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ABSTRACT 
In this paper, partial cavitation over axisymmetric bodies have been solved, using the Boundary Element 
Method (BEM), based on potential. In this method, the cavity and the wetted surface of the body will be 
estimated by panels. Then, the cavitation will be modeled, by means of Green's third identity integral. For 
this purpose, the rings of the sources are distributed on the cavity surface, and the ring of the dipoles are 
distributed on the body and the cavity surface. The high speed and also proper accuracy in calculating the 
geometry of the cavity and the drag coefficient are considerable advantages of this method. 
Keywords: Partial cavitation, Boundary element method, Axisymetric bodies 
  

INTRODUCTION 
Cavitation is recognized as an inadvisable problem in most phenomena, but in some circumstances, 
cavitation is remarked as a beneficial problem. The most important example is the submerged projectiles, in 
which cavitation is desired because of intense decrease in drag force. The dimensionless parameter which is 
represented for introducing cavitation is the cavitation number, which is defined as below: 
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Where ∞p  is atmosphere pressure, νp is vapor pressure, ρ is the fluid density, and ∞V is the far field fluid 
velocity. If bodies move with relatively high velocities inside liquids, cavitation starts at a point in which its 
local pressure reaches fluid vapor pressure. In low velocities or in high cavitation numbers, cavity is closed 
on the body and is called partial cavitation. With increase in velocity and decrease in cavitation number, 
cavity grows and covers all the body, which is called supercavitation[1].  
Early studies of cavitation were performed by Efors (1946) and Tulin (1953), using theoretical methods. 
Cavitation stream can also be solved with boundary element method (BEM). In this method, a distribution of 
potential flow elements (vortex, source, sink, doublet and dipole) is located over the boundary of the flow. In 
1993, Fine and Kinnas devised a nonlinear boundary element method based on potential for solving partial 
cavitation flow over a hydrofoil [2]. Partial cavitation flow over torpedoes was conducted by Uhlman et al [2], 
using BEM method, and source and dipole distribution over body surface and cavity in 2003. All of the 
performed studies are limited to the specific geometries, but in this paper, partial cavitation and 
supercavitation have been studied, using the boundary element method on different bodies. 
 

BOUNDARY ELEMENT METHOD (BEM) 
This section explains the BEM cavitation model based on the potential flow theory.  
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Mathematical Formulation 
The potential flow model presented here is based on Green’s third identity formulation [3]. Applying this 
formulation to the axisymmetric disturbance velocity potential, ϕ, results in: 
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Where n is the normal vector directed outward from the solid-body surface and the cavity interface, s is the 
arclength along a meridian, and x and r are the components of the axisymmetric coordinate system. 
( )RrxG ,;, ξ  is the potential function related to the fluid sources distributed along a ring of radius R located 

on the axis at ζ=x  (see Figure 1,2 ). The potential function is defined as: 
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The total and disturbance potentials are related by: 
 
 

ϕφ += x  (6)
 
 

Where all quantities have been made dimensionless with respect to ρ, U∞ and d. The boundary conditions 
are kinematic condition on the solid-body surface, and both the kinematic and dynamic conditions on the 
cavity interface. These conditions are mathematically formulated as: 
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Where Sb and Sc are the areas of the solid-body surface and the cavity interface, respectively. These 
boundary conditions are equal to: 
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Where n and s are unit vectors normal and tangent to the solid-body/cavity boundary, respectively. The last 
boundary condition may be integrated to yield: 
 

 

( ) ( )000 1 xxss −−−++= σϕϕ  on cS  (11)
 
 

Where 0ϕ , is the potential at the detachment point of the cavity on the solid body. 

Governing Integral Equation 
Placing the unknowns on the left-hand side and the knowns on the right-hand side, Green’s third identity is 
written as: 
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On the wetted portion of the solid-body/cavity boundary and on the cavity interface: 
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Implementing the above boundary conditions Eq. (12) can be written as: 
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On the solid body and Eq. (13) becomes 
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On the cavity interface. 
In addition to these equations, an auxiliary condition is required for which we impose the condition that the 
net source strength is equal to the flux through the jet, which may be expressed as: 
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RESULTS 
Partial cavitation for a blunt cylinder and a cylinder with a spherical head is considered in this study. Figure 3 
shows a 3D view of the cylinder with spherical head and it's cavity shape for 2.0=σ . Also Figure 4 shows a 
3D view of a blunt cylinder and it's cavity shape for 3.0=σ . Figure 5 shows the pressure coefficient ( pC ) 
versus non-dimensional length for a cylinder with spherical head for a cavitation number of 0.2. As it is 
observed, BEM accurately predict the experimentally measured cavity length. At the end of the cavity region 
where the cavity is closed on the cylinder body (3.5 < L/D < 4), the pC  variation shows an overshoot which 
may be attributed to the simple model used in this method for the cavity termination on the solid body. The 
variation of pC  along the cavity for a blunt cylinder for 3.0=σ  is displayed in Figure 6. Similar to previous 
case, the BEM predictions show inaccuracies at the closure region. The method for the rest of the cylinder 
predicts the measurements very well.  
Dimensionless cavity diameter versus cavitation number for both a blunt cylinder and cylinder with spherical 
head are shown in Figure 7. For both geometries, the cavity diameter is increased as the cavitation number 
is reduced. Also Dimensionless cavity length versus cavitation number for both a blunt cylinder and a 
cylinder with spherical head are shown in Figure 8. For both geometries, the cavity length is increased as the 
cavitation number is reduced. At a constant cavitation number, a longer cavity length is provided by the blunt 
cylinder. It can be concluded that the spherical head generates a smaller cavity region. To represent the 
capability of boundary element method in modeling the cavitation over more complex geometries, the partial 
cavitation on a type of torpedo with a non–dimensional length of 24 and two different cavity lengths are 
shown in figures 9 and 10. As it is shown in figure 11, the cavity length reduces when the cavitation number 
increases.  
  

CONCLUSION 
In this paper the partial cavitations over axisymmetric bodies have been studied using BEM method. The 
results for two cases: a blunt cylinder and a cylinder with a spherical head are presented. The implemented 
BEM method led to very good results compared to the experiments, for pressure and the cavity shape. 
However, an overshoot at the end of the cavity region is predicted. It seems that the existing re-entrant jet at 
the end of the cavity should be considered particularly and accurately. The main advantage of the method is 
the needing a very short time (a few seconds) to reach the desirable convergence. 
 

 
 

Figure 1. Source ring in a cylindrical coordinate. 

 
 
 

Figure 2. Applying superposition of the free stream, 
with distributions of the dipoles and sources rings on 
the interface of the body and the cavity to solve 
cavitation. 
 

 
 
Figure 3. The steady shape of the cavity using BEM 

for a cylinder with a spherical head ( 2.0=σ ). 
 

 
Figure 4. The steady shape of the cavity using BEM 

for a blunt cylinder ( 3.0=σ ).  
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Figure 5. Pressure coefficient vs. non-dimensional 
length for a cylinder with a spherical head for 

2.0=σ  from experiments [4]. 

 
 
 

 
 

Figure 6. Pressure coefficient vs. non-dimensional 
length for a blunt cylinder for cavitation number 

3.0=σ  from experiments [4]. 

 
 

 
Figure 7. Dimensionless cavity diameter vs. 
cavitation number for a blunt cylinder and a cylinder 
with spherical head using BEM model. 

 

 
 
 

Figure 8. Dimensionless cavity length vs. 
cavitation number for a blunt cylinder and a 
cylinder with spherical head using BEM model.  

 
 

 
Figure 9. The partial cavitation over a torpedo with a 
non–dimensional torpedo length of 24, cavity length 
of 4 and 0.246σ = .  

Figure 10. The partial cavitation over a torpedo 
with a non–dimensional length of 24, cavity length 
of 18 and 0769.0=σ . 
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Figure 11. The change of cavity length versus the 
cavitations number for the partial cavitation on a type 
of torpedo in the non–dimensional length of 24. 


