Algebra Colloquium 16:4 (2009) 653-660

Algebra Colloquium © 2009 AMSS CAS & SUZHOU UNIV

A Characterization of Gorenstein Rings and Grothendieck's Conjecture^{*}

Kazem Khashyarmanesh

Ferdowsi University of Mashhad, Department of Mathematics P.O. Box 1159-91775, Mashhad, Iran E-mail: Khashyar@ipm.ir

> Received 24 December 2006 Revised 5 March 2008

Communicated by K.P. Shum

Abstract. Given a commutative Noetherian local ring (R, \mathfrak{m}) , it is shown that R is Gorenstein if and only if there exists a system of parameters x_1, \ldots, x_d of R which generates an irreducible ideal and

$$\sum_{j=1}^d x_j^t R :_R \mathfrak{m} \subseteq \Big(\bigcup_{s \in \mathbb{N}} \Big(\sum_{j=1}^d x_j^{t+s} R\Big) :_R x_1^s \cdots x_d^s\Big) + x_1^{t-1} \cdots x_d^{t-1} \Big(\sum_{j=1}^d x_j R :_R \mathfrak{m}\Big)$$

for all t > 0. Let *n* be an arbitrary non-negative integer. It is also shown that for an arbitrary ideal \mathfrak{a} of a commutative Noetherian (not necessarily local) ring *R* and a finitely generated *R*-module *M*, $\operatorname{Hom}_R(R/\mathfrak{a}, H^n_\mathfrak{a}(M))$ is finitely generated if and only if there exists an \mathfrak{a} -filter regular sequence $x_1, \ldots, x_n \in \mathfrak{a}$ such that

$$\sum_{j=1}^{n} x_j^t M :_M \mathfrak{a} \subseteq \left(\bigcup_{s \in \mathbb{N}} \left(\sum_{j=1}^{n} x_j^{t+s} M \right) :_M x_1^s \cdots x_n^s \right) + x_1^{t-1} \cdots x_n^{t-1} \left(\sum_{j=1}^{n} x_j M :_M \mathfrak{a} \right)$$

for all t > 0.

2000 Mathematics Subject Classification: 13H10, 13D45

Keywords: Gorenstein rings, system of parameters, Grothendieck's conjecture, local cohomology modules, filter regular sequences

1 Introduction

Let R be a commutative Noetherian local ring with maximal ideal \mathfrak{m} . It is well known that a Cohen–Macaulay ring R is Gorenstein if and only if some ideal generated by a system of parameters (called a parameter ideal) is irreducible. Also, it

 $^{^{*}\}mathrm{The}$ author was partially supported by a grant from the Ferdowsi University of Mashhad, Iran.

follows from a result of Northcott and Rees [13, Theorem 1] that if every parameter ideal is irreducible, then R is Cohen–Macaulay. Therefore, R is Gorenstein if and only if every parameter ideal is irreducible. Recently, in [11], Marley, Rogers and Sakurai proved that there exists an integer ℓ such that R is Gorenstein if and only if some parameter ideal contained in \mathfrak{m}^{ℓ} is irreducible. They also showed that the integer ℓ identified in their result may be taken to be the least integer $\delta = \delta(R)$ such that the canonical map

$$\operatorname{Ext}_{R}^{d}(R/\mathfrak{m}^{\delta}, R) \longrightarrow \lim_{\overrightarrow{\alpha}} \operatorname{Ext}_{R}^{d}(R/\mathfrak{m}^{\alpha}, R) \cong H^{d}_{\mathfrak{m}}(R)$$

is surjective after applying the functor $\operatorname{Hom}_R(R/\mathfrak{m}, -)$, where $d = \dim R$. Moreover, they proved that in the present situation, the map

$$\operatorname{Hom}_{R}\left(R/\mathfrak{m}, \, \frac{R}{(x_{1}, \dots, x_{d})}\right) \longrightarrow \operatorname{Hom}(R/\mathfrak{m}, H^{d}_{\mathfrak{m}}(R))$$

which is induced by the canonical map

$$\frac{R}{(x_1,\ldots,x_d)} \longrightarrow \lim_{\overrightarrow{\alpha}} \frac{R}{(x_1^{\alpha},\ldots,x_d^{\alpha})}$$

is surjective, where x_1, \ldots, x_d is a system of parameters of R such that (x_1, \ldots, x_d) is an irreducible ideal contained in \mathfrak{m}^{ℓ} (see also [4, Lemma 3.12]). In this paper, for a commutative Noetherian (not necessarily local) ring R, a finitely generated R-module M and an arbitrary sequence x_1, \ldots, x_n of elements of R, we show that the map

$$\varphi_{\mathfrak{a},x}: \operatorname{Hom}_R\left(R/\mathfrak{a}, \frac{M}{(x_1, \dots, x_n)M}\right) \longrightarrow \operatorname{Hom}_R\left(R/\mathfrak{a}, H^n_{(x_1, \dots, x_n)}(M)\right)$$

which is induced by the canonical map

$$\frac{M}{(x_1,\ldots,x_n)M} \longrightarrow \lim_{\overrightarrow{\alpha}} \frac{M}{(x_1^{\alpha},\ldots,x_n^{\alpha})M} \cong H^n_{(x_1,\ldots,x_n)}(M)$$

is surjective if and only if

$$\sum_{j=1}^n x_j^t M :_M \mathfrak{a} \subseteq \Big(\bigcup_{s \in \mathbb{N}} \Big(\sum_{j=1}^n x_j^{t+s} M\Big) :_M x_1^s \cdots x_n^s\Big) + x_1^{t-1} \cdots x_n^{t-1} \Big(\sum_{j=1}^n x_j M :_M \mathfrak{a}\Big)$$

for all $t \in \mathbb{N}$ (we use \mathbb{N} to denote the set of positive integers). In the light of the ideas of Marley, Rogers and Sakurai's proof of [11, Theorem 2.9], by using our above mentioned result, we can obtain a characterization of Gorenstein rings (see Theorem 2.2).

On the other hand, if (R, \mathfrak{m}) is a Noetherian local ring and M is a finitely generated R-module, it is well known that for all i and n, $\operatorname{Supp}_R(H^n_{\mathfrak{m}}(M)) \subseteq V(\mathfrak{m})$ and $\operatorname{Ext}^i_R(R/\mathfrak{m}, H^n_{\mathfrak{m}}(M))$ is finitely generated (see, e.g., Huneke and Koh [8]). In this regard, Grothendieck made the following: Conjecture. [5] If \mathfrak{a} is an ideal of R and M is a finitely generated R-module, then $\operatorname{Hom}_R(R/\mathfrak{a}, H^n_\mathfrak{a}(M))$ is finitely generated for all n.

Hartshorne [6] has produced a counterexample which shows that this conjecture is false even when R is regular (see also [7]). Hartshorne asked the following:

Question. If \mathfrak{a} is an ideal of R and M is a finitely generated R-module, when are $\operatorname{Ext}_{R}^{j}(R/\mathfrak{a}, H_{\mathfrak{a}}^{n}(M))$ finitely generated for all n and j?

There are several papers devoted to obtain partial answer to Hartshorne's question. We refer the reader to Huneke and Koh [8], Delfino [2], Delfino and Marley [3], Yoshida [16] and the present author [9].

In Theorem 2.4 of this paper, by using a natural generalization of the concept of regular sequence, we show that for a fixed n, Grothendieck's conjecture is true if and only if there exists a certain sequence of elements in \mathfrak{a} . In fact, we present a new version of Grothendieck's conjecture in commutative algebra.

Throughout this paper, R will denote a commutative Noetherian ring with nonzero identity and \mathfrak{a} an ideal of R. Also, M will denote a finitely generated R-module. Our terminology follows the textbook [1] on local cohomology. Whenever we can do without ambiguity, for a sequence $x = x_1, \ldots, x_n$ of elements of R and $u \in \mathbb{N}$, we will denote x_1^u, \ldots, x_n^u by x^u .

2 Certain Sequence of Elements of R

Let $x = x_1, \ldots, x_n$ be a sequence of elements of R. It follows from [5, Theorem 2.8] that the *n*-th local cohomology module $H^n_{(x_1,\ldots,x_n)}(M)$ can be interpreted as a direct limit of Koszul homology modules, and in the present situation we have

$$H^n_{(x_1,\ldots,x_n)}(M) \cong \lim_{\alpha \in \mathbb{N}} \frac{M}{(x_1^{\alpha},\ldots,x_n^{\alpha})M}$$

with the map

$$\frac{M}{(x_1^u,\ldots,x_n^u)M} \longrightarrow \frac{M}{(x_1^v,\ldots,x_n^v)M}$$

being induced by multiplication by $x_1^{v-u}\cdots x_n^{v-u}$ for all $u,v\in\mathbb{N}$ with $1\leqslant u\leqslant v$. Therefore,

$$\operatorname{Hom}_{R}(R/\mathfrak{a}, H^{n}_{(x_{1},...,x_{n})}(M)) \cong \lim_{\overrightarrow{\alpha \in \mathbb{N}}} \operatorname{Hom}_{R}\left(R/\mathfrak{a}, \frac{M}{(x_{1}^{\alpha},...,x_{n}^{\alpha})M}\right).$$

For $\alpha \in \mathbb{N}$, we denote by $\varphi_{\mathfrak{a},x^{\alpha}}$ the map

$$\operatorname{Hom}_{R}\left(R/\mathfrak{a}, \frac{M}{(x_{1}^{\alpha}, \dots, x_{n}^{\alpha})M}\right) \longrightarrow \operatorname{Hom}_{R}\left(R/\mathfrak{a}, H^{n}_{(x_{1}, \dots, x_{n})}(M)\right)$$

which is induced by the canonical map

$$\frac{M}{(x_1^{\alpha},\ldots,x_n^{\alpha})M} \longrightarrow \lim_{\overrightarrow{\alpha}} \frac{M}{(x_1^{\alpha},\ldots,x_n^{\alpha})M}.$$

In the following lemma, we show that $\varphi_{\mathfrak{a},x}$ is surjective if and only if x_1,\ldots,x_n satisfy certain conditions.

Lemma 2.1. For a sequence $x = x_1, \ldots, x_n$ of elements of R, the map $\varphi_{\mathfrak{a},x}$ is surjective if and only if

$$\sum_{j=1}^{n} x_j^t M :_M \mathfrak{a} \subseteq \left(\bigcup_{s \in \mathbb{N}} \left(\sum_{j=1}^{n} x_j^{t+s} M \right) :_M x_1^s \cdots x_n^s \right) + x_1^{t-1} \cdots x_n^{t-1} \left(\sum_{j=1}^{n} x_j M :_M \mathfrak{a} \right)$$
(1)

for all $t \in \mathbb{N}$.

Proof. First of all, let $x = x_1, \ldots, x_n$ be a sequence of elements of R. Since

$$\operatorname{Hom}_{R}\left(R/\mathfrak{a}, \frac{M}{(x_{1}, \dots, x_{n})M}\right) \cong \frac{(x_{1}, \dots, x_{n})M :_{M} \mathfrak{a}}{(x_{1}, \dots, x_{n})M}$$

we have the following commutative diagram:

where the direct system $\left\{\frac{(x_1^{\alpha},...,x_n^{\alpha})M:_M\mathfrak{a}}{(x_1^{\alpha},...,x_n^{\alpha})M}\right\}_{\alpha\in\mathbb{N}}$ is given by the map induced by multiplication

$$\frac{(x_1^u,\ldots,x_n^u)M:_M\mathfrak{a}}{(x_1^u,\ldots,x_n^u)M} \xrightarrow{x_1^{v^{-u}}\cdots x_n^{v^{-u}}} \frac{(x_1^v,\ldots,x_n^v)M:_M\mathfrak{a}}{(x_1^v,\ldots,x_n^v)M}$$

for $u, v \in \mathbb{N}$ with $1 \leq u \leq v$, and $\psi_{\mathfrak{a},x}$ is the canonical map.

Now suppose that $\varphi_{\mathfrak{a},x}$ is surjective and $m \in \sum_{j=1}^{n} x_{j}^{t}M :_{M} \mathfrak{a}$, where $t \in \mathbb{N}$. In view of the above commutative diagram, $\psi_{\mathfrak{a},x}$ is also surjective. Hence, there exists $m' \in \sum_{j=1}^{n} x_{j}M :_{M} \mathfrak{a}$ such that

$$\psi_{\mathfrak{a},x}\left(m'+(x_1,\ldots,x_n)M\right)=\psi_{\mathfrak{a},x^t}\left(m+(x_1^t,\ldots,x_n^t)M\right).$$

This implies that the element

$$\psi_{\mathfrak{a},x^t}\left(m-x_1^{t-1}\cdots x_n^{t-1}m'+(x_1^t,\ldots,x_n^t)M\right)$$

is zero in $\lim_{\substack{\longrightarrow\\\alpha\in\mathbb{N}}} \frac{(x_1^{\alpha},...,x_n^{\alpha})M_{:M}\mathfrak{a}}{(x_1^{\alpha},...,x_n^{\alpha})M}$. Thus, there exists $s\in\mathbb{N}$ such that

$$x_1^s \cdots x_n^s (m - x_1^{t-1} \cdots x_n^{t-1} m') \in \sum_{j=1}^n x_j^{t+s} M$$

Gorenstein Rings and Grothendieck's Conjecture

and so

$$m \in \Big(\bigcup_{s \in \mathbb{N}} \Big(\sum_{j=1}^n x_j^{t+s} M\Big) :_M x_1^s \cdots x_n^s\Big) + x_1^{t-1} \cdots x_n^{t-1} \Big(\sum_{j=1}^n x_j M :_M \mathfrak{a}\Big).$$

Conversely, suppose that $x = x_1, \ldots, x_n$ is a sequence of elements of R such that the inclusion (1) holds for all $t \in \mathbb{N}$. We must show that $\varphi_{\mathfrak{a},x}$ is surjective. By using the above commutative diagram, it is enough to show that $\psi_{\mathfrak{a},x}$ is surjective. To this end, let ξ be an arbitrary element of $\lim_{\alpha \in \mathbb{N}} \frac{(x_1^{\alpha}, \ldots, x_n^{\alpha})M_{:M}\mathfrak{a}}{(x_1^{\alpha}, \ldots, x_n^{\alpha})M}$. Then there exists a positive integer t such that

a positive integer t such that

$$\xi = \psi_{\mathfrak{a}, x^t} \left(m + (x_1^t, \dots, x_n^t) M \right)$$

for some $m \in \sum_{j=1}^{n} x_j^t M :_M \mathfrak{a}$. By our assumption, $m = m_1 + x_1^{t-1} \cdots x_n^{t-1} m_2$ for some

$$m_1 \in \left(\bigcup_{s \in \mathbb{N}} \left(\sum_{j=1}^n x_j^{t+s} M\right) :_M x_1^s \cdots x_n^s\right)$$

and $m_2 \in \sum_{j=1}^n x_j M :_M \mathfrak{a}$. Therefore, $m_1 \in \sum_{j=1}^n x_j^{t+s} M :_M x_1^s \cdots x_n^s$ for some $s \in \mathbb{N}$. We will show that

$$\xi = \psi_{\mathfrak{a},x} \big(m_2 + (x_1, \dots, x_n) M \big)$$

Thus, it suffices to show that $\psi_{\mathfrak{a},x^t}(m-x_1^{t-1}\cdots x_n^{t-1}m_2+(x_1^t,\ldots,x_n^t)M)=0$. This is clear because

$$\psi_{\mathfrak{a},x^{t}}\left(m - x_{1}^{t-1} \cdots x_{n}^{t-1} m_{2} + (x_{1}^{t}, \dots, x_{n}^{t})M\right) \\ = \psi_{\mathfrak{a},x^{t}}\left(m_{1} + (x_{1}^{t}, \dots, x_{n}^{t})M\right) \\ = \psi_{\mathfrak{a},x^{t+s}}\left(x_{1}^{s} \cdots x_{n}^{s} m_{1} + (x_{1}^{t+s}, \dots, x_{n}^{t+s})M\right) = 0,$$

which completes the proof.

The following theorem is one of the main results in this paper. Its proof relies heavily on ideas of Marley, Rogers and Sakurai's proof of [11, Theorem 2.9].

Theorem 2.2. Let (R, \mathfrak{m}) be a Noetherian local ring of dimension d. Then the following conditions are equivalent:

- (i) R is Gorenstein.
- (ii) There exists an integer ℓ such that some parameter ideal contained in \mathfrak{m}^{ℓ} is irreducible.
- (iii) There exists a system of parameters x_1, \ldots, x_d of R such that (x_1, \ldots, x_d) is an irreducible parameter ideal and for all $t \in \mathbb{N}$,

$$\sum_{j=1}^{d} x_j^t R :_R \mathfrak{m} \subseteq \left(\bigcup_{s \in \mathbb{N}} \left(\sum_{j=1}^{d} x_j^{t+s} R \right) :_R x_1^s \cdots x_d^s \right) + x_1^{t-1} \cdots x_d^{t-1} \left(\sum_{j=1}^{d} x_j R :_R \mathfrak{m} \right).$$
(2)

Proof. The equivalence (i) \Leftrightarrow (ii) is proved in [11, Theorem 2.9].

(ii) \Rightarrow (iii) Let $x = x_1, \ldots, x_d$ be a system of parameters in \mathfrak{m}^{ℓ} which generates an irreducible ideal. By [11, Proposition 2.8], the map $\varphi_{\mathfrak{m},x}$ is surjective. The result now follows from Lemma 2.1.

(iii) \Rightarrow (i) It suffices to show that if there exists a system of parameters $x = x_1, \ldots, x_d$ which generates an irreducible ideal and satisfies the inclusion (2) for all $t \in \mathbb{N}$, then R is Cohen–Macaulay (and hence Gorenstein). In view of Lemma 2.1, by our assumption, the map

$$\operatorname{Hom}_{R}\left(R/\mathfrak{m}, \frac{R}{(x_{1}, \dots, x_{d})}\right) \xrightarrow{\varphi_{\mathfrak{m}, x}} \operatorname{Hom}_{R}\left(R/\mathfrak{m}, H^{d}_{(x_{1}, \dots, x_{d})}(R)\right) \cong \operatorname{Hom}_{R}(R/\mathfrak{m}, H^{d}_{\mathfrak{m}}(R))$$

is surjective. By employing a method of proof which is similar to that used in [11, Theorem 2.9], it is easy to see that x_1, \ldots, x_d is a regular sequence and so R is Cohen–Macaulay.

Now we mention a generalization of the concept of regular sequences which is needed in the rest of the paper. We say that a sequence x_1, \ldots, x_n of elements of \mathfrak{a} is an \mathfrak{a} -filter regular sequence on M if

$$\operatorname{Supp}_{R}\left(\frac{(x_{1},\ldots,x_{i-1})M:_{M}x_{i}}{(x_{1},\ldots,x_{i-1})M}\right) \subseteq V(\mathfrak{a})$$

for all i = 1, ..., n, where $V(\mathfrak{a})$ denotes the set of prime ideals of R containing \mathfrak{a} . The concept of an \mathfrak{a} -filter regular sequence on M is a generalization of the concept of a filter regular sequence which has been studied in [14, 15] and has led to some interesting results. Both concepts coincide if \mathfrak{a} is an \mathfrak{m} -primary ideal of a local ring with maximal ideal \mathfrak{m} . Note that x_1, \ldots, x_n is a weak M-sequence if and only if it is an R-filter regular sequence on M. It is easy to see that the analogue of [15, Appendix 2(ii)] holds true whenever R is Noetherian, M is finitely generated and \mathfrak{m} is replaced by \mathfrak{a} , so if x_1, \ldots, x_n is an \mathfrak{a} -filter regular sequence on M, then there is an element $y \in \mathfrak{a}$ such that x_1, \ldots, x_n, y is an \mathfrak{a} -filter regular sequence on M. Thus, for any positive integer n, there exists an \mathfrak{a} -filter regular sequence on M of length n.

The following proposition comes from [10, Proposition 1.2] and [12, Lemma 3.4].

Proposition 2.3. Let n > 0, and x_1, \ldots, x_n be an \mathfrak{a} -filter regular sequence on M. Then there are the following isomorphisms:

$$H^{i}_{\mathfrak{a}}(M) \cong \begin{cases} H^{i}_{(x_{1},...,x_{n})}(M) & \text{for } 0 \leq i < n, \\ H^{i-n}_{\mathfrak{a}}(H^{n}_{(x_{1},...,x_{n})}(M)) & \text{for } n \leq i. \end{cases}$$

In the following, we show that for a fixed n, the existence of a certain \mathfrak{a} -filter regular sequence on M characterizes the finiteness properties of $\operatorname{Hom}_R(R/\mathfrak{a}, H^n_\mathfrak{a}(M))$.

Theorem 2.4. For $n \in \mathbb{N}$, the *R*-module $\operatorname{Hom}_R(R/\mathfrak{a}, H^n_\mathfrak{a}(M))$ is finitely generated

658

if and only if there exists an \mathfrak{a} -filter regular sequence x_1, \ldots, x_n on M such that

$$\sum_{j=1}^{n} x_j^t M :_M \mathfrak{a} \subseteq \Big(\bigcup_{s \in \mathbb{N}} \Big(\sum_{j=1}^{n} x_j^{t+s} M\Big) :_M x_1^s \cdots x_n^s\Big) + x_1^{t-1} \cdots x_n^{t-1} \Big(\sum_{j=1}^{n} x_j M :_M \mathfrak{a}\Big)$$

for all $t \in \mathbb{N}$.

Proof. Suppose that $y_1, \ldots, y_{n+1} \in \mathfrak{a}$ is an \mathfrak{a} -filter regular sequence on M. Then in view of [1, Remark 2.2.17] and Proposition 2.3, there exists the following exact sequence:

$$0 \longrightarrow H^n_{\mathfrak{a}}(M) \longrightarrow H^n_{(y_1,\dots,y_n)}(M) \longrightarrow (H^n_{(y_1,\dots,y_n)}(M))_{y_{n+1}}$$

Since the multiplication by y_{n+1} provides an automorphism on $(H^n_{(y_1,\ldots,y_n)}(M))_{y_{n+1}}$ and $y_{n+1} \in \mathfrak{a}$, by applying the functor $\operatorname{Hom}_R(R/\mathfrak{a}, -)$ on the above exact sequence, we obtain the isomorphism

$$\operatorname{Hom}_{R}(R/\mathfrak{a}, H^{n}_{\mathfrak{a}}(M)) \cong \operatorname{Hom}_{R}(R/\mathfrak{a}, H^{n}_{(y_{1}, \dots, y_{n})}(M)).$$

Let $\operatorname{Hom}_R(R/\mathfrak{a}, H^n_\mathfrak{a}(M))$ be finitely generated. Then $\operatorname{Hom}_R(R/\mathfrak{a}, H^n_{(y_1, \dots, y_n)}(M))$ is also finitely generated. Thus, there exists a positive integer u such that the map

$$\varphi_{\mathfrak{a},y^u} : \operatorname{Hom}_R\left(R/\mathfrak{a}, \frac{M}{(y_1^u, \dots, y_n^u)M}\right) \longrightarrow \operatorname{Hom}_R\left(R/\mathfrak{a}, H^n_{(y_1, \dots, y_n)}(M)\right)$$

is surjective, where $y^u := y_1^u, \ldots, y_n^u$. Set $x_i := y_i^u$ for all i with $1 \le i \le n$ and note that $x = x_1, \ldots, x_n$ is again an \mathfrak{a} -filter regular sequence on M. Moreover, by [1, Remark 1.2.3], the map

$$\varphi_{\mathfrak{a},x}: \operatorname{Hom}_R\left(R/\mathfrak{a}, \frac{M}{(x_1, \dots, x_n)M}\right) \longrightarrow \operatorname{Hom}_R\left(R/\mathfrak{a}, H^n_{(x_1, \dots, x_n)}(M)\right)$$

is surjective. The result now follows from Lemma 2.1.

Now by employing a method which is similar to that we used in the second paragraph in the present proof, in conjunction with Lemma 2.1, one can complete the proof. $\hfill \Box$

Acknowledgement. The author is deeply grateful to Dr. J. Asadollahi for helpful discussions about Lemma 2.1.

References

- M. Brodmann, R.Y. Sharp, Local Cohomology An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics No. 60, Cambridge University Press, Cambridge, 1998.
- [2] D. Delfino, On the cofiniteness of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 115 (1) (1994) 79–84.
- [3] D. Delfino, T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121 (1) (1997) 45–52.

- [4] S. Goto, H. Sakurai, The equality $I^2 = QI$ in Buchsbaum rings, Rend. Sem. Mat. Univ. Padova **110** (2003) 25–56.
- [5] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), North-Holland, Amsterdam, 1968.
- [6] R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1969/1970) 145-164.
- [7] M. Hellus, J. Stückrad, Generalization of an example of Hartshorne concerning local cohomology (preprint, arXiv: math.AC/0703147 v1).
- [8] C. Huneke, J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110 (3) (1991) 421–429.
- [9] K. Khashyarmanesh, On the finiteness properties of extension and torsion functors of local cohomology modules, Proc. Amer. Math. Soc. 135 (5) (2007) 1319–1327.
- [10] K. Khashyarmanesh, Sh. Salarian, Filter regular sequences and the finiteness of local cohomology modules, Comm. Algebra 26 (8) (1998) 2483–2490.
- [11] T. Marley, M.W. Rogers, H. Sakurai, Gorenstein rings and irreducible parameter ideals, Proc. Amer. Math. Soc. 136 (1) (2008) 49–53.
- [12] U. Nagel, P. Schenzel, Cohomological annihilators and Castelnuovo-Mumford regularity, in: Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra (South Hadley, MA, 1992), Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994, pp. 307–328.
- [13] D.G. Northcott, D. Rees, Principal systems, Quart. J. Math. Oxford (Ser. 2) 8 (1957) 119–127.
- [14] P. Schenzel, N.V. Trung, N.T. Cuong, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978) 57–73.
- [15] J. Stückrad, W. Vogel, Buchsbaum Rings and Applications, VEB Deutscher Verlag der Wissenschaftan, Berlin, 1986.
- [16] K.-I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147 (1997) 179–191.