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Abstract: A number of equations have been proposed to determine dispersion coefficient of stream analytically
since 1950. However, it 1s realized that it 1s difficult to use these equations for predicting the dispersion
coefficients because they require the detailed information on velocity profile and cross-sectional geometry. To
solve the problem, researchers tried to introduce empirical equations. This research presents an attempt to get
back to the fundamental analytical equations, because it is believed that a simple model proposed by Maghrebi
can provide a good prediction of the normalized 1sovel contours n the cross-section of open or closed channels
that are irregular in roughness as well as geometry. The input data for the model are the bed profile and its shear
and roughness distributions. Having obtained the isovel contours, the depth-averaged velocity profile at a
cross-section can be extracted. In order to extract the parameters that characterize the longitudinal dispersion
coefficients, applications of the model to the cross-sections of the Sacramento Delta in the Northem Califorma
and Clinch River near Speers Ferry in the US are presented. The evaluated parameters are the velocity deviation
intensity ratio r, a dimensionless parameter T and the dispersion coefficient K, which is derived from the depth-
averaged velocity profile by triple mtegration suggested by Fischer. The results of this study show that the
longitudinal dispersion coefficient predicted by the use of 1sovel contours 1s close to the coefficients produced

by measurement as well as theoretical methods.
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INTRODUCTION

Vertical and transverse velocity distributions are
fundamental for the understanding of the state of flow n
stream, which 1s required in a wide range of applications
in various disciplines such as pollution management and
modeling, ecological studies, emergency spill management
and the scientific study of water quality processes.
Usually, the velocity in a cross-section, varies from pomt
to point, which results from water surface effects and
shear stress at the bed. The velocity distribution in open
charmels 15 three-dimensional and complex, so,
evaluation of the global equation to calculate the
velocity in open channels is not easy. Considering the
significance of the velocity distribution for the estimation
of a number of hydraulic characteristics it would be an
advantage and use a general, accurate and user-friendly
method for the estimation of longitudinal dispersion
coefficient.

The mtensity of longitudinal dispersion 1s measured
by the longitudinal dispersion coefficient (Tayfur and
Singh, 2005). Hence, the transport process and the
consequent fate of pollutants are described by the

longitudinal dispersion coefficient. That 13 why the
dispersion coefficient has been extensively investigated
by Elder (1959), Socky (1969), Fischer et al. (1979),
Deng et al. (2002) and Seo and Baek (2004).

Taylor (1954) proposed a theoretical method to
predict the longitudinal dispersion coefticient. Elder (1959)
developed the method and derived an equation to
compute the longitudinal dispersion coefficient for
uniform flow in an infimtely wide-open channel, assuming
a logarithmic velocity profile in the vertical direction.
Elder's equation is simple and has a sound theoretical
background, so, it has been widely used. But Elder's
equation does not describe the longitudinal dispersion mn
natural stream (Fischer et al., 1979). According to
Fischer's (1979) earlier study, Elder's equation was found
to significantly underestimate the natural dispersion in
real stream because it does not consider the transverse
variation of the velocity profile across the stream.
Fischer (1975, 1979) postulated that in most natural
stream the transverse velocity profile 183 far more
important in producing the longitudinal dispersion than
the vertical profile and using the lateral velocity profile
instead of the wvertical velocity profile, obtained an
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Fig. 1: Definition of symbols and coordinate system

mtegral relation for the dispersion coefficient mn natural
stream having large width-to-depth ratio as:

K_ifhu’{ji%[;l‘hu’dz}dz}dz (1

I]et

where, K 1s the longitudinal dispersion coefficient, A 1s
the cross-sectional area of the stream, W is the stream
width, h is the local depth of flow, U is the deviation of
the depth-averaged velocity u,, from the cross-sectional
mean velocity U, 1.e.,u' = u- U, g 1s the transverse mixing
coefficient and z is the lateral coordinate measured from
the left bank of the stream (Fig. 1).

Fischer showed that the agreement between
measurements and the prediction obtained through Eq. 1
is within a factor of 4 in non-uniform streams and within
an error of 30% in uniform streams (Seo and Baek, 2004).
Eq. 1 1s rather difficult to use since detailed transverse
profiles of both the depth-averaged velocity and the
cross-sectional geometry are required. So, Fischer (1975)
developed a simpler equation by introducing
dimensionless quantities in the following form:

U 2)

K

t

where, W, 15 the characteristic length associated with
shear stress due to the transverse velocity distribution, E,
is the cross-sectional mean value of the transverse mixing
coefficient, r and I are velocity deviation intensity ratio

and dimensionless integral, respectively, which are given
by:

L 3)
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In Eq. 4, the dimensionless variables are defined as:

,

h’:%;z = =5 (5)

where, H is the cross-sectional average depth of channel
and 7 is the intensity of velocity deviation in the
streamwise direction, which is a measure of the deviation
of the turbulent averaged velocity from its cross-sectional
mean throughout the cross-section. Fischer (1973)
selected W, = 0.7 W as a reasonable choice for a real
stream with some degree of asymmetry.

Deng et al. (2002) performed a sensitivity and error
analysis and showed that the velocity U, channel width
W, mean depth of flow II and shear velocity u. take the
weighted factors of 5, 2.5, 1.25 and 1 in mmportance in
estimating the dispersion coefficient K, respectively.
Therefore, it 15 concluded that in order to obtain a reliable
prediction of dispersion coefficients, more attention
should be paid to the proper estimation of U and u,. To
estimate the longitudinal dispersion coefficient from the
velocity distribution, the transverse dispersion coefficient
must be known. The transverse dispersion coefficient is
very difficult to predict, especially in meandering
channels. This places severe limitations on our ability to
estimate the longitudinal dispersion coefficient from
velocity measurement.

Normalized depth-averaged velocity: Bogle (1997) worked
on the transverse depth-average velocity profile and its
application on the estimation of the longitudinal
dispersion coefficient i natural stream. He used the
Sacramento Delta data and suggested an empirical
equation for the transverse distribution of velocity in a
stream channel of width W, by a quartic function as
follows:

Y4_4 4B 70,7 (6)

where, Z =(2z/W)-1,B,=5A,-7.5,C=-TA+7.5, A is the
regression coefficient and z is the lateral coordinate
(Fig. 2).

Bogle's equation, suggested for prediction of depth-
average velocity in channel stream, is plotted in Fig. 2.
Equation 6 predicts negative velocities in the vicinities of
both banks that are obviously unrealistic. By increasing
A, the affected area under negative velocity is decreased.
Bogle (1997) in his researches on the Sacramento Delta
and in his suggested equation (Eq. €) has implied that the
quartic is a convenient choice because by specifying A,
one can define a profile that can be more or less sharply
peaked (A, = 1 gives a parabola, A, = 1.5 gives a profile
that is flat over 2/3 of the width).

2400



J. Applied Sci., 9 (13): 2408-2415, 2009

1.51 e -,
/-,- __ \.\'
Lo- ". .- - -~ . A
% 0.54
0.04
A
-0.51 ---A=12
-—-A=15
-1.0-% T T T
-1.0 -0.5 0 0.5 1.0
2Z/W-1

Fig. 2: Normalized depth-average velocity profiles by
using the Bogle’s equation (Seo and Baek, 2004)

Seo and Baek (2004) used the beta probability density
function to describe the complicated properties of the
transverse velocity distribution. They presented the
dimensionless transverse velocity distribution as:

u, T{o+p

- 0<Z<«l N
U el

@y a-,

where, ¢ and P are the parameters that affect the velocity
profile, T" is the gamma function and z' is the normalized
lateral coordinate.

Unlike other empirical functions proposed by Sooky
(1969), Deng et al. (2002), Bogle (1997) and Seo and
Cheong (1998), this function can represent a complete
specttum of the properties of the transverse velocity
distribution for natural stream e.g., this function can
produce velocity profiles with symmetrical and skewed
distributions with can be both flattened and sharp-
peaked. The velocity profile produced by the beta
function also shows good compatibility with the actual
velocity profile (Seo and Baek, 2004). The reason of this
good compatibility is that & and p are calculated by using
the measured depth-averaged velocity data. If there are no
field data, it 1s impossible to use the beta function, unless
« and p of similar river be used (Seo and Baek, 2004).

Maghrebi (2003, 2006) has proposed a simple method,
which is able to predict the normalized 1sovel contours at
the cross-sections of straight ducts and wregular open
channels both in the roughness and in geometry. Tt is
assumed that each element of boundary influences the
velocity at an arbitrary pomnt (M) m the cross-section
(Fig. 1). Then, the total effect of the boundary can be
obtained by the use of integration along the wetted
perimeter. Accordingly, he suggested that:

u= j ¢ £ir,,)xds ()

boundary

where, u is the streamwise velocity vector at a point on
the channel section, f (1) is a velocity function which is
similar to the dommant velocity profile over a flat plate
with infimty large width, ds is the vector notation along
the wetted perimeter and ¢, is a constant related to the
boundary roughness.

The vector direction of velocity on the left hand side
of Eq. 8 is the same as the vector product of f (1;)>ds on
the right hand side, which is a normal to flow section
towards downstream. f (1) is replaced by a power law
relationship that is commonly used to fit velocity profiles
in closed conduits and open channels, so, Eq. 8 may be
written as (Maghrebi and Ball, 2006):

u(z,y)= _[ ¢ ¢, sindu, ™ ds (9
boundary

where, 1, is the distance from a point in the river section
to the boundary element, m is a constant, 6 is the angle
between the positional vector and the boundary elemental
vector, u- 1s shear velocity, ¢; 13 a constant related to the
nature of flow and u(z, y) 1s a local point velocity at an
arbitrary position in the channel section.

The exponent m usually ranges between 4 and 12
depending on the intensity of turbulence (Yen, 2002).
However, the sixth root of power law profile has been
found to be equal to Manning's formula, which can be
well applied to natural streams i.e., m = & (Chen, 1991). By
using the average velocity, the normalized point velocity,
Uz, y), is given by:

J- ¢ ¢ sin0u, '™ ds
u(z,y) _ bowday

Uy)= o

1 10)
K'l. J- ¢ ¢, n0u, ' ds [dA

Al bondary

Equation 10 provides the normalized velocity at a
point as a simple function of the boundary geometry and
relative roughness. Having obtained the isovels, it is easy
to extract the depth-average wvelocity profiles. An
advantage of the Maghrebi's model 1s that it allows the
consideration of the hydraulic characteristics of the
boundary and their influences on the flow.

Field data: Six detailed measurements of cross-sectional
velocity distributions and dispersion coefficients are
available from the UUS Geological Survey (IUSGS) field
program in the Sacramento Delta and Godfrey and
Frederick’s field study (Seo and Baek, 2004). Two of the
sites are on the Sacramento River near the Delta Cross
Channel-WGA is just above the diversion point and WGB
is just below it and the third, OLD, is on the OLD River
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Fig. 3: Site of Sacramento Delta

Table 1: Channel dimensions, flow characteristics, correlation coefficient and average errors derived from Seo and Baek's equation, Maghrebi’s model and

Bogle's equation

Seo and Baek's Eq. Maghrebi's model Bogle's Eq.
Case Wm H(m U(msec?) OQ(m’sec’)) R (®0) Average errors (%) R (96) Average errors (%) R (%) Averageerrors (%6)
WGa4l  127.0 8.30 1.07 1136.0 883 -7.6 86.8 =54 88, 41.6
WGAG0O  111.0 7.10 0.38 298.0 887 -16.9 77.6 =232 S8, 25.8
WGB38  120.0 T.00 0.91 758.0 81.3 -16.0 80.2 -11.0 88, 20.8
WGBS7  108.0 5.10 0lé -85.0 78.4 -4.4 73.9 -1.0 S8, 16.2
OLD 187.0 6.30 0.37 435.0 91.2 -10.8 78.3 -12.6 88, T0.7
Clinch 4.2 0.55 040 9.7 78.6 -2.5 82.0 0.85 S8, 2.1

near Rock Slough (Fig. 3). Godfrey and Frederick’s field
study is located on the Clinch River near Speers Ferry in
the US. The channel dimensions and flow characteristics
of the mentioned cross-sections are shown in Table 1. In
Table 1, W 1s the stream width, H 1s the mean depth of
flow, U is the mean velocity and Q is the discharge
(Fig. 1 for the symbols). WGB57 comresponds to
discharges of -85 m’ sec™" which is a reverse flow case,
induced by exports at the Central Valley Project and the
State Water Project pumping plants on the Southern edge
of the Delta. The channel depth profile and the measured
depth-averaged transverse velocity profile for six cross-
sections are plotted in Fig. 4da-¢ and 5a-c. At the
Sacramento River sites, the channel has a near-rectangular
cross-section, which may not be representative of the
Delta as a whole.

The normalized depth-averaged wvelocity profiles
based on the field measurement, Bogle’s equation, Seo
and Baelk’s equation and Maghrebi’s model as well as the
1sovel contours based on Maghrebi’s model are shown in
Fig. 4 and 5. In Fig. 4 and 5, the profiles produced by Seo
and Bael’s equation are close to the ones produced by
Maghrebi’s model. However, Bogle’s profiles are not

close to the measured data. For the case of river sections
with irregular shapes, such as OLD, larger deviations
between the Bogle’s profiles and others can be observed
(Fig. 3b).

In calculating the transverse normalized depth-
average velocity by using Maghrebi’s model, the shear
velocity distribution on the wetted perimeter of the river
cross-section 1s considered to be constant. It 1s obvious
that if a better estimation of the shear velocity u. and
roughness ¢, along the wetted perimeter are available, the
results obtained by Maghrebi’s model will be closer to the
measured feild data.

Unlike the Bogle and the Seo and Baek’s equations,
which are able to predict the dimensionless transverse
velocity distribution only through the calibration of the
parameters, the proposed model by Maghreb: 15 able to
predict the normalized transverse velocity distribution
from the geometry of the cross-section and the nature of
flow.

In Table 1, the correlation coefficient (R) and average
error between the field and the predicted data by different
models
calculated by the following equation:

are shown. The correlation coefficient 1s
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Fig. 4: Isovel contours predicted by Maghrebi’s model and comparison of the measured data with depth-averaged
velocity profiles predicted by different methods (a) WGA41 (b) WGAG0 and (¢) WGB38

an

where, S, is the sum of the squares of the residuals
between the data points and the mean and S, is the sum of
squares of the residuals between the data points and the
data predicted by the model.

As mentioned previously, Seo and Baek (2004) used
the field data to obtain the coefficients and as a
consequence the correlation coefficient in Seo and Baek’s
equation is better than in Maghrebi’s model. However, the
difference of the R magnitudes in the two models is small.
Investigation of Bogle's quartic equation reveals that this
equation can only produce symmetrical depth-averaged
velocity profiles. Negative velocities near the banks
predicted by the quartic equation lead to S<S; (Table 1).

As shown in Fig. 4 and 5, in the middle of rivers the
normalized depth-averaged velocities predicted by Seo
and Baek’s model and Maghrebi’s model compare very
well with the field data. The observed depth-average

velocity shows some fluctuations. Neither model nor
equation can model large fluctuations in the flow. The
main reason for larger average errors, which are shown in
Table 1, is the difference between the observed and
predicted values in the bank regions. When the predicted
results of Bogle’s equation are compared with the
observed data, due to unrealistic negative velocity near
the banks, a higher average error will be obtained
(Table 1).

According to Eq. 2, the deviation intensity ratio r and
dimensionless integral I contribute to the evaluation of K.
Application of the transverse velocity profiles in Eq. 3
and 4, obtained by the use of artificial velocity profiles
such as beta density function (Eq. 7), Maghrebi’s model
and the quartic equation (Eq. 6), provide different results,
as shown in Table 2. The calculated values of r according
to the three methods are more or less comparable to each
other. However, the calculated values of I based on the
beta function and isovel contours are quite close to each
other and very different from the one obtained by quartic
function.

2412



J. Applied Sci., 9 (13): 2408-2415, 2009

——Magirebi =—=-Seo and Baek
—e—Measured ——= Bogle (A,=1.20)

o

1.57(a)
-
o P M g .."

0 0.25

0.50 0.75 10
IW

Fig. 5: Isovel contours predicted by Maghrebi’s model and comparison of the measured data with depth-averaged
velocity profiles predicted by different methods (a) WGB57 (b) OLD and (¢) Clinch

Table 2: Calculation values of r and I at six different river sections

Seo and Baek's Eq. Maghrebi's model ~ Bogle's Eq.

Case T I T 1 T 1

WGA41 0.0521 0.0161 0.0375 0.0139  0.694 -0.0236
WGA60 0.1153 0.0185 0.0362 0.0140 0.633 -0.0124
WGB38  0.0478 0.0177 0.0442  0.0175 0.625 0.0059
WGB57 0.0142 0.0157 0.0245 0.0178  0.629 0.0068
OLD 0.0586 0.0181 0.0317  0.0133 0.662 -0.0160
Clinch 0.0211 0.0256 0.0208 0.0243  0.626 -0.0014

Table 3: Comparison of the measured and estimated dispersion coefficients
K (mm? sec™)

Seo and Baek's Eq. Maghrebi's model Bogle's Eq. Measured

Case Krg1 Kreo Ky Krgz Ko Kr, K

WGA41 57.60 28.20 36.00 17.64 -1131.9 -534.6 15.70
WGA60 17.90 8.80 4.30 2.10 -65.9 -323 5.40
WGB38 69.00 33.81 62.98 30.86  299.1 146.6 33.90
WGB57 0.72 035 1.40 0.69 13.8 6.8 0.15
OLD 51.90 2540 20.63 10.11 -516.2 -2529 12.20
Clinch 8.50 420 8.00 3.90 -13.8 -6.8 8.55

In Table 3, the measured and estimated dispersion
coefficient at six river cross-sections are shown. The

calculated dispersion coefficients are given based on
three different depth-average velocities. Equation 2, with
the assumption of W, = 0.7 W which is proposed by
Fischer (1975), is usually considered as the most common
equation for calculation of K. The calculated value of
K based on this equation is compared with the measured
data (Table 3). From Table 3, it is seen that the calculated
K based on Eq. 2 is about half of the value obtained by
Eq. 1. In all cases, the dispersion coefficients predicted by
Seo and Baek’s equation and Maghrebi’s model are
reasonable and comparable with field data. However,
Bogle’s equation predicts negative velocities in the
vicinity of the banks, the dispersion coefficient predicted
by this equation are unrealistic and much larger than the
measured ones. Among all sections, the calculated K at
two of them is significantly different from the measured
ones (WGB357 and Clinch). It seems that the reverse flow
at WGBS7 is responsible for that. Also, at Clinch Station
due to the shallow river section, the measured K is about
twice larger than the calculated ones. This feature of flow
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is explained in detail by the storage transient mechanism
and solute transport in the previously performed work
(Bencala, 1983; Bencala and Walters, 1983).

CONCLUSIONS

Estimation of dispersion coefficient in natural stream
has many applications in river engineering. The shape of
the stream cross-sections mnfluences the dispersion
coefficient. Most of the rivers have a large ratio of width-
to-depth, say more than 10. This makes the evaluation of
the dispersion coefficient very simple, as it can be
expected to find that the transverse velocity profile is
more than one hundred times as important in producing
longitudinal dispersion as the vertical profile. A
quantitative estimate of the dispersion coefficient i a real
stream can be obtamed by neglecting the vertical profile
entirely. This leads to vertically uniform concentrations.
Thus, a depth-averaged approach would be adequate. For
estimation of the dispersion coefficient in natural stream
having large width-to-depth ratios the integral formula
proposed by Fischer (Eq. 1) should be evaluated.
However, due to the lack of the detailed mformation on
the wvelocity profile and cross-sectional geometry, a
mumber of empirical formulas have been proposed to
evaluate the longitudinal dispersion coefficient.
Equation 2 is an empirical equation, which 1s proposed on
the similar assumption as Eq. 1. The results of this study
show that the magnitude of the longitudinal dispersion
coefficient obtained from Eq. 1 is about twice larger than
the one evaluated by using Eg. 2. Although, a
comparison of the results extracted from Eq. 1 and 2 has
not appeared in previous works, 1t 1s concluded that
Eq. 2 1s able to produce more accurate results.

To deal with Eq. 2, the depth-averaged transverse
velocity profile is required. Some of these equations, such
as the one proposed by Bogle (1997) (Eq. 6), are only
applicable to symmetrical cross-sections. However, due to
any kind of wregularity in the cross-section, the depth-
averaged velocity profile will not remamn symmetric any
more. Some equations have a good flexibility to fit the
unsymmetrical  measured data  obtained  from
unsymimetrical cross-sections. Equation 7, introduced by
Seo and Baek (2004) has considerable flexibility in
producing symmetrical and asymmetrical velocity
distributions to fit the measured velocity data.

The results of this study show that the proposed
model for the production of isovel contours by Maghrebi
(2003) can be considered as an appropriate, fast and easy
model to predict transverse depth-average velocity
profiles. The longitudinal dispersion coefficient that
results from the 1sovel contours 1s close to the measured

longitudinal dispersion coefficient. The coefficient

obtained by the use of Eq. 6 for irregular cases such as
asyminetrical cross-sections are unrealistic.

NOTATIONS

The following symbols are used in this study:

A . Cross-sectional area of the stream

A, . Regression coefficient

¢,¢, : Constants related to the boundary roughness
and flow regime, respectively

ds . Vector notation along the wetted perimeter

ds . Element notation along the wetted perimeter

E, : Cross-sectional mean value of the transverse

mixing coefficient

f(ry) : Velocity function

H . Mean depth of flow

h . Local depth of flow

I : Dimensionless integral

K . Longitudinal dispersion coefficient

m : Constant

R : Correlation coefficient

T : Velocity deviation intensity ratio

Ty : Distance from a point in the river section to the
boundary element

3, : Sum of the squares of the residuals between the
data points and the mean

3, : Sum of squares of the residuals between the
data points and the predicted data by model

U . Mean velocity

u . Streamwise velocity vector

u . Streamwise velocity at a point in the channel
section

uy . Depth-averaged velocity

u’ : Deviation of the depth-averaged velocity from
the cross-sectional mean velocity u,-U

W . Shear velocity

L2 Intensity of velocity deviation i the streamwise

direction

Uz, y) : Normalized point velocity = u(z, yv)/U

W : Stream width

W, . Characteristic length associated with shear due
to the transverse velocity distribution

z . Lateral coordinate measured from the left bank
of the stream

z : Normalized lateral coordinate measured from the
left bank of the stream

a,p - Constant parameters

r : Gamma function

£, . Transverse mixing coefficient

0 . Angle between the positional vector and the

boundary elemental vector

2414



J. Applied Sci., 9 (13): 2408-2415, 2009

REFERENCES

Bencala, K.E., 1983. Smunulation of solute transport in
mountain pool-and-riffle stream with a kinetic mass
transfer model for sorption. I. Water Resour. Res.,
19: 732-738.

Bencala, K.E. and R.A. Walters, 1983. Simulation of sclute
transport in mountain pool-and-riffle stream: A
transient storage model. T. Water Resour. Res.,

19: 718-724.

Bogle, G.V., 1997. Stream velocity profiles and
longitudinal ~ dispersion. I.  Hydraulic Eng.,
123: 816-820.

Chen, C.I., 1991. Unified theory on power laws for flow
resistance. J. Hydraulic Eng., 117: 371-389.

Deng, Z.Q., V.P. Singh, L. Bengtsson and D.D. Adrian,
2002. Longitudinal dispersion coefficient in single-
chanmnel streams. J. Hydraulic Eng., 128: 901-916.

Elder, T W., 1959. The dispersion of a marked fluid in
turbulent shear flow. J. Fluid Mechanics, 5: 544-560.

Fischer, H.B., 1975. Discussion of 'Simple method for
predicting dispersion in stream' by R.S. McQuvey
and T.N. Keefe. J. Environ. Eng. Div. Am. Soc. Civil
Eng., 101: 453-455.

Fischer, HB., E.J. List, R.C.Y. Koh, J. Imberger and
N.H. Brooks, 1979. Mixing in Inland and Coastal
Waters.  Academic Press, York,
ISBN: 9780122581502,

New

Maghrebi, M.F., 2003. Discharge estimation in flumes
using a new technique for the production of sovel
contours. Proceedings of International Conference
on Civil and Environment Engineering ICCEE, Oct.
23-24, Hiroshima, Japan, pp: 147-156.

Maghrebi, M.F., 2006. Application of the single point
measurement in discharge estimation. J. Adv. Water
Resour., 29: 1504-1514.

Maghrebi, M.F. and J.E. Ball, 2006. New method for
estimation of discharge. J. Hydraulic Eng.,
132: 1044-1051.

Seo, IW. and T.5. Cheong, 1998. Predicting longitudinal
dispersion coefficient in natural streams. J. Hydraulic
Eng., 124: 25-32.

Seo, IW. and K.O. Baek, 2004. Estimation of the
longitudinal dispersion coefficient using the velocity
profile in natwral streams. J. Hydraulic Eng.,
130: 227-236.

Sooky, AA., 1969. Longitudinal dispersion in open
chamnels. J. Hydraulic Div. Am. Soc. Civil Eng.,
95:1327-1346.

Tayfur, G. and V.P. Singh, 2005. Predicting longitudinal
dispersion coefficient in natural streams by artificial
neural network. J. Hydraulic Eng., 131: 991-1000.

Taylor, G.I., 1954, Dispersion of matter in turbulent flow
through a pipe. Proc. Royal. Soc. London, Ser. A,
Math. Physical Sci., 223: 446-468.

Yen, B.C., 2002. Open channel
I. Hydraulic Eng., 128: 20-39.

flow resistance.

2415



