Synthesis and Spectroscopic Characterization of Mixed Diamidophosphoric Acid Esters: X-Ray Crystal Structure of $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right]$ -$\left[p-\mathrm{H}_{3} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{O}\right] \mathrm{P}(\mathrm{O}) \mathrm{X}\left(\mathrm{X}=\mathrm{NHC}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and $\left.p-\mathrm{H}_{3} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}\right)$

Saied Ghadimi ${ }^{\text {a }}$, Mehrdad Pourayoubi ${ }^{\mathrm{b}}$, and Ali Asghar Ebrahimi Valmoozi ${ }^{\text {a }}$
a Department of Chemistry, Imam Hossein University, Tehran, Iran
${ }^{\mathrm{b}}$ Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
Reprint requests to Dr. Saied Ghadimi. E-mail: ghadimi_saied@yahoo.com

Z. Naturforsch. 2009, 64b, 565 -569; received December 10, 2008

Mixed diamidophosphoric acid esters $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right]\left[p-\mathrm{H}_{3} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{O}\right] \mathrm{P}(\mathrm{O}) \mathrm{X}$, where $\mathrm{X}=\mathrm{NH}\left(\mathrm{CH}_{3}\right)$ (1), $\mathrm{NHCH}\left(\mathrm{CH}_{3}\right)_{2}(\mathbf{2}), \mathrm{NHC}\left(\mathrm{CH}_{3}\right)_{3}(\mathbf{3})$ and $p-\mathrm{H}_{3} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}(\mathbf{4})$ were synthesized and characterized by ${ }^{31} \mathrm{P},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\},{ }^{13} \mathrm{C},{ }^{1} \mathrm{H}$ NMR, and IR spectroscopy and mass spectrometry, and single crystal X-ray diffraction analysis for the compounds $\mathbf{3}$ and $\mathbf{4}$. Compound $\mathbf{3}$ crystallizes in the monoclinic, space group $P 2_{1} / c$ with unit cell parameters $a=9.006(3), b=16.286(5), c=10.319(3) \AA, \beta=99.633(6)^{\circ}$, $V=1492.2(8) \AA^{3}, Z=4$. The final R value is 0.0622 for 2074 reflections $[I \geq 2 \sigma(I)]$. Compound 4 crystallizes in the orthorhombic, space group Pna2 with unit cell parameters $a=7.0459(14), b=$ 20.934(4), $c=10.436$ (2) $\AA, V=1539.3(5) \AA^{3}, Z=4$. The final R value is 0.0530 for 3025 reflections $[I \geq 2 \sigma(I)]$.

Key words: Mixed Diamidophosphoric Acid Ester, Spectroscopic Characterization, X-Ray Crystal Structure

Introduction

The extensive studies on the biochemical properties of phosphoramidate derivatives revealed various possibilities for their application in agrochemistry and medicine as insecticides, pesticides, and drugs [1-3]. Gerhard Schrader discovered the insecticide properties of amidophosphoric acid esters [4], which exert their toxicity by the inhibition of the acetylcholinesterase (AChE), the enzyme responsible for the degradation of the cholinergic neurotransmitter acetylcholine [5].

To the best of our knowledge, little attention has been given to the crystal structure and spectroscopic properties of these compounds [6-8]. Herein, mixed diamidophosphoric acid esters of the formula $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right]\left[p-\mathrm{H}_{3} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{O}\right] \mathrm{P}(\mathrm{O}) \mathrm{X}$, where $\mathrm{X}=\mathrm{NH}-$ $\left(\mathrm{CH}_{3}\right)$ (1), $\mathrm{NHCH}\left(\mathrm{CH}_{3}\right)_{2}$ (2), $\mathrm{NHC}\left(\mathrm{CH}_{3}\right)_{3}$ (3) and $p-\mathrm{H}_{3} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}$ (4) were synthesized and characterized by ${ }^{31} \mathrm{P},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\},{ }^{13} \mathrm{C},{ }^{1} \mathrm{H}$ NMR, and IR spectroscopy and mass spectrometry, and the crystal structures of compounds 3 and 4 were determined by single crystal X-ray diffraction analysis.

Results and Discussion

General preparation of compounds 1-4
Compounds 1-4 were synthesized from the reaction of N, N-dimethylamido(chloro)phosphoric acid 4-methyl-phenyl ester and the corresponding amine (or the hydrochloride salt of the amine for compound $\mathbf{1}$) in the presence of triethylamine as an HCl scavenger (for compounds $\mathbf{1}$ and $\mathbf{4}$) or an excess of amine (for compounds 2 and 3, Eq. 1).

$$
\begin{align*}
& \left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left[p-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{O}\right] \mathrm{P}(\mathrm{O}) \mathrm{Cl}+2 \mathrm{RNH}_{2} \\
& \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left[p-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{O}\right] \mathrm{P}(\mathrm{O}) \mathrm{NHR}_{3} \tag{1}\\
& +\mathrm{RNH}_{3} \mathrm{Cl}, \mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}(\mathbf{2}) \text { or } \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}(\mathbf{3})
\end{align*}
$$

NMR study

The ${ }^{31} \mathrm{P}$ chemical shifts ($\delta^{31} \mathrm{P}$) in the NMR spectra of the title compounds varied from 6.94 (for compound 4) to 15.99 ppm (for compound $\mathbf{1}$). Comparison of $\delta^{31} \mathrm{P}$ values in compounds $\mathbf{1}-\mathbf{3}$ demonstrates the electron donating effect of the amine groups in the sequence $\mathrm{NH}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}>\mathrm{NH}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}>\mathrm{NHCH}_{3}$, which causes a decrease of the phosphorus chemical

Table 1. Fragment relative intensities in the mass spectra of compounds $\mathbf{1 - 4}$ and reference molecules $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right] \mathrm{P}(\mathrm{O}) \mathrm{X}[\mathrm{O}-$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}\right]$).

X	M^{+}	$\left[\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}\right]^{+}$	$\left[\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}\right]^{+}$	$\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}$	$\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}\right]^{+}$	$\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}$	$[\mathrm{M}-\mathrm{X}]^{+}$	Ref.
Cl^{35}	100	53	91	29	62	4	16	a
CN	71	100	35	78	48	2	3	b
OCH_{3}	64	100	67	10	69	71	16	[6]
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}$	10	100	89	4	28	2	8	[6]
$\left(\mathrm{C}_{4} \mathrm{H}_{8}\right) \mathrm{NO}$	25	100	87	15	48	8	10	[6]
$\mathrm{NH}\left(\mathrm{CH}_{3}\right)(\mathbf{1})$	14	100	54	12	5	88	-	c
$\mathrm{NH}\left(\right.$ iso- $\left.\mathrm{C}_{3} \mathrm{H}_{7}\right)(2)$	3	53	100	25	79	3	-	b
$\mathrm{NH}\left(\right.$ tert $-\mathrm{C}_{4} \mathrm{H}_{9}$) (3)	1	33	100	-	4	-	42	c
$p-\mathrm{H}_{3} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}$ (4)	2	100	41	18	33	7	12	c

${ }^{\text {a }}$ Synthesis and spectroscopic characterization of $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right] \mathrm{P}(\mathrm{O}) \mathrm{Cl}\left[\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}\right]$ have been reported in ref. [9] and the modified strategy for the synthesis and the X-ray crystallography data in ref. [10]; the intensities reported in Table 1 were determined by the authors; ${ }^{\text {b }}$ MS data of $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right] \mathrm{P}(\mathrm{O}) \mathrm{CN}\left[\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}\right]$ and $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right] \mathrm{P}(\mathrm{O})\left[\mathrm{NH}\left(\right.\right.$ iso $\left.\left.-\mathrm{C}_{3} \mathrm{H}_{7}\right)\right]\left[\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}\right]$ have not been published elsewhere; X-ray data were reported in refs. [11] and [12], respectively; ${ }^{\mathrm{c}}$ this work.
shift. In the ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{1 - 4}$ doublet peaks with ${ }^{3} J(\mathrm{P}, \mathrm{H})$ in the range of 10.0 Hz (for compound 3) to 10.2 Hz (for compounds $\mathbf{1}$ and $\mathbf{4}$) appear for the $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ moieties. Two-bond $\mathrm{P}-\mathrm{C}$ coupling constants for the carbon atoms of the $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ moiety with ${ }^{2} J(\mathrm{P}, \mathrm{C})$ are in the range of 3.2 Hz (for compound $\mathbf{3}$) to 4.4 Hz (for compound $\mathbf{1}$). The data of the NMR spectra show ${ }^{3} J(\mathrm{P}, \mathrm{H})(\mathbf{1})>{ }^{3} J(\mathrm{P}, \mathrm{H})(2)>$ ${ }^{3} J(\mathrm{P}, \mathrm{H})(\mathbf{3})$ and ${ }^{2} J(\mathrm{P}, \mathrm{C})(\mathbf{1})>{ }^{2} J(\mathrm{P}, \mathrm{C})(\mathbf{2})>{ }^{2} J(\mathrm{P}, \mathrm{C})$ (3). The CH_{3} groups in the $\mathrm{NH}\left(\right.$ iso $\left.-\mathrm{C}_{3} \mathrm{H}_{7}\right)$ moiety of compound 2 are diastereotopic and show two doublet peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum (with ${ }^{3} J(\mathrm{H}, \mathrm{H})=6.5$ and 6.4 Hz). Moreover, two doublet peaks appear for the CH_{3} carbon atoms with ${ }^{3} J(\mathrm{P}, \mathrm{C})=5.9$ and 5.3 Hz .

Mass spectrometry investigation

Mass spectra of the compounds indicate the presence of the fragments $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]^{+},\left[\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}\right]^{+}$, and $\mathrm{P}(\mathrm{O})\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right] \mathrm{X}^{+}$, where $\mathrm{X}=\mathrm{NH}\left(\mathrm{CH}_{3}\right)(\mathbf{1}), \mathrm{NH}($ iso$\mathrm{C}_{3} \mathrm{H}_{7}$) (2), $\mathrm{NH}\left(\right.$ tert $\left.-\mathrm{C}_{4} \mathrm{H}_{9}\right)(3)$ and $p-\mathrm{H}_{3} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}$ (4) (Table 1). Moreover, the fragment $\mathrm{P}(\mathrm{O})\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$ -$\left[\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}\right]^{+}$is observed in the mass spectra of compounds 3 and 4.

X-Ray crystallography

The crystal structure of compound $\mathbf{2}$ was reported in reference [12]. Single crystals of compounds 3 and 4 were obtained from $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{CN}$ at r.t. The crystallographic data and the details of the X-ray analysis are presented in Table 2, selected bond lengths and angles for compounds $\mathbf{3}$ and $\mathbf{4}$ are given in Table 3. Hydrogen bonding data are listed in Table 4. The molecular structures of $\mathbf{3}$ and $\mathbf{4}$ are shown in Figs. 1 and 2, respectively. The phosphorus atoms have a distorted

Table 2. Crystallography data for compounds $\mathbf{3}$ and 4.

	$\mathbf{3}$	$\mathbf{4}$
Formula	$\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}$	$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}$
M_{r}	270.30	304.32
Temperature (K)	$100(2)$	$100(2)$
Wavelength (\AA)	0.71073	0.71073
Crystal system	monoclinic	orthorhombic
Space group	$P 2_{1} / c$	$P n a 2_{1}$
a, \AA	$9.006(3)$	$7.0459(14)$
b, \AA	$16.286(5)$	$20.934(4)$
c, \AA	$10.319(3)$	$10.436(2)$
β, deg	$99.633(6)$	90
$V, \AA{ }^{3}$	$1492.2(8)$	$1539.3(5)$
Z	4	4
$D_{\text {calcd }}, \mathrm{g}$ cm		
Absorption	1.203	1.313
\quad coefficient, mm		
$F(000)$, e	0.182	0.185
Cryst. size, mm		
θ range for data collection, deg	$2.29-27.00$	$1.95-28.00$
Limiting indices	$-10 \leq h \leq 11$,	$-8 \leq h \leq 9$,
	$-20 \leq k \leq 20$,	$-24 \leq k \leq 27$,
	$-13 \leq l \leq 13$	$-13 \leq l \leq 13$
Refl. collected / unique	$9737 / 3137$	$9993 / 3654$
$R_{\text {int }}$	0.0965	0.0528
Completeness to $\theta(\%)$	96.4	98.6
Observed refls $[I \geq 2 \sigma(I)]$	2074	3025
Absorption correction	none	semi-empirical
		from equivalents
Max. / min. transmission	-	$0.9854 / 0.9552$
Data / restraints / parameters	$3137 / 0 / 169$	$3654 / 1 / 194$
GoF $\left(F^{2}\right)$	0.995	1.005
Final $R 1 / w R 2[I \geq 2 \sigma(I)]$	$0.0622 / 0.1043$	$0.0530 / 0.1032$
Final $R 1 / w R 2($ all data $)$	$0.1068 / 0.1192$	$0.0695 / 0.1099$
Largest diff. peak/hole, e $\AA-3$	$0.368 /-0.339$	$0.655 /-0.410$

tetrahedral configuration. The bond angles around the phosphorus atom are in the range of $102.76(14)^{\circ}$ $[\angle \mathrm{O}(2)-\mathrm{P}(1)-\mathrm{N}(2)]$ to $114.77(14)^{\circ} \quad[\angle \mathrm{O}(1)-\mathrm{P}(1)-$ $\mathrm{N}(2)]$ in compound $2,102.32(11)^{\circ}[\angle \mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(2)]$ to $115.58(12)^{\circ}[\angle \mathrm{O}(2)-\mathrm{P}(1)-\mathrm{N}(2)]$ in compound 3

Table 3. Selected bond lengths (\AA) and bond angles (deg) for compounds 3 and 4.

$\mathbf{3}$		$\mathbf{4}$	
$\mathrm{P}(1)-\mathrm{O}(2)$	$1.462(2)$	$\mathrm{P}(1)-\mathrm{O}(2)$	$1.474(2)$
$\mathrm{P}(1)-\mathrm{O}(1)$	$1.608(2)$	$\mathrm{P}(1)-\mathrm{O}(1)$	$1.604(2)$
$\mathrm{P}(1)-\mathrm{N}(2)$	$1.631(2)$	$\mathrm{P}(1)-\mathrm{N}(2)$	$1.633(3)$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.641(2)$	$\mathrm{P}(1)-\mathrm{N}(1)$	$1.648(3)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.409(3)$	$\mathrm{O}(1)-\mathrm{C}(8)$	$1.421(3)$
$\mathrm{N}(1)-\mathrm{C}(9)$	$1.452(4)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.430(4)$
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.458(4)$	$\mathrm{N}(2)-\mathrm{C}(16)$	$1.441(4)$
$\mathrm{N}(2)-\mathrm{C}(10)$	$1.486(3)$	$\mathrm{N}(2)-\mathrm{C}(15)$	$1.458(4)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.373(4)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.389(4)$
$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{O}(1)$	$114.19(11)$	$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{O}(1)$	$114.82(13)$
$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{N}(2)$	$115.58(12)$	$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{N}(2)$	$110.64(12)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(2)$	$102.32(11)$	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(2)$	$105.10(12)$
$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{N}(1)$	$110.06(12)$	$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{N}(1)$	$114.64(13)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	$102.94(12)$	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	$100.51(12)$
$\mathrm{N}(2)-\mathrm{P}(1)-\mathrm{N}(1)$	$110.85(12)$	$\mathrm{N}(2)-\mathrm{P}(1)-\mathrm{N}(1)$	$110.37(13)$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{P}(1)$	$120.41(17)$	$\mathrm{C}(8)-\mathrm{O}(1)-\mathrm{P}(1)$	$120.81(17)$
$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(8)$	$114.4(2)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{P}(1)$	$123.1(2)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$121.3(3)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$119.1(3)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{O}(1)$	$119.7(2)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{N}(1)$	$119.6(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$118.7(2)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	$121.2(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119.0(3)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$119.6(3)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$121.5(3)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$121.7(3)$
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{P}(1)$	$126.10(18)$	$\mathrm{C}(15)-\mathrm{N}(2)-\mathrm{P}(1)$	$120.8(2)$

Table 4. Hydrogen bond parameters for compounds 3 and 4 (Å, deg).
$\frac{\mathrm{D}-\mathrm{H} \cdots \mathrm{A} \quad d(\mathrm{D}-\mathrm{H}) d(\mathrm{H} \cdot \cdot \mathrm{A}) d(\mathrm{D} \cdot \cdot \mathrm{A}) \angle \mathrm{DHA}}{3 . \mathrm{N}(2) \mathrm{H}(2 \mathrm{~N}) \cdot \mathrm{O}(2)) 0.880 \quad 2.022 \quad 2.869(3) \quad 161}$
3: $\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~N}) \cdot \mathrm{O}(2) \quad 0.880 \quad 2.022 \quad 2.869(3) 161$

$$
[x,-y+1 / 2, z+1 / 2]
$$

4: $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N}) \cdot \cdot \mathrm{O}(2) \quad 0.90 \quad 2.07 \quad 2.957(4) \quad 170$
$[-x+1,-y, z+1 / 2]$

Fig. 1. Molecular structure and atom labeling scheme for $\left[\right.$ tert $\left.-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}\right] \mathrm{P}(\mathrm{O})\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right]\left[p-\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{3}\right]$ (3) with displacement ellipsoids at the 50% probability level.
and $100.51(12)^{\circ}[\angle \mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(1)]$ to $114.82(13)^{\circ}$ $[\angle \mathrm{O}(2)-\mathrm{P}(1)-\mathrm{O}(1)]$ in compound 4 . The oxygen atoms of the $\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}$ moieties may be ascribed $s p^{2}$

Fig. 2. Molecular structure and atom labeling scheme for $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right] \mathrm{P}(\mathrm{O})\left[p-\mathrm{NHC}_{6} \mathrm{H}_{4}-\mathrm{CH}_{3}\right]\left[p-\mathrm{OC}_{6} \mathrm{H}_{4}-\mathrm{CH}_{3}\right]$ (4) with displacement ellipsoids at the 50% probability level.

Fig. 3. Hydrogen bond $(\mathrm{P}(1)-\mathrm{O}(2) \cdots \mathrm{H}(1 \mathrm{~N})$ in compound 4.
character, $\mathrm{P}-\mathrm{O}-\mathrm{C}: 120.30(2)^{\circ} \mathbf{(2)}, 120.41(17)^{\circ}(\mathbf{3})$ and $120.81(17)^{\circ}(4)$. Their $\mathrm{P}-\mathrm{O}$ bond lengths (1.607(2), $1.608(2)$ and $1.604(2) \AA$) are shorter than a standard $\mathrm{P}-\mathrm{O}$ single bond ($1.64 \AA$ [13]). The $\mathrm{P}=\mathrm{O}$ bond lengths in molecules 2, $\mathbf{3}$ and $\mathbf{4}$ are 1.473(2), 1.462(2) and $1.474(2) \AA$, respectively, and thus longer than the normal $\mathrm{P}=\mathrm{O}$ bond length (1.45 \AA for $\mathrm{P}(\mathrm{O}) \mathrm{Cl}_{3}$) [13]. Also, the $\mathrm{P}-\mathrm{N}$ bond lengths are shorter than the standard $\mathrm{P}-\mathrm{N}$ single bond length ($1.77 \AA$ for $\mathrm{NaHPO}_{3}-$ NH_{2} [13]). The nitrogen atoms of the aliphatic amine
groups in the title compounds indicate $s p^{2}$ hybridization. For example, in compound 4 , the angles $\mathrm{P}(1)-$ $\mathrm{N}(2)-\mathrm{C}(16), \mathrm{C}(16)-\mathrm{N}(2)-\mathrm{C}(15)$ and $\mathrm{C}(15)-\mathrm{N}(2)-\mathrm{P}(1)$ are $121.4(2)^{\circ}, 114.1(3)^{\circ}$ and $120.8(2)^{\circ}$, respectively. The sum of the angles around the N 2 and N 1 atoms are 354.9° and 355.8° for compound $\mathbf{3}$. The deviation from the ideal value of 360° may be caused by steric effects. Molecules of compounds 2-4 are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=$ P hydrogen bonds into chains. Fig. 3 shows the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{P}$ hydrogen bond in crystals of compound 4. H-bonded chains spreading along the crystallographic c axis in the crystal of compound 4 are connected into ribbons through π stacking between p $\mathrm{H}_{3} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}$ moieties. The angle and the distance between mean planes of neighboring moieties is equal to $8.7(1)^{\circ}$ and $3.26(1) \AA$, respectively, The shortest distances between the center of the phenylene ring and the H atom of a neighboring methyl group is equal to 2.682(3) Å.

Experimental Section

Materials

Acetonitrile (99 \%), iso-propylamine (99%), tert-butylamine (99%), methylamine (46% aqueous solution), triethylamine (98%), and chloroform (99%) (Merck) were used as supplied. $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right] \mathrm{P}(\mathrm{O}) \mathrm{Cl}\left[\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}\right]$ was synthesized according to the literature [10].

Spectroscopic measurements

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on Bruker (Avance DRS) 250 and 500 MHz spectrometers. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ chemical shifts were obtained in CDCl_{3} relative to TMS and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standards, respectively. IR spectra were obtained using KBr pellets on a Perkin Elmer 783 model spectrometer. A Varian Star 3400 CX mass spectrometer was used for mass spectrometry investigation. Melting points were obtained with an Electrothermal instrument.

N,N-Dimethyl- N^{\prime}-methyl-diamidophosphoric acid 4-methylphenyl ester, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NP}(\mathrm{O})\left[\left(\mathrm{CH}_{3}\right) \mathrm{NH}\right]\left[\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{p}-\mathrm{CH}_{3}\right]$ (1)

To a solution of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NP}(\mathrm{O}) \mathrm{Cl}\left[\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}\right]$ ($0.82 \mathrm{~g}, 3.5 \mathrm{mmol}$) in 30 mL of dry acetonitrile, methylamine hydrochloride ($0.24 \mathrm{~g}, 3.5 \mathrm{mmol}$) and triethylamine $(0.71 \mathrm{~g}, 7 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$. After 12 h stirring, the solvent was evaporated in vacuo. Then, the flash gradient chromatography method was used for the purification of the product (silicagel, hexane-ethyl acetate $9: 1$). The solvent was evaporated in vacuo to afford the product as a colorless liquid. Yield: 68%. - ${ }^{1} \mathrm{H}$ NMR ($250.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}, \mathrm{TMS}\right): \delta=2.30\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right), 2.60\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{H})=\right.$ $12.2 \mathrm{~Hz}, 3 \mathrm{H}$, methylamine $\left.-\mathrm{CH}_{3}\right), 2.73\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{H})=10.2 \mathrm{~Hz}\right.$,
$\left.6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.00-3.15(\mathrm{~m}, 1 \mathrm{H}$, methylamine- NH), 7.04-7.12 (m, 4H, Ar-H). - ${ }^{13} \mathrm{C}$ NMR (62.90 MHz , $\mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}, \mathrm{TMS}$): $\delta=20.69$ (s, 1C, $p-\mathrm{CH}_{3}$), 27.02 (s , 1 C , methylamine- $\left.\mathrm{CH}_{3}\right), 36.80\left(\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=4.4 \mathrm{~Hz}, 2 \mathrm{C}\right.$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 120.05\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=4.8 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{\text {ortho }}\right), 130.00$ $\left(\mathrm{s}, 2 \mathrm{C}, \mathrm{C}_{\text {meta }}\right), 133.70\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}_{\text {para }}\right), 149.05\left(\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=\right.$ $\left.6.3 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}_{\text {ipso }}\right) .-{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101.25 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $25{ }^{\circ} \mathrm{C}, \mathrm{H}_{3} \mathrm{PO}_{4}$ external): $\delta=15.99$ (s). $-{ }^{31} \mathrm{P}$ NMR: $\delta=$ 15.99 (m). - IR (KBr): $v=3220(\mathrm{NH}), 3010,2920,2800$, 1600, 1580, 1505, 1300, 1225 ($\mathrm{P}=\mathrm{O}$), 1170, 1118, 1070, 988 (P-O), 920, 810, 715 (P-N), $645 \mathrm{~cm}^{-1}$. - MS (20 eV , EI): $m / z(\%)=228(14)[\mathrm{M}]^{+}, 137(88)\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}, 121$ (5) $\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}\right]^{+}, 107(54)\left[\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}\right]^{+}, 91$ (12) $\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}$, 44 (100) $\left[\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}\right]^{+}$.
N, N-Dimethyl- N^{\prime}-iso-propyl-diamidophosphoric acid 4-methyl-phenyl ester, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NP}(\mathrm{O})\left[\mathrm{NH}\left(\right.\right.$ iso $\left.\left.-\mathrm{C}_{3} \mathrm{H}_{7}\right)\right]$ $\left[\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{p}-\mathrm{CH}_{3}\right]$ (2)

To a solution of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NP}(\mathrm{O}) \mathrm{Cl}\left[\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}\right]$ $(0.82 \mathrm{~g}, 3.5 \mathrm{mmol})$ in 30 mL of dry chloroform, isopropylamine ($0.42 \mathrm{~g}, 7.1 \mathrm{mmol}$) was slowly added and the mixture stirred at $0{ }^{\circ} \mathrm{C}$ for 12 h . The solvent was evaporated in vacuo. Single crystals of the product were obtained from a solution in chloroform-acetonitrile (4:1) after slow evaporation at r.t. Yield: 73%. M. p. $61-64{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$, TMS): $\delta=1.12$ $\left(\mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right.$, iso-propylamine- $\left.\mathrm{CH}_{3}\right), 1.15(\mathrm{~d}$, ${ }^{3} J(\mathrm{H}, \mathrm{H})=6.4 \mathrm{~Hz}, 3 \mathrm{H}$, iso-propylamine- $\left.\mathrm{CH}_{3}\right), 2.25(\mathrm{~s}, 3 \mathrm{H}$, $\left.p-\mathrm{CH}_{3}\right), 2.33(\mathrm{~b}, 1 \mathrm{H}, \mathrm{NH}), 2.68\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{H})=10.1 \mathrm{~Hz}\right.$, $\left.6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.38-3.39(\mathrm{~m}, 1 \mathrm{H}$, iso-propylamine- CH$)$, $7.03(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($125.75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}, \mathrm{TMS}\right): \delta=20.64\left(\mathrm{~s}, 1 \mathrm{C}, p-\mathrm{CH}_{3}\right), 25.27\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=\right.$ $5.9 \mathrm{~Hz}, 1 \mathrm{C}$, iso-propylamine- $\left.\mathrm{CH}_{3}\right), 25.52\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=\right.$ $5.3 \mathrm{~Hz}, 1 \mathrm{C}$, iso-propylamine- $\left.\mathrm{CH}_{3}\right), 36.96\left(\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=\right.$ $\left.3.8 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 43.38(\mathrm{~s}, 1 \mathrm{C}$, iso-propylamine- CH), $119.92\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=4.8 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}_{\text {ortho }}\right), 129.96(\mathrm{~s}, 2 \mathrm{C}$, $\mathrm{C}_{\text {meta }}$), 133.50 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}_{\text {para }}$), $149.12\left(\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=6.1 \mathrm{~Hz}\right.$, $1 \mathrm{C}, \mathrm{C}_{\text {ipso }}$). $-{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202.45 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, $\mathrm{H}_{3} \mathrm{PO}_{4}$ external): $\delta=13.70(\mathrm{~s}) .-{ }^{31} \mathrm{P}$ NMR: $\delta=13.70$ (m). - IR (KBr): $v=3210(\mathrm{NH}), 2949,2940,1599,1499$, 1455, 1297, 1227 ($\mathrm{P}=\mathrm{O}$), 1198, 1162, 1040, 985 (P-O), 906, $816,794,705 \mathrm{~cm}^{-1}(\mathrm{P}-\mathrm{N})$ - MS ($20 \mathrm{eV}, \mathrm{EI}$): $\mathrm{m} / \mathrm{z}(\%)=257$ (30) $[\mathrm{M}+1]^{+}, 256$ (3) $[\mathrm{M}]^{+}, 165$ (3) $\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}, 149$ (79) $\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}\right]^{+}, 107(100)\left[\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}\right]^{+}, 91(25)\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}, 44$ (53) $\left[\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}\right]^{+}$.

N, N-Dimethyl- N^{\prime}-tert-butyl-diamidophosphoric acid 4-methyl-phenyl ester, $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right] \mathrm{P}(\mathrm{O})\left[\mathrm{NH}\left(\right.\right.$ tert- $\left.\left.\mathrm{C}_{4} \mathrm{H}_{9}\right)\right]$ -$\left[\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{p}-\mathrm{CH}_{3}\right]$ (3)

Compound $\mathbf{3}$ was prepared following the procedure described for compound 2 by using tert-butylamine instead of iso-propylamine. Yield: 82%. M.p. $83-86{ }^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H}$ NMR ($250.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}$): $\delta=1.32$ (s, 9 H , tert-
butylamine- CH_{3}), 2.29 (s, $3 \mathrm{H}, p-\mathrm{CH}_{3}$), $2.32(\mathrm{~b}, 1 \mathrm{H}, \mathrm{NH})$, $2.67\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{H})=10.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.07(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}$): $\delta=$ $20.70\left(\mathrm{~s}, 1 \mathrm{C}, p-\mathrm{CH}_{3}\right), 31.36\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=5.0 \mathrm{~Hz}, 3 \mathrm{C}\right.$, tert-butylamine- $\left.\mathrm{CH}_{3}\right), 36.91\left(\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=3.2 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 50.80 ($\mathrm{s}, 1 \mathrm{C}$, tert-butylamine-C), $119.90\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=4.8 \mathrm{~Hz}\right.$, $2 \mathrm{C}, \mathrm{C}_{\text {ortho }}$), 130.00 (s, 2C, $\mathrm{C}_{\text {meta }}$), 133.40 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}_{\text {para }}$), $149.2\left(\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=6.1 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}_{i p s o}\right) .-{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101.25 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}, \mathrm{H}_{3} \mathrm{PO}_{4}$ external): $\delta=10.71$ (s). - ${ }^{31} \mathrm{P}$ NMR: $\delta=10.71$ (hept, ${ }^{3} J(\mathrm{P}, \mathrm{H})=10.0 \mathrm{~Hz}$). - IR (KBr): $v=3180(\mathrm{NH}), 2923,2880,1580,1565,1485,1450$, 1290, 1230 ($\mathrm{P}=\mathrm{O}$), 1190, 1158, 1015, 978 ($\mathrm{P}-\mathrm{O}$), 910, 813, $750(\mathrm{P}-\mathrm{N}), 708 \mathrm{~cm}^{-1} .-\mathrm{MS}(20 \mathrm{eV}, \mathrm{EI}): m / z(\%)=271$ (35) $[\mathrm{M}+1]^{+}, 270$ (1) $[\mathrm{M}]^{+}, 198$ (42) $\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}\right]^{+}, 163$ (4) $\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}\right]^{+}, 107(100)\left[\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}\right]^{+}$, $44(33)\left[\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}\right]^{+}$.
N, N-Dimethyl- N^{\prime}-paratoluidyl-diamidophosphoric acid 4-methyl-phenyl ester, $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right] P(\mathrm{O})\left[\mathrm{NH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{p}-\mathrm{CH}_{3}\right]$ $\left[\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{p}-\mathrm{CH}_{3}\right]$ (4)

Compound 4 was prepared following the procedure described for compound $\mathbf{1}$ by using para-toluidine instead of methylamine hydrochloride. (para-toluidine : trietylamine, $1: 1$). Yield: 75%. M.p. $75-79{ }^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H}$ NMR ($250.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS): $\delta=2.28$ (s, 3 H , toluidine, $\left.p-\mathrm{CH}_{3}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}\right.$, tolyl, $\left.p-\mathrm{CH}_{3}\right), 2.74\left(\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{H})=\right.$ $\left.10.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.09\left(\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{H})=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, NH), 6.89-7.03 (m, 4H, toluidine, Ar-H), 7.08 (m, 4H, tolyl, $\mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$, TMS): $\delta=2.67\left(\mathrm{~s}, 1 \mathrm{C}\right.$, toluidine, $\left.p-\mathrm{CH}_{3}\right), 2.80(\mathrm{~s}, 1 \mathrm{C}$, tolyl, p $\left.\mathrm{CH}_{3}\right), 36.73\left(\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=4.3 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 117.90$ $\left(\mathrm{d},{ }^{3} J(\mathrm{P}, \mathrm{C})=6.7 \mathrm{~Hz}, 2 \mathrm{C}\right.$, toluidine, $\left.\mathrm{C}_{\text {ortho }}\right), 120.22(\mathrm{~d}$,
${ }^{3} J(\mathrm{P}, \mathrm{C})=4.7 \mathrm{~Hz}, 2 \mathrm{C}$, tolyl, $\mathrm{C}_{\text {ortho }}$), 129.91 ($\mathrm{s}, 2 \mathrm{C}$, toluidine, $\mathrm{C}_{\text {meta }}$), 130.05 ($\mathrm{s}, 1 \mathrm{C}$, toluidine, $\mathrm{C}_{\text {para }}$), 130.23 ($\mathrm{s}, 2 \mathrm{C}$, tolyl, $\mathrm{C}_{\text {meta }}$), 134.20 ($\mathrm{s}, 1 \mathrm{C}$, tolyl, $\mathrm{C}_{\text {para }}$), $138.64\left(\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=\right.$ $1.2 \mathrm{~Hz}, 1 \mathrm{C}$, toluidine, $\left.\mathrm{C}_{i p s o}\right), 148.56\left(\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=6.0 \mathrm{~Hz}, 1 \mathrm{C}\right.$, tolyl, $\mathrm{C}_{i p s o}$). $-{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101.25 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, $\mathrm{H}_{3} \mathrm{PO}_{4}$ external): $\delta=6.94$ (s). - ${ }^{31} \mathrm{P}$ NMR: $\delta=6.98(\mathrm{~m})$. - IR $(\mathrm{KBr}): v=3215(\mathrm{NH}), 2955,2930,1600,1500,1445,1305$, $1235(\mathrm{P}=\mathrm{O}), 1190,1155,1025,970(\mathrm{P}-\mathrm{O}), 915,710 \mathrm{~cm}^{-1}$ $(\mathrm{P}-\mathrm{N}) .-\mathrm{MS}(20 \mathrm{eV}, \mathrm{EI}): m / z(\%)=305(29)[\mathrm{M}+1]^{+}, 304(2)$ $[\mathrm{M}]^{+}, 213$ (7) $\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}, 198$ (12) $\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NH}\right]^{+}, 197$ (33) $\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}\right]^{+}, 107$ (41) $\left[\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}\right]^{+}, 91$ (18) $\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}$, 44 (100) $\left[\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}\right]^{+}$.

X-Ray structure determinations

X-Ray data of compounds 3 and 4 were collected on a Bruker SMART 1000 CCD single crystal diffractometer with graphite-monochromatized $\operatorname{Mo} K_{\alpha}$ radiation ($\lambda=$ 0.71073 Å) [14]. Routine Lorentz and polarization corrections were applied, and an absorption correction was performed using the program SADABS [15]. The structures were refined with SHELXL-97 by full-matrix least-squares procedures on F^{2} [16]. The positions of hydrogen atoms were obtained from a difference Fourier map.

CCDC 693076 (3) and CCDC 393077 (4) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_ request/cif.

Acknowledgement

Support of this work by Imam Hossein University is gratefully acknowledged.
[1] W. Mallender, T. Szegletes, T. Rosenberry, Biochemistry 2000, 39, 7753.
[2] A. Baldwin, Z. Huang, Y. Jounaidi, D. Waxman, Arch. Biochem. Biophys. 2003, 409, 197.
[3] Y. Pang, T. Kollmeyer, F. Hong, J. Lee, P. Hammond, S. Haugabouk, S. Brimijoin, Biochem. Biol. 2003, 10, 491.
[4] L. Costa, Clinic. Chim. Acta 2006, 366, 1, and refs. therein.
[5] K. Kamil, B. Jirl, C. Jirl, K. Jirl, Bioorg. Medic. Chem. Lett. 2003, 13, 3545.
[6] S. Ghadimi, A. A. Ebrahimi Valmoozi, M. Pourayoubi, K. A. Samani, J. Enzy. Inhibit. Medic. Chem. 2008, 23, 556.
[7] K. Gubina, J. Shatrava, V. Ovchynnikov, V. Amirkhanov, Polyhedron 2000, 19, 2203.
[8] K. Gholivand, Z. Shariatinia, M. Pourayoubi, Z. Naturforsch. 2005, 60b, 67.
[9] K. Gholivand, A. Mahmoudkhani, M. Khosravi, Phosphorus Sulfur and Silicon 1995, 106, 173.
[10] S. Ghadimi, A. A. Ebrahimi Valmoozi, M. Pourayoubi, Z. Kristallogr. NCS 2007, 222, 339.
[11] S. Ghadimi, A. A. Ebrahimi Valmoozi, M. Pourayoubi, Acta. Crystallogr. 2007, E63, o3260.
[12] M. Pourayoubi, S. Ghadimi, A. A. Ebrahimi Valmoozi, Acta. Crystallogr. 2007, E63, 04093.
[13] D.E.C. Corbridge, Phosphorus, an Outline of its Chemistry, Biochemistry and Technology, Elsevier, Amsterdam 1995.
[14] Bruker, SMART (version 5.059), Bruker Molecular Analysis Research Tool, Bruker AXS, Madison, WI (USA) 1998.
[15] G. M. Sheldrick, Sadabs (version 2.01), Bruker/ Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, WI (USA) 1998.
[16] G. M. Sheldrick, Shelxtl (version 5.10), Structure Determination Software Suit, Bruker AXS, Madison, WI (USA) 1998.

