that the coefficients C; satisfy the condition

SCxCra =2 i 1=0
=0. if [#0.
It is known that, under some additional condition on 1, the collection
{W s>~ < j,k <oo} is an orthonormal basis for I*(R) and W s,—0 <k <o} is an
orthonormal system in L*(R) for each —o0 < j <o (cf. Doubachies (1992)).

Definition 3.1.

A scaling function ¢ € ¢

is said to be r-regular for an integer r >1 if for every

non-negative integer / <r and for any integer k,
[V () ¢ (1+ | x ], —oo<x <00

for some ¢; 20 depending only on k where ¢ () denotes the I-th derivative of ¢ .
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Definition 3.2.
A multiresolution analysis of LZ(R) contains of increasing sequences of closed

subspaces V; of I? (R) such that

DNy =10}

i) Us-_V; = L(R);

iii) there is a scaling function ¢ €V}, such that
P(x—k),—0 <k <oo

is an orthonormal basis for V;,; and for all 7 ? (R),
iv) Forall —o <k <o, h(x) eV, = h(x—k) eV,
V) h(x)eV; = h(2x) eV,

Let H) denote the space of all functions g(.) in LZ(R) whose first (S—1)
derivatives are absolutely continuous and define the norm

lell, = Z1i1 0P dn”.

Lemma 3.1.
(Mallat (1989)) Let a multiresolution analysis be r-regular. Then for every 0 <s <r,

any function g € I?(R) belongs to H) iff
i 2e¥l <o

t
t=-0

where e,2 = ||g - g"l2 and g; is the orthogonal projection of gon V.
2

Remarks.
The above introduction is based on Antoniadis (1994). For a detailed introduction to
wavelet, see Chui (1994) or Daubechies (1992). For a brief survey, see Strang (1989).

4. ESTIMATION BY THE METHODS OF WAVELETS

Suppose X|,..X, is a p-—mixing, identically distributed random variables with

n

density f, f is d-times differentiable and f(d) denotes the d-th derivative of f . We

interpret f O a5 f . The problem of interest is the estimation of
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L) = [ (x)x.

Assume that f @) ¢ I*(R) and there exist D; 20, ;20 such that

If(j)(x)|£Dj|x\7Bj for |x[21, 0<<d,
where B>1.

Consider a mulitiresolution as discussed in Section 3. Let ¢ be the corresponding
scaling function. Suppose that the multiresolution is r-regular for some » >d . Then by
()

definition, @ € c”, ¢ and its derivative @’ up to order r are rapidly decreasing i.e.,

for every integer m =1, there exists a constant 4,, > 0 such that

‘ A
|V (x) g ——,0< <7

(I+ [ x )"
Let
Pr i =222 x—k),—w<k,t<w.
Then
o) =22 x—k),-0< j<r
and
. 2(1/2)+1j
o) (x) s ——m . 0<j<r. 4.1
(14 x1)

If d >1, then it is clear that

lim @) /™ (x)=0,0< j<d -1,

|x|—>0

for any fixed / and k. Let f;; is the orthogonal projection of f @ on ¥, . Note that

fu()=3 a0, (%),

Jj=—0

where

ay = [7 /ey @du = (1) [7 f @) (u)du (42)
by (3.1) for d <1. Clearly the equation (4.2) holds for d = 0. Hence for all d >0

ay = " E[ o{) (x))].

Further more
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e —”f(d) f” ”f(d)” Zalk—>0 as [ — o,

by the properties of multiresolution decomposition. Hence || g||p =" gl dx''? p>1.

Note that

Lo
Let

K
fK,l,d (x)= k;Kalk@l,k (x),

where K = K, is a sequence of positive integers depending on / =/, tending to infinity
as n—>o and / =1/, > as n—oo. Note that fx,,(x) is a truncated projection of

£ on V,. Given a sample X,,..X

no

let

Alk

> Sol ()0l (x))

n(n 1) i=l#jj=1
and we estimate /,(f) by
I, ()= ZKA,k 43)

Note that

E(4y)=aj,
and

E(y(f) = ;Kauc

5. MAIN RESULTS

Suppose that as [, — o

2d-1)+2 2s3{l /(2BH—1
k= OBy 28 2D

Define / 4+ (f) as an estimator of 7,(f) where I 4 (f) is given by the equation (4.3),
then we have the following two results:

Theorem 5.1.
If {X,} satisfies the condition C,, then

n(n—-1)

E|I L) P oD (x)ax?
W |1, () =1 (OH = [0 (x)dx™  as n—> o,
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Theorem 5.2.
If {X,} satisfies the condition M|, then

n(n—-1)

2O i () -1, P Jo D (0d?  as n—> oo
2, (420) d al. ¢ .

6. PROOFS
Let

= B, (1)~ 1,0 B=Var(1,(0) + {EL (1,0
=Var ((id (f)) + (Zaik — J'f(d)2 (x)deZ
=)+ (sl -1

Following along the lines of Roa (1999), we get

bl Al ) =of) o
k,ln .d 2 5 o . .
Proof of Theorem 5.1.
Observe that
R k

Var(1,(/)) = var . |- %%COV(AIHIC,AIHF), (6.2)
where cov(X,Y) is interpreted as var(X). It is straightforward to check that

SXEA A = ( e ZZZE@“” () @i () ol (<)ol (x7) . (63)
where the last summation runs over all i, j,i’, j'. Using (2.1) in (6.2) leads to

22 EA Ay

kK

1/2 1/2
S p<f—z>z(fcp“’)(x,->f<x,->dx,-j (W )(x,-)f(x,-)dx,-j

( —1) 1<i<j<n
ZZE(pﬁ"m )2E<p<“ (x). (6.4)
n (n 1) i<jk

Note that it suffices to bound the right-hand side of (6.3). By (4.1) and Masry (1994),
one may easily get
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1/2 1/2
3o s | Joft e |
k k'

172 1/2
sz(z’"*“’"dﬁpﬁff<x,~>f["2j“]d(u>J 2[2’”“’”1@272“<xi)f["2]”]d<v>J
k k' n

n

4
=22 S o (u)f[u;kjd“
k n

— 92, +4l”kf@(d)4 (u)du (1 " 0(2_1/1 )) ) (6.5)

By similar argument as in Rao (1999), we get
(@)? (d)? 20 (142d) | ¢ (d)* :
Zk:E(Plnk (x; )%E(Plnk' (x;) <27 J.q) (w)du
_ 1
21, (1+2d) 2 2
+2 %%alnk“lnk’ + 0[ 20, (1724) j : (6.6)

Substituting (6.5) and (6.6) in (6.4), one may easily obtain

22, +4ld o

A A S —————
%%E Wk n?(n—-1)> n

oo™ @ydu(1+0@7))
k

2 20, +(142d) @ 2 1 2 2 1
+n(n—l) [2 ] Jo'” (wdu +221n(1+2d) %%alnkalnk’ +0 220, (42d) |-

. 1
Since ¥,p(k) <o and Wzkzkaikaik, =o(1), (Roa (1999)),
— 1 sS4 4 ,:O(n*3)+; 0" (u)du 2+o(1)+0(1) (6.7)
221, (1+2d) 424 1,k k nz(n—l)z ¢ T
So we may easily conclude

_ R 2
A vart, (N =0(n e fio " @ “’(”*O(ﬁj' (63)

Applying (6.8) in (6.1), yields the desired result.

Proof of Theorem 5.2.
Applying Holder inequality for v and v' with 1/v+1/v'=1, one may obtain
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I(P(‘” (x)o}p S 06 (xx, ),

172y
S Fv21n+4lnd( (d) v (u)du) (J‘(p(d) v (V)dv)

A4V, 1/2v' A4V, 1/2v
<F, ol +4l,d J+ du I% dv .
(I+u)™ (1+v)™™

So it is easy to obtain

ZZW’ (x; )cp(‘” ()£ (x5, )dxydlx

du 1/2v' dv 1/2v'
< F2ltahd g8 z( [ du] z[ [—— dvj
k u k

V4mv

Ll gt du 1/2v' dv 1/2v'
=F2" VS [——du Y| [——av
u \%

4mv 4mv
u v

it , u(—4mv')1/2vr V(_4mvr)1/2v'
< F 20 g1 5 , ,
v 1-4dmv' T 1-4mv

—2m+1/v' v—2m+l/v'

<F 21,,+4l,,d A4v du
L 1-4m K 1-4mv'

dv

—2m+i+1
2y’

_ Fv22+4l”d A;v' 1
(1—4mv)(2m+—, +1j
2v

=0y =o(1). (6.9)
Using (6.6), (6.9) and (6.2) in (6.1), conclude the result.

ACKNOWLEDGEMENT

The aurhors are grateful to the referees and Editor for useful comments.

REFERENCES

1. Ango Nze, P. and Doukhan, P. (1993). Functional estimation for time series: a
general approach. Pr'epublication de I’'Universit'e Paris-Sun No. 93-43.

2. Antoniadis, A. (1994). Smoothing noisy data with coiflets. Statistica Sinica, 4,
651-678.



350

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

Wavelet-based estimators of the integrated squared density......

Bickel, P. and Ritrov, Y. (1988). Estimation of integrated squared density
derivatives; sharp best order of convergence estimate. Sankhya, A, 50, 381-393.
Bosq, D. (1995). Optimal asymptotic quadratic error of density estimators for strong
mixing or chaotic data. Statist. Prob. Lett., Submitted.

Chui, K. (1994). Wavelets: A Tutorial in Theory and Applications. Boston:
Academic Press.

Daubechies, 1. (1992). Ten Lectures on Wavelets. CBMS-NSF Regional Conferences
Series in Applied Mathematics. Philadelphia: SIAM. 9.

Doosti, H., Nirumand, H.A., Afshari, M. (2008). Wavelets for Nonparametric
Stochastic Regression with Mixing Stochastic Process. Comm. Statist.-Theory and
Methods, 37(3), 373-385.

Doukhan, P. (1994). Mixing: properties and examples. Lecture Notes in Statistics,
Vol. 85 (Springer, New York).

Doukhan, P. (1998). Forme de Toeplitz associre’e une analyse multi’erchelle. C.R.
Acad. Sci. Paris, 1306, Srrie 1, 663-666.

Doukhan, P. and Loen, J.R. (1990). Une note sur la d’eviation quadratique
d’estimateurs de densit’es par projections orthogonales. C.R. Acad Sci. Paris, t 310,
s’erie 1, 425-430.

Hall, P. and Marron, J.S. (1987). Estimation of integrated squared density
derivatives. Statist. Prob. Lett., 6, 109-115.

Leblance, F. (1994). Lp-risk of the wavelet linear density estimator for a stochastic
process. Rapport Technique No. 9402, L.S.T.A Paris 6.

Leblance, F. (1996). Wavelet linear density estimator for a discrete-time stochastic
process: LP-losses, Statist. Prob. Lett., 27, 71-84.

Mallat, S. (1989). A Theory for Multiresolution Signal Decomposition the Wavelet
Representation. IEEE Trans. Pattern Anal. and Machine Intelligence, 31, 679-693.
Masry, E. (1994). Probability density estimation from dependent observation using
wavelet orthonormal bases. Statist. Prob. Lett., 21, 181-194.

Prakasa Roa. B.L.S. (1996). Nonparametric estimation of the derivatives of a density
by the method of wavelets, Bull. Inform. Cyb., 28, 91-100

Prakasa Roa. B.L.S. (1997). Wavelets and dillation equation; a brief introduction.
SIAM Review, 31, 614-627.

Prakasa Roa. B.L.S. (1999), Estimation of the integrated squared density derivatives
by wavelets. Bull. Inform. Cyb., 31(1).

Strang G. (1989). Wavelets and dilation equations: A brief introduction. SIAM Rev.,
31, 614-627.




342

Wavelet-based estimators of the integrated squared density……

343

Hosseinioun, Doosti and Nirumand



Pak. J. Statist.


2009 Vol. 25(3), 341-350

Wavelet-Based Estimators of the Integrated Squared


Density Derivatives for mixing sequences


N. Hosseinioun1, H. Doosti2 and H.A. Niroumand3

Department of Statistics, School of Mathematical Sciences, 

Ferdowsi University of Mashhad, Iran


Email: 1na_ho8@stu-math.um.ac.ir; 2doosti@math.um.ac.ir; 3nirumand@math.um.ac.ir

ABSTRACT



The problem of estimation of the squared derivative of a probability density 

[image: image1.wmf]f


 is considered using wavelet orthogonal bases. We obtain the precise asymptotic expression for the mean integrated error of the wavelet estimators when the process is strongly mixing. We show that the proposed estimator attains the same rate as when the observations are independent. Certain week dependence conditions are imposed to the 

[image: image2.wmf]{}


i


X


 defined in 

[image: image3.wmf]{,,}


NP


W


.


Keywords



Nonparametric estimation of a density; Wavelet; Mixing process.


1. Introduction



The motivation for estimation 

[image: image4.wmf]2


()


()=()


d


d


Iffxdx


ò


, where 

[image: image5.wmf]f


 is a probability density and 

[image: image6.wmf]()


d


f


 is the d-th derivative is well known. Kernel-type estimation for the functional 

[image: image7.wmf]2


()


If


 has been investigated by Hall and Marron (1987), Rao (1997) and Bickel and Ritov (1988) among others. In Prakasa Roa (1996), we have studied nonparametric estimation of the derivative of a density by wavelets and a precise asymptotic expression for the mean integrated squared error, following techniques of Masry (1994). Prakasa Roa (1999) also obtained the precise asymptotic expression integrated squared error of the wavelet estimators.


We now extend the result to the case of strongly mixing process. We show that the proposed estimator attains the same rate as when the observations are independent. Certain week dependence conditions are imposed to the 

[image: image8.wmf]{}


i


X


 defined in 

[image: image9.wmf]{,,}


NP


W


.


Let 

[image: image10.wmf]m


k


N


 denote the 

[image: image11.wmf]s


-algebra generated by events 

[image: image12.wmf]{,...,}


kkmm


XAXA


ÎÎ


. We consider the following classical mixing conditions:


1.
Uniformly strong mixing (u.s.m.), also called 

[image: image13.wmf]mixing


f-


:






[image: image14.wmf],


1


|()()()|


=()0           


supsup


()


m


m


ANBN


ms


pABpApB


sass


pA


¥


ÎÎ


+


-


f®®¥


.

2. 


[image: image15.wmf]r


-mixing: 






[image: image16.wmf](


)


(


)


22


,


1


|(,)|=()0               


supsup


m


m


XLNYLN


ms


corrXYsass


¥


ÎÎ


+


r®®¥


.


A very well known measure of dependence in probabilistic literature is described 
by the mixing conditions. Among various mixing conditions used in the literature, 


[image: image17.wmf]a


-mixing is reasonably weak, and has many practical applications. Many stochastic processes and time series are known to be mixing. Under certain weak assumptions autoregressive and more generally bilinear time series models are strongly mixing with exponential mixing coefficients.



The problem of density estimation from dependent samples is often considered. For instance quadratic losses were considered by Ango Nze and Doukhan (1993). Bosq (1995), and Doukhan and Loen (1990). Linear wavelet estimators were also used in context: Doukhan (1998) and Doukhan and Loen (1990). Leblance (1994,1996) also established that the 

[image: image18.wmf]p


L


¢


-loss 

[image: image19.wmf](2<)


p


¢


£¥


 of the linear wavelet density estimators for a stochastic process converges at the rate 

[image: image20.wmf](21)


s


s


N


¢


-


¢


+


 

[image: image21.wmf](=1/1/)


sspp


¢¢


+-


, when the density of 

[image: image22.wmf]f


 belongs to the Besov space 

[image: image23.wmf],


s


pq


B


. Doosti et.al (2006) extended the above result for derivative of a density.


2. Discussion of Theorem's Assumptions



Consider the following conditions:




[image: image24.wmf]1


C


:
The distribution of 

[image: image25.wmf](,)


ij


XX


 has a joint density 

[image: image26.wmf],


ij


f


 such that for all 

[image: image27.wmf]i


 and 

[image: image28.wmf]j


, 

[image: image29.wmf]ij


¹




 EMBED Equation.DSMT4  [image: image30.wmf]1/


,,


(|(,)|)=(.,.)<     >2


vv


ijijv


fxydxdyfFforsomev


£¥


ò






[image: image31.wmf]1


M


:
The process is 

[image: image32.wmf]r


-mixing and 

[image: image33.wmf]=1


()<


t


tR


¥


r£¥


å


.




[image: image34.wmf]2


M


:
The process is 

[image: image35.wmf]j


-mixing and 

[image: image36.wmf]1/2


=1


()<


t


t


¥


f£j¥


å


.



Since the inequality 

[image: image37.wmf]1/2


()2()


tt


r£f


 holds (see Doukhan (1994)), 

[image: image38.wmf]2


M


 implies 

[image: image39.wmf]1


M


. Also note that if X and Y are random variables, then the following covariance inequalities hold.(see Doukhan (1994), section 1.2.2)






[image: image40.wmf]22


(,)2().


ij


covXYjiXY


£r-


, 











(2.1)






[image: image41.wmf]1/


(,)2().


p


ij


pq


covXYjiXY


£f-


,

for any 

[image: image42.wmf],1


pq


³


 and 

[image: image43.wmf]1/1/=1


pq


+


.


3. Introduction to Wavelet



A wavelet system is an infinite collection of translated and scaled versions of functions 

[image: image44.wmf]j


 and 

[image: image45.wmf]y


 called the scaling function and the primary wavelet function respectively. The function 

[image: image46.wmf]()


x


j


 is a solution of the equation 






[image: image47.wmf]=


()=(2)


k


k


xCxk


¥


-¥


jj-


å




with 






[image: image48.wmf]()=1


xdx


¥


-¥


j


ò




and the function 

[image: image49.wmf]()


x


y


 is defined by 






[image: image50.wmf]1


()=(1)(2)


k


k


xCxk


¥


-+


-¥


y-y-


å


.


Note that the choice of the sequence 

[image: image51.wmf]k


C


 determines the wavelet system. It is easy to see that 






[image: image52.wmf]=


=2


k


k


C


¥


-¥


å


.

Define 




 

[image: image53.wmf]/2


,


()=2(2), <,<


jj


jk


xxkjk


jj--¥¥


 









(3.1)


and 






[image: image54.wmf]/2


,


()=2(2). <,<


yy--¥¥


jj


jk


xxkjk


.

Suppose that the coefficients 

[image: image55.wmf]k


C


 satisfy the condition 






[image: image56.wmf]2


=2     =0


Kkl


CCifl


¥


+


-¥


å









[image: image57.wmf]=0.     0


¹


ifl


.


It is known that, under some additional condition on 

[image: image58.wmf]y


, the collection 

[image: image59.wmf],


{,<,<}


jk


jk


y-¥¥


 is an orthonormal basis for 

[image: image60.wmf]2


()


LR


 and 

[image: image61.wmf],


{,<<}


jk


k


y-¥¥


 is an orthonormal system in 

[image: image62.wmf]2


()


LR


 for each 

[image: image63.wmf]<<


j


-¥¥


 (cf. Doubachies (1992)).


Definition 3.1. 



A scaling function 

[image: image64.wmf]()


r


c


jÎ


 is said to be r-regular for an integer 

[image: image65.wmf]1


r


³


 if for every non-negative integer 

[image: image66.wmf]lr


£


 and for any integer k, 






[image: image67.wmf]()


|()|(1||),   <<


lk


k


xcxx


-


j£+-¥¥




for some 

[image: image68.wmf]0


k


c


³


 depending only on k where 

[image: image69.wmf]()


(.)


l


j


 denotes the l-th derivative of 

[image: image70.wmf]j


.


Definition 3.2. 



A multiresolution analysis of 

[image: image71.wmf]2


()


LR


 contains of increasing sequences of closed subspaces 

[image: image72.wmf]j


V


 of 

[image: image73.wmf]2


()


LR


 such that


i) 


[image: image74.wmf]=


={0};


j


j


V


¥


-¥


I




ii) 


[image: image75.wmf]2


=


=();


j


j


VLR


¥


-¥


U




iii) 
there is a scaling function 

[image: image76.wmf]0


V


jÎ


 such that 






[image: image77.wmf](), <<


xkk


j--¥¥





is an orthonormal basis for 

[image: image78.wmf]0


V


; and for all 

[image: image79.wmf]2


()


hLR


Î


,


iv)
For all 

[image: image80.wmf]00


<<, ()()


khxVhxkV


-¥¥ÎÞ-Î




v) 


[image: image81.wmf]1


()(2)


jj


hxVhxV


+


ÎÞÎ


.



Let 

[image: image82.wmf]2


H


¢


 denote the space of all functions 

[image: image83.wmf](.)


g


 in 

[image: image84.wmf]2


()


LR


 whose first 

[image: image85.wmf](1)


S


-


 derivatives are absolutely continuous and define the norm 





[image: image86.wmf]()21/2


2


=[|()|]


j


H


ggtdt


¥


¢


-¥


å


ò


.

Lemma 3.1.
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Remarks. 



The above introduction is based on Antoniadis (1994). For a detailed introduction to wavelet, see Chui (1994) or Daubechies (1992). For a brief survey, see Strang (1989).
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5. Main Results
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6. Proofs


Let 
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Following along the lines of Roa (1999), we get
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Proof of Theorem 5.1. 



Observe that 
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where the last summation runs over all 

[image: image170.wmf],,,


ijij


¢¢


. Using (2.1) in (6.2) leads to






[image: image171.wmf]nn


lklk


kk


EAA


¢


¢


åå









[image: image172.wmf]1/21/2


44


()()


22


1


1


()()()()()


(1)


nn


dd


iiiiii


lklk


ijnkk


jixfxdxxfxdx


nn


¢


¢


£££


æöæö


=r-jj


ç÷ç÷


èøèø


-


ååå


òò






 




[image: image173.wmf]22


()()


22


<


1


()()


(1)


nn


dd


ii


lklk


ijkk


ExEx


nn


¢


¢


+jj


-


ååå


.






(6.4)



Note that it suffices to bound the right-hand side of (6.3). By (4.1) and Masry (1994), one may easily get
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By similar argument as in Rao (1999), we get
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Substituting (6.5) and (6.6) in (6.4), one may easily obtain
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So we may easily conclude
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(6.8)


Applying (6.8) in (6.1), yields the desired result.


Proof of Theorem 5.2. 



Applying Holder inequality for 
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So it is easy to obtain
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 (6.9)


Using (6.6), (6.9) and (6.2) in (6.1), conclude the result.
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