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SUMMARY 
Linear and non-linear bending analysis of laminated plates with different boundary 
conditions is presented using generalized differential quadrature (GDQ) method. 
Governing equations are based on the first-order shear deformation theory (FSDT) and 
von Kármán-type of geometric non-linearity. GDQ technique and Newton–Raphson 
method are employed to solve the system of non-linear equations.  
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1. INTRODUCTION 

Composite laminated structures are being widely used in aerospace, automotive, marine 
and other technical applications. In reality, many plate structures are subjected to high 
load levels that may undergo large deflections. The effect of this large deflection is to 
stretch the middle plane of the plate inducing membrane stresses. By this membrane 
action, the load carrying capacity of the plate is increased to a large extent. For plates of 
this kind, the governing differential equations become non-linear. The non-linearity of 
the governing equations may be due to either material non-linearity or geometric non-
linearity. In this paper only geometric non-linearity will be considered. This non-
linearity is due to the fact that the strain displacement relations are non-linear.  
Many approaches are used in the non-linear analysis of plates. Nath and Prithviraju [1] 
studied the non-linear statics and dynamics of laminated square plates. Their 
methodology of solution was based on the Chebyshev series technique. A 
comprehensive summary of the solutions for the geometrically non-linear analysis of 
isotropic and composite laminated plates is also given by Chia [2]. Semi-analytical 
approximations for the non-linear problem of laminated plates undergoing large 
deformation were also obtained using the Rayleigh–Ritz method [3] or the Galerkin 
method [4]. Yang and Shen [5] studied non-linear bending of shear deformable 
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functionally graded plates subjected to thermo-mechanical loads. Their formulations 
were based on Reddy’s higher-order shear deformation plate theory with including 
thermal effects. In this study a semi-numerical approach, which makes use of multi-
parameter perturbation technique, one-dimensional differential quadrature 
approximation and Galerkin method, was employed to calculate the non-linear bending 
of the plates. Yang and Shen [6] also investigated the large deflection and postbuckling 
of functionally graded rectangular plates under transverse and in-plane loads.  
The efforts of many authors are not only directed to accuracy and wide applicability of 
their formulations, but also to computational efficiency. Usually, accurate numerical 
solution of an engineering problem can be obtained by low-order finite difference and 
finite element methods using a large number of grid points. As a consequence, a lot of 
computational effort is needed. In seeking a more efficient method to get an accurate 
numerical solution by using just a few grid points, Bellman et al. [7,8] proposed a global 
method of differential quadrature (DQ) in 1972. The DQ approximates a derivative with 
respect to a coordinate direction at a grid point by a weighted linear sum of all the 
functional values in that direction. It was demonstrated that the DQ method was able to 
rapidly compute accurate solutions for partial differential equations by using only a few 
grid points in the respective solution domains [7,8]. Obviously, the first step for 
application of this method is to determine the weighting coefficients for any order 
partial derivatives. For the weighting coefficients of the first order derivatives, two 
techniques were suggested by Bellman et al. [7,8] which both have some restrictions. In 
order to overcome these difficulties, generalized differential quadrature was developed 
by Shu and Richards [9] and has been applied to solve some problems in fluid 
dynamics. 
In this paper, generalized differential quadrature method is employed to obtain solutions 
for large deflection of moderately thick laminated plates. Accuracy and convergence of 
the method are examined with various examples.  
 

2. GOVERNING EQUATIONS 

Consider a rectangular plate of sides a and b and thickness h, shown in Figure 1. 
According to the first-order shear deformation theory, the displacement field at a point 
in the plate is expressed as [10]:  
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where u, v and w denote the displacements in x, y and z directions and xφ  and yφ are 
rotation functions. The strain–displacement relations due to von Kármán-type of 
geometric non-linearity can be expressed as follows [10]: 
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Underlined terms in Eqs. (2) are non-linear terms which are omitted for linear analysis. 
Also the curvatures are,  



  

 
 

 
 
 
 
           
 
 

 
Figure 1: Laminate geometry and coordinate system 
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By using Eqs. (2) and (3) the constitutive equations are obtained as follows, 
0 0

11 12 16 11 12 16

0 0
21 22 26 21 22 26

0 0
61 62 66 61 62 66

x xx

y y y

xy xy xy

A A A B B BN
N A A A B B B

N A A A B B B

ε κ

ε κ

ε κ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (4a)

0 0
11 12 16 11 12 16

0 0
21 22 26 21 22 26

0 0
61 62 66 61 62 66

x xx

y y y

xy xy xy

B B B D D DM
M B B B D D D

M B B B D D D

ε κ

ε κ

ε κ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (4b)

0
55 54

0
45 44

x xz
s

y yz

Q A A
K

Q A A
ε
ε
⎧ ⎫⎧ ⎫ ⎡ ⎤ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

 (4c)

where Ks is the shear correction factor and in all presented results 6/5=sK . Also 
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Governing equations of the plate can be modified for functionally graded materials 
(FGMs). For FGMs we have [10]: 
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In which c and m denote ceramic and metal, respectively. 
Substituting Eqs. (1), (2) and (3) into constitutive equations in (4) leads to eight 
equations in terms of , , , , , , , , , , ,x y x y xy x y xy xu v w N N N M M M Qφ φ and yQ . 
 

2.1. Equilibrium Equations 

Equations of equilibrium can be derived using variational principle which is not 
explained in details here (see [10]). Five equilibrium equations are as follows, 
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where Q is the lateral distributed load. Five equilibrium equations in (7) together with 
eight constitutive equations in (4) are complete set of governing equations for the non-
linear bending of laminated plates which consists of thirteen partial differential 
equations. 
 

2.1. Boundary Conditions 

Different boundary conditions are considered at each edge of the plate as: 
1. Clamped (C): 

0===== yxwvu φφ                          (at all edges) (8) 
2. Simply supported (S):  

0===== xy Mwvu φ                       at (x=constant) (9a) 
0===== yx Mwvu φ                       at (y=constant) (9b) 

3. Free (F):  
0===== xyxxxyx MMQNN           at (x=constant) (10a) 
0===== xyyyxyy MMQNN           at (y=constant) (10b) 

In the following section, numerical solution procedure for the governing equations (4) 
and (7) subjected to a combination of boundary conditions in Eqs. (8)-(10) will be 
discussed in more details.  
 

3. APPLICATION OF GDQ METHOD 

The GDQ method is used to solve the non-linear differential equations of the plate. The 
plate is divided into nx×ny grid points where nx and ny represent the number of nodes in 
the x and y directions, respectively. Although the simplest procedure for discretization 
of the domain is to select equally spaced points, it is shown by Shu and Chew [11] that 
one of the best options for obtaining grid points is zeros of the well-known Chebyshev 
polynomials: 
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According to the GDQ method, the governing equations (4) and (7) can be re-written in 
discretized form. For example, equilibrium equations (7) at a sample grid point (xi, yj) 
can be written as: 
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where (xi,yj) is a grid point inside the plate with i = 2, …, nx -1 and j = 2, …, ny -1. ijA  

and ijA  are weighting coefficients for first-order partial derivatives and ijB and ijB  for 
second-order partial derivatives [11]. 
Following the procedure explained above leads to a system of 13(nx×ny) non-linear 
algebraic equations with the same number of unknowns.  
Note that applying boundary conditions to the obtained algebraic equations, five of the 
thirteen unknown parameters at each boundary node will vanish. At last an incremental-
iterative method should be used to solve the resulting non-linear system of equations. In 
the present analysis, the solution algorithms are based on the Newton–Raphson method. 
 

4. RESULTS AND DISCUSSION  

The presented GDQ method together with Newton–Raphson iterative scheme is used to 
obtain solution to the governing equations of linear/non-linear bending of laminated 
plates with different combination of boundary conditions: simply supported (S), 
clamped (C) and free edges (F). The edges of the plate are numbered from 1 to 4 as 
shown in Figure 1. For example the symbol SCCS, identifies a plate with edge 1 simply 
supported, edges 2 and 3 clamped and edge 4 simply supported.  In all examples 
material properties of the plate are: 
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In this study, two types of loading including uniform and sinusoidal distributed loads 
are considered as: 
Uniform load:  ( , ) 0x yQ Q=  
Sinusoidal load: ( , ) 0 sin( / )sin( / )x yQ Q x a y bπ π=  

(14)

All results presented in this section are compared with results of other numerical and 
analytical studies available in the literature. In certain cases where results were not 
found in the open literature all predictions are compared with results of the commercial 
finite element code ABAQUS. 



  

4.1. Linear Analysis 

First examples regards to linear analysis of [0/90] and [0/90]10 laminated square plates 
of side a with two opposite straight edges simply-supported subjected to sinusoidally 
distributed loading. The other two edges of the plates could be any combination of 
clamped, free or simply supported. Side to thickness ratios of the plates are a/h=5 and 
10. 
Table 1 compares the normalized central deflection of [0/90] laminated square plate 
with analytical and FEM solutions [10] based on the first- and third-order shear 
deformation plate theories together with classical laminate plate theory (CLPT). Table 2 
also presents the normalized central deflection of [0/90]10 laminated square plate. All 
numerical results of Tables 1 and 2 for central deflection are normalized using 

* 3 4
22100 / ow w E h q a= × . Results presented in both Tables reveal that assuming large and 

small values for geometry parameters do not affect accuracy of the results of GDQ 
method as they very well match with analytical solutions.  
 
Table 1: Normalized central deflection of [0/90] graphite-epoxy square plate under 
sinusoidally loading (linear analysis). 

BC a/h 
Present GDQ FSDT 

Exact 
[10] 

FSDT 
FEM 
[10] 

TSDT 
[10] 

CLPT 
[10] 5×5 7×7 9×9 11×11 13×13

FF 5 2.727 2.770 2.777 2.777 2.777 2.777 2.776 2.624 1.777 
10 1.990 2.019 2.025 2.028 2.028 2.028 2.027 1.992 1.777 

FS 5 2.298 2.334 2.335 2.335 2.335 2.335 2.334 2.211 1.471 
10 1.654 1.686 1.687 1.687 1.687 1.687 1.687 1.658 1.471 

FC 5 1.872 1.901 1.897 1.897 1.897 1.897 1.897 1.733 0.980 
10 1.151 1.227 1.223 1.223 1.223 1.223 1.223 1.184 0.980 

SS 5 1.730 1.758 1.758 1.758 1.758 1.758 1.759 1.667 1.064 
10 1.206 1.236 1.237 1.237 1.237 1.237 1.238 1.216 1.064 

SC 5 1.448 1.479 1.477 1.477 1.477 1.477 1.478 1.333 0.664 
10 0.805 0.888 0.883 0.883 0.883 0.883 0.883 0.848 0.664 

CC 5 1.225 1.261 1.257 1.257 1.257 1.257 1.257 1.088 0.429 
10 0.558 0.664 0.656 0.656 0.656 0.656 0.657 0.617 0.429 

 

4.1. Non-Linear Analysis 

The convergence behavior and accuracy of the method in non-linear static analysis are 
also checked for laminated plates. It is assumed that the plates are subjected to uniform 
distributed load in all examples. 
The central deflection of a [0/90/90/0] laminated square plate is validated with those 
predicted by Zhang and Kim [12] using the finite element method, shown in Table 3. 
Zhang and Kim [12] also employed FSDT for their non-linear analysis. In this table the 



  

boundary conditions of the plate is considered to be CCCC and side to thickness ratio 
a/h=40.  
 

Table 2: Normalized central deflection of [0/90]10 graphite-epoxy square plate under 
sinusoidally loading (linear analysis). 

BC a/h 
Present GDQ FSDT 

Exact 
[10] 

FSDT 
FEM 
[10] 

TSDT 
[10] 

CLPT 
[10] 5×5 7×7 9×9 11×11 13×13

FF 5 1.643 1.663 1.663 1.663 1.663 1.663 1.662 1.651 0.665 
10 0.900 0.914 0.915 0.915 0.915 0.915 0.914 0.916 0.665 

FS 5 1.439 1.459 1.460 1.460 1.460 1.460 1.460 1.450 0.579 
10 0.787 0.800 0.800 0.800 0.800 0.800 0.800 0.801 0.579 

FC 5 0.251 1.258 1.258 1.258 1.258 1.258 1.258 1.214 0.380 
10 0.609 0.612 0.612 0.612 0.612 0.612 0.612 0.607 0.380 

SS 5 1.121 1.136 1.137 1.137 1.137 1.137 1.137 1.129 0.442 
10 0.605 0.615 0.615 0.615 0.615 0.615 0.616 0.616 0.442 

SC 5 1.033 1.045 1.045 1.045 1.045 1.045 1.045 1.001 0.266 
10 0.473 0.480 0.780 0.480 0.480 0.480 0.480 0.473 0.266 

CC 5 0.937 0.945 0.945 0.945 0.945 0.945 0.945 0.879 0.167 
10 0.379 0.385 0.385 0.385 0.385 0.385 0.386 0.375 0.167 

 
Table 4 also represents normalized maximum deflection due to different values of load 
parameter of CCSS laminated square plate with side to thickness ratio of a/h=10. 
Included in the table is also results of finite element code ABAQUS.  
Non-dimensional deflection of [0/90] laminated square plate on its center line is studied 
in Figures 2(a) and 2(b). In these figures the boundary conditions of the plate is 
considered to be SSSC and SCSF, respectively.  
Figure 3(a) shows the effect of boundary conditions on the deflection of the [0/90] 
laminated square plate. Deflection of the FFCC laminated square plate is also presented 
for two different laminate lay-ups in Figure 3(b). In Figures 2 and 3 side to thickness 
ratio of the plate is a/h=10 and 4 4

0 22/ 100Q a E h = .  
In the previous section, it is noticed that governing equations can be modified for 
functionally graded plates in order to examine the GDQ method for non-linear bending 
of FG plates. So the last example regards to non-linear bending of Aluminum-Alumina 
FG plates. Normalized central deflection of this plate versus load is shown in Figure 
4(a). Included in these figure is also analytical results of GhannadPour and Alinia [13]. 
It is seen that the GDQ results are in good agreement with those obtained by analytical 
solution. Figure 4(b) also presents variation of normalized deflection of CCSS square 
FG plate at / 0.5y b = . In Figure 4(a) a/h=10 and in Figure 4(b) 4 4

0 22/ 200Q a E h = . It is 
clear that the results of present GDQ method are in good agreement with ABAQUS 
finite element results and good accuracy of the GDQ method is a noticeable point of all 
examples. 

 



  

Table 3: Normalized deflection (w/h) of CCCC graphite-epoxy square plate 
 (non-linear analysis).  

4
0

4
22

Q a
E h

 Present work Zhang and Kim [12] 

77×  99× 1111×  

100 0.4725 0.4704 0.4703 0.4608 
150 0.5882 0.5852 0.5851 0.5771 
200 0.6846 0.6758 0.6757 0.6668 
250 0.7601 0.7549 0.7547 0.7403 

 
 

Table 4: Normalized deflection (w/h) of CCSS graphite-epoxy square plate 
 (non-linear analysis).  

4
0

4
22

Q a
E h

 
Present work   

ABAQUS 9×9 11×11 13×13   

100 0.70129 0.74193 0.74194   0.75436 
200 0.95650 1.11040 1.11041   1.13099 
300 1.30495 1.35439 1.35439   1.38000 
400 1.49655 1.54173 1.54174   1.56001 
500 1.62840 1.68500 1.68501   1.70345 

 
 

 
 
 

Figure 2: Normalized deflection of graphite-epoxy square plate with (a) SSSC and (b) 
SCSF boundary conditions (non-linear analysis).  

 
 

a b 



  

 
Figure 3: Effect of (a) boundary conditions and (b) laminate lay-ups on the deflection of 

[0/90] graphite-epoxy square plate (non-linear analysis).  
 

 
Figure 4: (a) Normalized central deflection of SSSS FG square plate versus load. (b)Variation 
of normalized deflection of CCSS FG square plate at / 0.5y b =  (non-linear analysis). 

 

5. CONCLUSIONS 

The generalized differential quadrature method is used to obtain numerical solution for 
linear and non-linear bending of laminated square plates subjected to 
sinusoidally/uniformly distributed load and various boundary conditions. Comparisons 
of the results with those available in the literature and results of finite element code 
ABAQUS show good agreements. It is shown that the system equation which is used in 
this study provides a simple procedure to apply various boundary conditions. Results 
also revealed that the method is efficient and accurate and therefore, could be used for 
more complicated problems. 
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