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Abstract. In this paper, we present a method for numerical solution of linear and
nonlinear integro-differential equations system. This method, gives solution of the sys-
tem by power series and reproduces the analytical solution if the exact solutions are
polynomial, otherwise it reproduces their’s Taylor series. Comparison of the approx-
imate solution with exact solution shows that the used method is easy and practical
for classes of linear and nonlinear integro-differential equations system. The package
Maple 9 is used for computation.
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1 Introduction

There are many physical processes which integro-differential equations arise them, such
as nano-hydrodynamics [1], glass-forming process [2], drop wise condensation [3], and
wind ripple in the desert [4]. There are several numerical methods for solving system of
linear and nonlinear integro-differential equations, for example, the Adomian decompo-
sition methods [5], homotopy perturbation method [6] and [7], Galerkin method [8] and
variational iteration method [9]. Recently, the Power series method (PSM) has used for
solving stiff ordinary differential equations system [10], [11], linear Volterra integral equa-
tions system of the second kind and system of integro-differential equations, [12], [13].
In this paper, we use the Power series method in which the Taylor expansion of the
exact solution of linear or nonlinear integro-differential equations system is obtained by
recursive procedure.
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To illustration the basic of this method, we consider following integro-differential
equations system

U′(x) = G(x,U(x)) +
∫ x

0
K(x, t,U(t),U′(t))dt, (1.1)

along with initial condition F(0) = a, where

U = [u1, u2, . . . , un]T ,

G = [g1, g2, . . . , gn]T ,

K = [kij ], i, j = 1, 2, . . . , n,

a = [a1, a2, . . . , an]T .

In equation (1.1), G and K are given analytic functions and without any loss of
generality, we assume that they are polynomials, otherwise they can be substituted by
their’s Taylor expansion. Also, a is fixed constant vector and the vector function U is
the solution of equation (1.1), which will be determined.

2 Power series method

Suppose the solution of the system of integro-differential equations (1.1) be as follow

ui(x) =
m∑

j=0

eijx
j , i = 1, 2, . . . , n. (2.1)

By using initial conditions, we have

ei0 = ui(0), i = 1, 2, . . . , n.

We compute coefficients of (2.1) step by step. So, we consider the solution of problem
(1.1) as

U(x) = e0 + e1x, (2.2)

where ej = (eij), i = 1, 2, . . . , n and e1 is unknown. By substituting (2.2) into (1.1), we
obtain the following system

(A1e1 − b1) + Q1(x) = 0,

where A1 is n × n constant matrix, b1 is n × 1 constant vector, Q1(x) = [qi1(x)], i =
1, 2, . . . , n and qi1(x) are polynomials of order equal or greater than 1. By neglecting
Q1(x), we have an algebraic linear equations system of e1. By solving this system, the
coefficient of x in (2.2) can be determined.

For next step, we assume that

U(x) = e0 + e1x + e2x
2, (2.3)
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where e0 and e1 are known and e2 is unknown. By substituting (2.3) into (1.1), we
derive the following system

(A2e2 − b2)x + Q2(x) = 0,

where A2 and b2 are similar to A1 and b1, respectively, Q2(x) = [qi2(x)], i = 1, 2, . . . , n
and qi2(x) are polynomials of order greater than unity. By neglecting Q2(x), we have
again an algebraic system of linear equations of e2 and by solving this system, coeffi-
cients of x2 in (2.3) can be determined. This procedure can be repeated till the arbitrary
order coefficients of Power series of the solution for the problem be obtained.

The following theorem shows convergence of the method. Without loss of generality,
we prove it for n = 1.

Theorem 2.1. Let u = f(x) be the exact solution of the following integro-differential
equation,

u′(x) = g(x, u(x)) +
∫ x

0
K(x, t, u(x), u′(x))dt, u(0) = a. (2.4)

Furthermore, assume that f(x) has a power series representation. Then, the proposed
method obtains it (the Taylor expansion of f(x)).

Proof. According to the proposed method, we assume that the approximate solution to
Eq.(2.4) be as follows,

f̃(x) = e0 + e1x + e2x
2 + · · · . (2.5)

Hence, it is sufficient that we only prove,

em =
f (m)(0)

m!
, m = 1, 2, 3, . . . . (2.6)

Note that for m = 0, the initial condition gives,

e0 = f(0) = a. (2.7)

Moreover, for m = 1, if we set u = f(x) and x = 0 in Eq.(2.4), we obtain

f ′(0) = g(0, f(0)) + 0. (2.8)

On the other hand, from (2.5) and (2.7), we have

f̃(x) = e0 + e1x, (2.9)

by substituting (2.9) into Eq.(2.4) and setting s = 0, we get

e1 = g(0, f(0)) + 0 = f ′(0). (2.10)
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For m = 2, differentiating Eq.(2.4) with respect to x, we have

f ′′(x) =
∂

∂x
g(x, f(x))+

∂

∂u
g(x, f(x))f ′(x)+K(x, f(x), f ′(x))+

∫ x

0

∂

∂x
K(x, t, f(t), f ′(t)),

(2.11)
setting s = 0 in (2.11) and we get

f ′′(0) =
∂

∂x
g(0, f(0)) +

∂

∂u
g(0, f(0))f ′(0) + K(0, f(0), f ′(0)). (2.12)

According to (2.5),(2.7) and (2.10), let

f̃(x) = f(0) + f ′(0)x + e2x
2, (2.13)

by substituting (2.13) into (2.11), and setting x = 0, we obtain

2e2 =
∂

∂x
g(0, e0)) +

∂

∂u
g(0, e0))e1 + K(0, e0, e1). (2.14)

So, with comparison (2.12) and (2.14), we conclude that

2e2 = f ′′(0), or e2 = f ′′(0)
2! .

By continuing the above procedure, we can easily prove (2.6) for m = 3, 4, . . . .

Corollary 2.2. If the exact solution to Eq.(2.4) be an polynomial, then the proposed
method will be obtained the real solution.

3 Applications

To illustrate the method, we consider three examples of integro-differential equations
and then we will compare the obtained results with the exact solutions or the other
methods.

Example 3.1. Consider the following system of linear Volterra integro-differential equa-
tions [14], 




u′1(x) = 1 + x + x2 − u2(x)−
∫ x

0
(u1(s) + u2(s))ds,

u′2(x) = −1− x + u1(x)−
∫ x

0
(u1(s)− u2(s))ds,

u1(0) = 1, u2(0) = −1.

(3.1)

This problem has the exact solution u∗1(x) = x+ ex, u∗2(x) = x− ex. From the initial
conditions, e0 = [1,−1]T . Let the solution of (3.1) be

{
u1(x) = e10 + e11x = 1 + e11x,

u2(x) = e20 + e21x = −1 + e21x.
(3.2)
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For obtaining e11, e21, we substitute (3.2) into (3.1) then we will have





(e11 − 2) +

q11(x)︷ ︸︸ ︷
(−x− x2 + e21x +

1
2
e11x

2 +
1
2
e21x

2) = 0,

e21 + (3x− e11x +
1
2
e11x

2 − 1
2
e21x

2)
︸ ︷︷ ︸

q21(x)

= 0,

where q11(x), q21(x) are O(x) and by neglecting them, we have

A1e1 = b1,

where

A1 =
[

1 0
0 1

]
, b1 =

[
2
0

]
, e1 =

[
e11

e21

]
.

So,

e1 =
[

2
0

]
,

and then
{

u1(x) = 1 + 2x,
u2(x) = −1.

We go to next step. Let
{

u1(x) = 1 + 2x + e12x
2,

u2(x) = −1 + e22x
2.

(3.3)

Similar to previous step, by substitute (3.3) into (3.1), we have





(2e11 − 1)x +

q12(x)︷ ︸︸ ︷
(e22x

2 +
1
3
e12x

3 +
1
3
e22x

3) = 0,

(2e22 + 1)x + (−e12x
2 +

1
3
e12x

3 − 1
3
e22x

3 + x2)
︸ ︷︷ ︸

q22(x)

= 0.

By neglecting q12(x), q22(x) which are O(x2) and solve system A2e2 = b2, we obtain

e2 =
[

1
2

−1
2

]
and then





u1(x) = 1 + 2x +
1
2
x2,

u2(x) = −1− 1
2
x2.
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Summery of next step is




u1(x) = 1 + 2x +
1
2
x2 + e13x

3,

u2(x) = −1− 1
2
x2 + e23x

3,

and 



(3e13 − 1
2
)x2 +

q13(x)︷ ︸︸ ︷
(e23x

3 +
1
4
e13x

4 +
1
4
e23x

4) = 0,

(3e23 +
1
2
)x2 + (−e13x

3 +
1
4
e13x

4 − 1
4
e23x

4 + 1/3x3)
︸ ︷︷ ︸

q23(x)

= 0.

So e3 =
[

1
6

−1
6

]
and then





u1(x) = 1 + 2x +
1
2
x2 +

1
6
x3,

u2(x) = −1− 1
2
x2 − 1

6
x3.

The rest of components of the solution by iteration method can be obtained in a
similar way.





u1(x) = 1 + 2x +
1
2
x2 +

1
6
x3 +

1
24

x4 +
1

120
x5 +

1
720

x6,

u2(x) = −1− 1
2
x2 − 1

6
x3 − 1

24
x4 − 1

120
x5 − 1

720
x6.

One can see that these solutions tend to the exact solutions, in the other word, the
exact solutions are

{
u∗1(x) = u1(x) + O(x7),

u∗2(x) = u2(x) + O(x7).

where O(x7) is the reminder, which define the error between the exact solution and the
Taylor polynomial solution.

Example 3.2. As second example, we consider the following nonlinear integro-differential
equation [7], 




u′(x) = 1 +
∫ x

0
u(s)u′(s)ds,

u(0) = 0.
(3.4)

Typically, we use the Power series method for obtaining the solution of the problem.
From the initial condition, e0 = 0. Let the solution of (3.4) is the form

u(x) = e0 + e1x = e1x. (3.5)
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For obtaining e1, we substitute (3.5) into (3.4), we will have

(e1 − 1) +

q1(x)︷ ︸︸ ︷
(−1

2
e2
1x

2) = 0.

By neglecting q1(x) which is O(x), we obtain e1 = 1 and then u(x) = x. For the next
step, we assume

u(x) = x + e2x
2. (3.6)

By substituting (3.6) into (3.4), we have

2e2x +

q2(x)︷ ︸︸ ︷
(−1

2
e2
2x

4 − e2x
3 − 1

2
x2) = 0.

From above relation and by neglecting q2(x), we have e2 = 0 and u(x) is the same
as in previous step. By repeating this method, we can compute more coefficients of the
solution. We have computed these coefficients till e11 and the result is

u(x) = x +
1
6
x3 +

1
30

x5 +
17

2520
x7 +

31
22680

x9 +
691

2494800
x11.

It is easy to verify that the exact solution of (8) is

u∗(x) =
√

2 tan(
√

2
2

x) = u(x) + O(x12),

where O(x12) is the reminder of the Taylor polynomial solution.

The results and the corresponding absolute errors are presented in Table 1. Last
column of Table 1, is absolute error of homotopy perturbation method (HPM) [7]. We
can see the results of the Power series method is better than homotopy perturbation
method with same terms of approximate solution.
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Table 1. Numerical results of Example 3.2

x Exactsolution PowerSeriesMethod Error(PSM) Error(HPM)
0 0 0 0 0
0.06250 0.06254072191846 0.06254072191846 0 0
0.12500 0.12532654131291 0.12532654131291 0 0
0.18750 0.18860641293011 0.18860641293009 0 0
0.25000 0.25263713577608 0.25263713577523 0 0
0.31250 0.31768760708140 0.31768760706588 0 0
0.37500 0.38404349626063 0.38404349609309 0 1× 10−5

0.43750 0.45201251729751 0.45201251604129 0 2× 10−5

0.50000 0.52193051544762 0.52193050823056 0 5× 10−5

0.56250 0.59416863732287 0.59416860347407 0 1.2× 10−4

0.62500 0.66914192777183 0.66914179243171 1.35× 10−7 2.4× 10−4

0.68750 0.74731980057855 0.74731932475829 4.75× 10−7 4.7× 10−4

0.75000 0.82923897486139 0.82923746989145 1.50× 10−6 8.6× 10−4

0.81250 0.91551967310620 0.91551531552761 4.36× 10−6 1.51× 10−3

0.87500 1.00688616720544 1.00687445884978 1.17× 10−5 2.56× 10−3

0.93750 1.10419317751013 1.10416366668469 2.95× 10−5 4.17× 10−3

1.00000 1.20846024213727 1.20838985088985 7.03× 10−5 6.61× 10−3

Example 3.3. Consider the following nonlinear integro-differential equation,




u′(x) = ex − 1
3
e3x +

1
3

+
∫ x

0
u3(s)ds,

u0) = 1,

(3.7)

with the exact solution u∗(x) = ex. In this example, in mth step, we use m + 1 terms of
Taylor expansion of ex and e3x . Again, we use the Power series method for obtaining
the solution of the problem. From the initial condition, e0 = 1. Assume, the solution of
(3.7) is the form

u(x) = e0 + e1x = 1 + e1x. (3.8)

By substituting (3.8) into (3.7), we obtain,

(e1 − 1) +

q1(x)︷ ︸︸ ︷
(−x− 3

2
e1x

2 − e2
1x

3 − 1
4
e3
1x

4) = 0.

By neglecting q1(x), we obtain e1 = 1 and then u(x) = 1 + x. For the next step, we
assume

u(x) = 1 + x + e2x
2, (3.9)

and by substituting it into (3.7), we have

(2e2−1)x+

q2(x)︷ ︸︸ ︷
(−1

2
x2 − 1

74
e3
2x

7 − 1
2
e2
2x

6 − 3
5
e2
2x

5 − 3
5
e2x

5 − 3
2
e2x

4 − 1
4
x4 − e2x

3 − x3) = 0.
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From the above relation and by neglecting q2(x), we have e2 = 1
2 and we obtain

u(x) = 1 + x + 1
2x2. By continuing this procedure, more coefficients of the solution can

be computed. These coefficients till e7 have been computed and the result is

u(x) = 1 + x +
1
2
x2 +

1
6
x3 +

1
24

x4 +
1

120
x5 +

1
720

x6 +
1

5040
x7.

This function is exactly the first eight terms of Taylor expansion of the analytic
solution. So,

u∗(x) = u(x) + O(x8).

and O(x8) is the error between the exact solution and the Taylor polynomial expansion.

Example 3.4. Finally, consider the following nonlinear integro-differential equation [15],





x′′(t) + 2tx′2(t) =
∫ t

0
(ts2 lnx′2(s) + y′′(s))ds,

y′′(t) = 2− t2 +
∫ t

0
(ln(y′′(s)− x′(s)) + x′(s)y′(s))ds,

x(0) = 0, x′(0) = 1,
y(0) = y′(0) = 0.

(3.10)

This system has the exact solution x∗(t) = t and y∗(t) = t2. Let

u1(t) = x(t), u2(t) = x′(t), u3(t) = y(t), u4(t) = y′(t),

so, the system (3.10) convert to





u′1(t) = u2(t),

u′2(t) + 2tu2
2(t) =

∫ t

0
(ts2 ln u2

2(s) + u′4(s))ds,

u′3(t) = u4(t),

u′4(t) = 2− t2 +
∫ t

0
(ln(u′4(s)− u2(s)) + u2(s)u4(s))ds,

u1(0) = 0, u2(0) = 1, u3(0) = 0, u4(0) = 0.

(3.11)

Let U(t) = [u1(t), u2(t), u3(t), u4(t)]T and ei = [e1i, e2i, e3i, e4i]T . From the initial
condition, e0 = [0, 1, 0, 0]T and so, U(t) = e0. Assume, the solution of (3.11) is the form

U(t) = e0 + te1 = [e11t, 1 + e21t, e31t, e41t]T (3.12)

By using the Taylor series of lnu2 about 1 and ln(u′4(s) − u2(s)) about e41 − 1 and
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substituting (3.12) into (3.11), we obtain,




(e11 − 1) +

q11(t)︷ ︸︸ ︷
(−e21t) = 0,

e31 +

q21(t)︷ ︸︸ ︷
(−e41t) = 0,

e21 +

q31(t)︷ ︸︸ ︷
[(2− e41)t + 4e21t

2 + 2e2
21t

3 − 2
3
e21t

5 +
1
3
e2
21t

6 − 2
9
e3
21t

7 +
1
9
e4
21t

8] = 0,

(e41 − 2) +

q41(t)︷ ︸︸ ︷
[(1 +

1
2
e21 − 1

2
e41)t2 + (

1
6
e2
21 −

1
3
e21e41)t3 +

1
12

e3
21t

4 +
1
20

e4
21t

5] = 0,

By neglecting qi1(t), i = 1, 2, 3, 4, we obtain the following

U(t) = [t, 1, 0, 2t]T . (3.13)

For the next step, we assume

U(t) = [t, 1, 0, 2t]T + e2t
2, (3.14)

and by substituting it into (3.11), we have




2e12t + O(t2) = 0,

(2e32 − 2)t + O(t2) = 0,

2e22 + O(t2) = 0,

2e42 + O(t2) = 0,

From the above relation , we have e2 = [0, 0, 1, 0]T and we obtain U(t) =
[t, 1, t2, 2t]T . By continuing this procedure, we will obtain zero for all of the remain
coefficients. So, for this example, we have been computed the exact solution.

4 Conclusions

In this work, we have used Power series method for numerical solution of linear and
nonlinear Volterra Integro-differential equations system. As shown in the three examples
of this paper, the proposed method is a powerful procedure for solving the problems.
The simplicity and also easy-to-apply in programming are two special features of this
method.
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