Synthesis and Spectroscopic Characterization of Mixed Diamidophosphoric Acid Esters: X-Ray Crystal Structure of $[(CH_3)_2N]$ - $[p-H_3C-C_6H_4-O]P(O)X$ (X = NHC(CH₃)₃ and $p-H_3C-C_6H_4$ -NH)

Saied Ghadimi^a, Mehrdad Pourayoubi^b, and Ali Asghar Ebrahimi Valmoozi^a

^a Department of Chemistry, Imam Hossein University, Tehran, Iran

^b Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran

Reprint requests to Dr. Saied Ghadimi. E-mail: ghadimi_saied@yahoo.com

Z. Naturforsch. 2009, 64b, 565-569; received December 10, 2008

Mixed diamidophosphoric acid esters $[(CH_3)_2N][p-H_3C-C_6H_4-O]P(O)X$, where $X = NH(CH_3)$ (1), NHCH(CH₃)₂ (2), NHC(CH₃)₃ (3) and p-H₃C-C₆H₄-NH (4) were synthesized and characterized by ³¹P, ³¹P{¹H}, ¹³C, ¹H NMR, and IR spectroscopy and mass spectrometry, and single crystal X-ray diffraction analysis for the compounds 3 and 4. Compound 3 crystallizes in the monoclinic, space group $P2_1/c$ with unit cell parameters a = 9.006(3), b = 16.286(5), c = 10.319(3) Å, $\beta = 99.633(6)^\circ$, V = 1492.2(8) Å³, Z = 4. The final *R* value is 0.0622 for 2074 reflections $[I \ge 2\sigma(I)]$. Compound 4 crystallizes in the orthorhombic, space group $Pna2_1$ with unit cell parameters a = 7.0459(14), b =20.934(4), c = 10.436(2) Å, V = 1539.3(5) Å³, Z = 4. The final *R* value is 0.0530 for 3025 reflections $[I \ge 2\sigma(I)]$.

Key words: Mixed Diamidophosphoric Acid Ester, Spectroscopic Characterization, X-Ray Crystal Structure

Introduction

The extensive studies on the biochemical properties of phosphoramidate derivatives revealed various possibilities for their application in agrochemistry and medicine as insecticides, pesticides, and drugs [1-3]. Gerhard Schrader discovered the insecticide properties of amidophosphoric acid esters [4], which exert their toxicity by the inhibition of the acetylcholinesterase (AChE), the enzyme responsible for the degradation of the cholinergic neurotransmitter acetylcholine [5].

To the best of our knowledge, little attention has been given to the crystal structure and spectroscopic properties of these compounds [6-8]. Herein, mixed diamidophosphoric acid esters of the formula $[(CH_3)_2N][p-H_3C-C_6H_4-O]P(O)X$, where $X = NH-(CH_3)$ (1), NHCH(CH_3)₂ (2), NHC(CH_3)₃ (3) and $p-H_3C-C_6H_4-NH$ (4) were synthesized and characterized by ³¹P, ³¹P{¹H}, ¹³C, ¹H NMR, and IR spectroscopy and mass spectrometry, and the crystal structures of compounds 3 and 4 were determined by single crystal X-ray diffraction analysis.

Results and Discussion

General preparation of compounds 1-4

Compounds 1-4 were synthesized from the reaction of *N*,*N*-dimethylamido(chloro)phosphoric acid 4-methyl-phenyl ester and the corresponding amine (or the hydrochloride salt of the amine for compound 1) in the presence of triethylamine as an HCl scavenger (for compounds 1 and 4) or an excess of amine (for compounds 2 and 3, Eq. 1).

$$\begin{array}{l} (CH_3)_2 N[p - CH_3 - C_6 H_4 - O] P(O) Cl + 2 RNH_2 \\ \rightarrow (CH_3)_2 N[p - CH_3 - C_6 H_4 - O] P(O) NHR \\ + RNH_3 Cl, R = CH(CH_3)_2 (2) \text{ or } C(CH_3)_3 (3) \end{array}$$
(1)

NMR study

The ³¹P chemical shifts (δ^{31} P) in the NMR spectra of the title compounds varied from 6.94 (for compound 4) to 15.99 ppm (for compound 1). Comparison of δ^{31} P values in compounds 1–3 demonstrates the electron donating effect of the amine groups in the sequence NH-C(CH₃)₃ > NH-CH(CH₃)₂ > NHCH₃, which causes a decrease of the phosphorus chemical

0932-0776 / 09 / 0500-0565 \$ 06.00 © 2009 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

X	M^+	$[C_2H_6N]^+$	$[C_7H_7O]^+$	$[C_7H_7]^+$	$[M-C_7H_7O]^+$	$[M-C_7H_7]^+$	[M–X] ⁺	Ref.
Cl ³⁵	100	53	91	29	62	4	16	а
CN	71	100	35	78	48	2	3	b
OCH ₃	64	100	67	10	69	71	16	[6]
$(C_2H_5)_2N$	10	100	89	4	28	2	8	[6]
$(C_4H_8)NO$	25	100	87	15	48	8	10	[6]
NH(CH ₃) (1)	14	100	54	12	5	88	-	с
NH(iso-C ₃ H ₇) (2)	3	53	100	25	79	3	-	b
$NH(tert-C_4H_9)(3)$	1	33	100	-	4	-	42	с
<i>p</i> -H ₃ C-C ₆ H ₄ -NH (4)	2	100	41	18	33	7	12	с

Table 1. Fragment relative intensities in the mass spectra of compounds 1-4 and reference molecules [(CH₃)₂N]P(O)X[O-C₆H₄-*p*-CH₃]).

^a Synthesis and spectroscopic characterization of $[(CH_3)_2N]P(O)Cl[O-C_6H_4-p-CH_3]$ have been reported in ref. [9] and the modified strategy for the synthesis and the X-ray crystallography data in ref. [10]; the intensities reported in Table 1 were determined by the authors; ^b MS data of $[(CH_3)_2N]P(O)CN[O-C_6H_4-p-CH_3]$ and $[(CH_3)_2N]P(O)[NH(iso-C_3H_7)][O-C_6H_4-p-CH_3]$ have not been published elsewhere; X-ray data were reported in refs. [11] and [12], respectively; ^c this work.

shift. In the ¹H NMR spectra of compounds 1-4 doublet peaks with ³*J*(P,H) in the range of 10.0 Hz (for compound **3**) to 10.2 Hz (for compounds **1** and **4**) appear for the N(CH₃)₂ moieties. Two-bond P–C coupling constants for the carbon atoms of the N(CH₃)₂ moiety with ²*J*(P,C) are in the range of 3.2 Hz (for compound **3**) to 4.4 Hz (for compound **1**). The data of the NMR spectra show ³*J*(P,H) (**1**) > ³*J*(P,H) (**2**) > ³*J*(P,H) (**3**) and ²*J*(P,C) (**1**) > ²*J*(P,C) (**2**) > ²*J*(P,C) (**3**). The CH₃ groups in the NH(*iso*-C₃H₇) moiety of compound **2** are diastereotopic and show two doublet peaks in the ¹H NMR spectrum (with ³*J*(H,H) = 6.5 and 6.4 Hz). Moreover, two doublet peaks appear for the CH₃ carbon atoms with ³*J*(P,C) = 5.9 and 5.3 Hz.

Mass spectrometry investigation

Mass spectra of the compounds indicate the presence of the fragments $[N(CH_3)_2]^+$, $[C_7H_7O]^+$, and $P(O)[N(CH_3)_2]X^+$, where X = NH(CH_3) (1), NH(*iso*- C_3H_7) (2), NH(*tert*-C_4H_9) (3) and *p*-H_3C-C_6H_4-NH (4) (Table 1). Moreover, the fragment P(O)[N(CH_3)_2]-[O-C_6H_4-*p*-CH_3]^+ is observed in the mass spectra of compounds 3 and 4.

X-Ray crystallography

The crystal structure of compound 2 was reported in reference [12]. Single crystals of compounds 3 and 4 were obtained from $CHCl_3/CH_3CN$ at r. t. The crystal-lographic data and the details of the X-ray analysis are presented in Table 2, selected bond lengths and angles for compounds 3 and 4 are given in Table 3. Hydrogen bonding data are listed in Table 4. The molecular structures of 3 and 4 are shown in Figs. 1 and 2, respectively. The phosphorus atoms have a distorted

Table 2. Crystallography data for compounds 3 and 4.

	3	4
Formula	$C_{13}H_{23}N_2O_2P$	$C_{16}H_{21}N_2O_2P$
M _r	270.30	304.32
Temperature (K)	100(2)	100(2)
Wavelength (Å)	0.71073	0.71073
Crystal system	monoclinic	orthorhombic
Space group	$P2_{1}/c$	$Pna2_1$
a, Å	9.006(3)	7.0459(14)
b, Å	16.286(5)	20.934(4)
<i>c</i> , Å	10.319(3)	10.436(2)
β , deg	99.633(6)	90
<i>V</i> , Å ³	1492.2(8)	1539.3(5)
Ζ	4	4
$D_{\text{calcd}}, \text{ g cm}^{-3}$	1.203	1.313
Absorption	0.182	0.185
coefficient, mm ⁻¹		
<i>F</i> (000), e	584	648
Cryst. size, mm ³	$0.35 \times 0.20 \times 0.15$	$0.25{\times}0.15{\times}0.08$
θ range for data collection, deg	2.29 - 27.00	1.95 - 28.00
Limiting indices	$-10 \le h \le 11,$	$-8 \le h \le 9$,
	$-20 \le k \le 20,$	$-24 \le k \le 27$,
	$-13 \le l \le 13$	$-13 \le l \le 13$
Refl. collected / unique	9737 / 3137	9993 / 3654
R _{int}	0.0965	0.0528
Completeness to θ (%)	96.4	98.6
Observed refls $[I \ge 2\sigma(I)]$	2074	3025
Absorption correction	none	semi-empirical
		from equivalents
Max. / min. transmission	-	0.9854 / 0.9552
Data / restraints / parameters	3137 / 0 / 169	3654 / 1 / 194
$\operatorname{GoF}(F^2)$	0.995	1.005
Final $R1/wR2$ $[I \ge 2\sigma(I)]$	0.0622 / 0.1043	0.0530 / 0.1032
Final $R1/wR2$ (all data)	0.1068 / 0.1192	0.0695 / 0.1099
Largest diff. peak/hole, e $Å^{-3}$	0.368 / -0.339	0.655 / -0.410

tetrahedral configuration. The bond angles around the phosphorus atom are in the range of $102.76(14)^{\circ}$ [$\angle O(2)-P(1)-N(2)$] to $114.77(14)^{\circ}$ [$\angle O(1)-P(1)-N(2)$] in compound **2**, $102.32(11)^{\circ}$ [$\angle O(1)-P(1)-N(2)$] to $115.58(12)^{\circ}$ [$\angle O(2)-P(1)-N(2)$] in compound **3**

Table 3. Selected bond lengths (Å) and bond angles (deg) for compounds **3** and **4**.

3		4	
P(1)-O(2)	1.462(2)	P(1)–O(2)	1.474(2)
P(1)–O(1)	1.608(2)	P(1)–O(1)	1.604(2)
P(1)–N(2)	1.631(2)	P(1)–N(2)	1.633(3)
P(1)–N(1)	1.641(2)	P(1)–N(1)	1.648(3)
O(1)–C(1)	1.409(3)	O(1)–C(8)	1.421(3)
N(1)-C(9)	1.452(4)	N(1)-C(1)	1.430(4)
N(1)-C(8)	1.458(4)	N(2)-C(16)	1.441(4)
N(2)-C(10)	1.486(3)	N(2)-C(15)	1.458(4)
C(1)-C(6)	1.373(4)	C(1)-C(6)	1.389(4)
O(2)–P(1)–O(1)	114.19(11)	O(2)-P(1)-O(1)	114.82(13)
O(2)-P(1)-N(2)	115.58(12)	O(2)-P(1)-N(2)	110.64(12)
O(1)-P(1)-N(2)	102.32(11)	O(1)-P(1)-N(2)	105.10(12)
O(2)-P(1)-N(1)	110.06(12)	O(2)-P(1)-N(1)	114.64(13)
O(1)-P(1)-N(1)	102.94(12)	O(1)-P(1)-N(1)	100.51(12)
N(2)-P(1)-N(1)	110.85(12)	N(2)-P(1)-N(1)	110.37(13)
C(1)-O(1)-P(1)	120.41(17)	C(8)-O(1)-P(1)	120.81(17)
C(9)-N(1)-C(8)	114.4(2)	C(1)-N(1)-P(1)	123.1(2)
C(6)-C(1)-C(2)	121.3(3)	C(6)-C(1)-C(2)	119.1(3)
C(6)-C(1)-O(1)	119.7(2)	C(6)-C(1)-N(1)	119.6(3)
C(2)-C(1)-O(1)	118.7(2)	C(2)-C(1)-N(1)	121.2(3)
C(1)-C(2)-C(3)	119.0(3)	C(3)-C(2)-C(1)	119.6(3)
C(4)-C(3)-C(2)	121.5(3)	C(4)-C(3)-C(2)	121.7(3)
C(10)-N(2)-P(1)	126.10(18)	C(15)-N(2)-P(1)	120.8(2)

Table 4. Hydrogen bond parameters for compounds 3 and 4 (Å, deg).

D-H…A	d(D-H)	$d(\mathbf{H} \cdot \mathbf{A})$	$d(D \cdot A)$	∠DHA
3: N(2)-H(2N)··O	(2) 0.880	2.022	2.869(3)	161
[x, -y + 1/2, z +	- 1/2]			
4: N(1)-H(1N)··O	(2) 0.90	2.07	2.957(4)	170
[-x+1, -y, z+	- 1/2]			
0				_

Fig. 1. Molecular structure and atom labeling scheme for $[tert-C_4H_9NH]P(O)[(CH_3)_2N][p-O-C_6H_4-CH_3]$ (3) with displacement ellipsoids at the 50 % probability level.

and $100.51(12)^{\circ}$ [$\angle O(1)-P(1)-N(1)$] to $114.82(13)^{\circ}$ [$\angle O(2)-P(1)-O(1)$] in compound **4**. The oxygen atoms of the O-C₆H₄-*p*-CH₃ moieties may be ascribed *sp*²

Fig. 2. Molecular structure and atom labeling scheme for $[(CH_3)_2N]P(O)[p-NHC_6H_4-CH_3][p-OC_6H_4-CH_3]$ (4) with displacement ellipsoids at the 50 % probability level.

Fig. 3. Hydrogen bond (P(1)–O(2)···H(1N) in compound 4.

character, P–O–C: $120.30(2)^{\circ}(2)$, $120.41(17)^{\circ}(3)$ and $120.81(17)^{\circ}(4)$. Their P–O bond lengths (1.607(2), 1.608(2) and 1.604(2) Å) are shorter than a standard P–O single bond (1.64 Å [13]). The P=O bond lengths in molecules **2**, **3** and **4** are 1.473(2), 1.462(2) and 1.474(2) Å, respectively, and thus longer than the normal P=O bond length (1.45 Å for P(O)Cl₃) [13]. Also, the P–N bond lengths are shorter than the standard P–N single bond length (1.77 Å for NaHPO₃-NH₂ [13]). The nitrogen atoms of the aliphatic amine

groups in the title compounds indicate sp^2 hybridization. For example, in compound 4, the angles P(1)-N(2)-C(16), C(16)-N(2)-C(15) and C(15)-N(2)-P(1) are $121.4(2)^{\circ}$, $114.1(3)^{\circ}$ and $120.8(2)^{\circ}$, respectively. The sum of the angles around the N2 and N1 atoms are 354.9° and 355.8° for compound 3. The deviation from the ideal value of 360° may be caused by steric effects. Molecules of compounds 2-4 are linked via $N-H \cdots O=P$ hydrogen bonds into chains. Fig. 3 shows the N-H···O=P hydrogen bond in crystals of compound 4. H-bonded chains spreading along the crystallographic c axis in the crystal of compound 4 are connected into ribbons through π stacking between p-H₃C-C₆H₄-NH moieties. The angle and the distance between mean planes of neighboring moieties is equal to $8.7(1)^{\circ}$ and 3.26(1) Å, respectively, The shortest distances between the center of the phenylene ring and the H atom of a neighboring methyl group is equal to 2.682(3) Å.

Experimental Section

Materials

Acetonitrile (99%), *iso*-propylamine (99%), *tert*-butylamine (99%), methylamine (46% aqueous solution), triethylamine (98%), and chloroform (99%) (Merck) were used as supplied. [(CH₃)₂N]P(O)Cl[O-C₆H₄-p-CH₃] was synthesized according to the literature [10].

Spectroscopic measurements

¹H, ¹³C and ³¹P NMR spectra were recorded on Bruker (Avance DRS) 250 and 500 MHz spectrometers. ¹H, ¹³C and ³¹P chemical shifts were obtained in CDCl₃ relative to TMS and 85 % H₃PO₄ as external standards, respectively. IR spectra were obtained using KBr pellets on a Perkin Elmer 783 model spectrometer. A Varian Star 3400 CX mass spectrometer was used for mass spectrometry investigation. Melting points were obtained with an Electrothermal instrument.

N,N-Dimethyl-N'-methyl-diamidophosphoric acid 4-methylphenyl ester, $(CH_3)_2NP(O)[(CH_3)NH][O-C_6H_4-p-CH_3]$ (1)

To a solution of $(CH_3)_2NP(O)Cl[O-C_6H_4-p-CH_3]$ (0.82 g, 3.5 mmol) in 30 mL of dry acetonitrile, methylamine hydrochloride (0.24 g, 3.5 mmol) and triethylamine (0.71 g, 7 mmol) were added at 0 °C. After 12 h stirring, the solvent was evaporated *in vacuo*. Then, the flash gradient chromatography method was used for the purification of the product (silicagel, hexane-ethyl acetate 9:1). The solvent was evaporated *in vacuo* to afford the product as a colorless liquid. Yield: 68 %. – ¹H NMR (250.13 MHz, CDCl₃, 25 °C, TMS): δ = 2.30 (s, 3H, *p*-CH₃), 2.60 (d, ³*J*(P,H) = 12.2 Hz, 3H, methylamine-CH₃), 2.73 (d, ³*J*(P,H) = 10.2 Hz, 6H, N(CH₃)₂), 3.00–3.15 (m, 1H, methylamine-NH), 7.04–7.12 (m, 4H, Ar-H). – ¹³C NMR (62.90 MHz, CDCl₃, 25 °C, TMS): δ = 20.69 (s, 1C, *p*-CH₃), 27.02 (s, 1C, methylamine-CH₃), 36.80 (d, ²*J*(P,C) = 4.4 Hz, 2C, N(CH₃)₂), 120.05 (d, ³*J*(P,C) = 4.8 Hz, 2C, C_{ortho}), 130.00 (s, 2C, C_{meta}), 133.70 (s, 1C, C_{para}), 149.05 (d, ²*J*(P,C) = 6.3 Hz, 1C, C_{ipso}). – ³¹P{¹H} NMR (101.25 MHz, CDCl₃, 25 °C, H₃PO₄ external): δ = 15.99 (s). – ³¹P NMR: δ = 15.99 (m). – IR (KBr): ν = 3220 (NH), 3010, 2920, 2800, 1600, 1580, 1505, 1300, 1225 (P=O), 1170, 1118, 1070, 988 (P–O), 920, 810, 715 (P–N), 645 cm⁻¹. – MS (20 eV, EI): *m/z* (%) = 228 (14) [M]⁺, 137 (88) [M–C₇H₇]⁺, 121 (5) [M–C₇H₇O]⁺, 107 (54) [C₇H₇O]⁺, 91 (12) [C₇H₇]⁺, 44 (100) [C₂H₆N]⁺.

N,N-Dimethyl-N'-iso-propyl-diamidophosphoric acid 4-methyl-phenyl ester, $(CH_3)_2NP(O)[NH(iso-C_3H_7)]$ $[O-C_6H_4$ -p- $CH_3]$ (2)

To a solution of (CH₃)₂NP(O)Cl[O-C₆H₄-p-CH₃] (0.82 g, 3.5 mmol) in 30 mL of dry chloroform, isopropylamine (0.42 g, 7.1 mmol) was slowly added and the mixture stirred at 0 °C for 12 h. The solvent was evaporated in vacuo. Single crystals of the product were obtained from a solution in chloroform-acetonitrile (4:1) after slow evaporation at r. t. Yield: 73 %. M. p. 61-64 °C. -¹H NMR (500.13 MHz, CDCl₃, 25 °C, TMS): δ = 1.12 $(d, {}^{3}J(H,H) = 6.5 Hz, 3H, iso-propylamine-CH_{3}), 1.15 (d,$ ${}^{3}J(H,H) = 6.4$ Hz, 3H, *iso*-propylamine-CH₃), 2.25 (s, 3H, *p*-CH₃), 2.33 (b, 1H, NH), 2.68 (d, ${}^{3}J(P,H) = 10.1$ Hz, 6H, N(CH₃)₂), 3.38-3.39 (m, 1H, iso-propylamine-CH), 7.03 (m, 4H, Ar-H). - ¹³C NMR (125.75 MHz, CDCl₃, 25 °C, TMS): δ = 20.64 (s, 1C, *p*-CH₃), 25.27 (d, ³*J*(P,C) = 5.9 Hz, 1C, *iso*-propylamine-CH₃), 25.52 (d, ${}^{3}J(P,C) =$ 5.3 Hz, 1C, *iso*-propylamine-CH₃), 36.96 (d, ${}^{2}J(P,C) =$ 3.8 Hz, 2C, N(CH₃)₂), 43.38 (s, 1C, iso-propylamine-CH), 119.92 (d, ${}^{3}J(P,C) = 4.8$ Hz, 2C, C_{ortho}), 129.96 (s, 2C, C_{meta}), 133.50 (s, 1C, C_{para}), 149.12 (d, ²*J*(P,C) = 6.1 Hz, 1C, C_{ipso}). - ³¹P{¹H} NMR (202.45 MHz, CDCl₃, 25 °C, H₃PO₄ external): $\delta = 13.70$ (s). $-{}^{31}$ P NMR: $\delta = 13.70$ (m). – IR (KBr): v = 3210 (NH), 2949, 2940, 1599, 1499, 1455, 1297, 1227 (P=O), 1198, 1162, 1040, 985 (P-O), 906, 816, 794, 705 cm⁻¹ (P–N). – MS (20 eV, EI): m/z (%) = 257 $(30) [M+1]^+, 256 (3) [M]^+, 165 (3) [M-C_7H_7]^+, 149 (79)$ $[M-C_7H_7O]^+$, 107 (100) $[C_7H_7O]^+$, 91 (25) $[C_7H_7]^+$, 44 $(53) [C_2H_6N]^+.$

N,N-Dimethyl-N'-tert-butyl-diamidophosphoric acid4-methyl-phenyl ester, [(CH₃)₂N]P(O)[NH(tert-C₄H₉)]-[O-C₆H₄-p-CH₃] (**3**)

Compound **3** was prepared following the procedure described for compound **2** by using *tert*-butylamine instead of *iso*-propylamine. Yield: 82 %. M. p. 83–86 °C. – ¹H NMR (250.13 MHz, CDCl₃, 25 °C, TMS): δ = 1.32 (s, 9H, *tert*-

butylamine-CH₃), 2.29 (s, 3H, *p*-CH₃), 2.32 (b, 1H, NH), 2.67 (d, ³*J*(P,H) = 10.0 Hz, 6H, N(CH₃)₂), 7.07 (m, 4H, Ar-H). – ¹³C NMR (62.90 MHz, CDCl₃, 25 °C, TMS): δ = 20.70 (s, 1C, *p*-CH₃), 31.36 (d, ³*J*(P,C) = 5.0 Hz, 3C, *tert*butylamine-CH₃), 36.91 (d, ²*J*(P,C) = 3.2 Hz, 2C, N(CH₃)₂), 50.80 (s, 1C, *tert*-butylamine-C), 119.90 (d, ³*J*(P,C) = 4.8 Hz, 2C, *C*_{ortho}), 130.00 (s, 2C, *C*_{meta}), 133.40 (s, 1C, *C*_{para}), 149.2 (d, ²*J*(P,C) = 6.1 Hz, 1C, *C*_{ipso}). – ³¹P{¹H} NMR (101.25 MHz, CDCl₃, 25 °C, H₃PO₄ external): δ = 10.71 (s). – ³¹P NMR: δ = 10.71 (hept, ³*J*(P,H) = 10.0 Hz). – IR (KBr): *v* = 3180 (NH), 2923, 2880, 1580, 1565, 1485, 1450, 1290, 1230 (P=O), 1190, 1158, 1015, 978 (P–O), 910, 813, 750 (P–N), 708 cm⁻¹. – MS (20 eV, EI): *m/z* (%) = 271 (35) [M+1]⁺, 270 (1) [M]⁺, 198 (42) [M–C₄H₁₀N]⁺, 163 (4) [M–C₇H₇O]⁺, 107 (100) [C₇H₇O]⁺, 44 (33) [C₂H₆N]⁺.

N,N-Dimethyl-N'-paratoluidyl-diamidophosphoric acid 4-methyl-phenyl ester, $[(CH_3)_2N]P(O)[NH-C_6H_4-p-CH_3]$ $[O-C_6H_4-p-CH_3]$ (4)

Compound **4** was prepared following the procedure described for compound **1** by using *para*-toluidine instead of methylamine hydrochloride. (*para*-toluidine : trietyl-amine, 1 : 1). Yield: 75 %. M. p. 75–79 °C. – ¹H NMR (250.13 MHz, CDCl₃, 25 °C, TMS): δ = 2.28 (s, 3H, toluidine, *p*-CH₃), 2.30 (s, 3H, tolyl, *p*-CH₃), 2.74 (d, ³*J*(P,H) = 10.2 Hz, 6H, N(CH₃)₂), 5.09 (d, ²*J*(P,H) = 8.2 Hz, 1H, NH), 6.89–7.03 (m, 4H, toluidine, Ar-H), 7.08 (m, 4H, tolyl, Ar-H). – ¹³C NMR (62.90 MHz, CDCl₃, 25 °C, TMS): δ = 2.67 (s, 1C, toluidine, *p*-CH₃), 2.80 (s, 1C, tolyl, *p*-CH₃), 36.73 (d, ²*J*(P,C) = 4.3 Hz, 2C, N(CH₃)₂), 117.90 (d, ³*J*(P,C) = 6.7 Hz, 2C, toluidine, *C_{ortho}*), 120.22 (d,

- W. Mallender, T. Szegletes, T. Rosenberry, *Biochem*istry 2000, 39, 7753.
- [2] A. Baldwin, Z. Huang, Y. Jounaidi, D. Waxman, Arch. Biochem. Biophys. 2003, 409, 197.
- [3] Y. Pang, T. Kollmeyer, F. Hong, J. Lee, P. Hammond, S. Haugabouk, S. Brimijoin, *Biochem. Biol.* 2003, 10, 491.
- [4] L. Costa, *Clinic. Chim. Acta* **2006**, *366*, 1, and refs. therein.
- [5] K. Kamil, B. Jirl, C. Jirl, K. Jirl, Bioorg. Medic. Chem. Lett. 2003, 13, 3545.
- [6] S. Ghadimi, A. A. Ebrahimi Valmoozi, M. Pourayoubi, K. A. Samani, J. Enzy. Inhibit. Medic. Chem. 2008, 23, 556.
- [7] K. Gubina, J. Shatrava, V. Ovchynnikov, V. Amirkhanov, *Polyhedron* 2000, 19, 2203.
- [8] K. Gholivand, Z. Shariatinia, M. Pourayoubi, Z. Naturforsch. 2005, 60b, 67.
- [9] K. Gholivand, A. Mahmoudkhani, M. Khosravi, *Phos-phorus Sulfur and Silicon* 1995, 106, 173.

³*J*(P,C) = 4.7 Hz, 2C, tolyl, C_{ortho}), 129.91 (s, 2C, toluidine, C_{meta}), 130.05 (s, 1C, toluidine, C_{para}), 130.23 (s, 2C, tolyl, C_{meta}), 134.20 (s, 1C, tolyl, C_{para}), 138.64 (d, ²*J*(P,C) = 1.2 Hz, 1C, toluidine, C_{ipso}), 148.56 (d, ²*J*(P,C) = 6.0 Hz, 1C, tolyl, C_{ipso}). – ³¹P{¹H} NMR (101.25 MHz, CDCl₃, 25 °C, H₃PO₄ external): δ = 6.94 (s). – ³¹P NMR: δ = 6.98 (m). – IR (KBr): v = 3215 (NH), 2955, 2930, 1600, 1500, 1445, 1305, 1235 (P=O), 1190, 1155, 1025, 970 (P–O), 915, 710 cm⁻¹ (P–N). – MS (20 eV, EI): m/z (%) = 305 (29) [M+1]⁺, 304 (2) [M]⁺, 213 (7) [M–C₇H₇]⁺, 198 (12) [M–C₇H₇NH]⁺, 197 (33) [M–C₇H₇O]⁺, 107 (41) [C₇H₇O]⁺, 91 (18) [C₇H₇]⁺, 44 (100) [C₂H₆N]⁺.

X-Ray structure determinations

X-Ray data of compounds **3** and **4** were collected on a Bruker SMART 1000 CCD single crystal diffractometer with graphite-monochromatized Mo K_{α} radiation ($\lambda =$ 0.71073 Å) [14]. Routine Lorentz and polarization corrections were applied, and an absorption correction was performed using the program SADABS [15]. The structures were refined with SHELXL-97 by full-matrix least-squares procedures on F^2 [16]. The positions of hydrogen atoms were obtained from a difference Fourier map.

CCDC 693076 (**3**) and CCDC 393077 (**4**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgement

Support of this work by Imam Hossein University is grate-fully acknowledged.

- [10] S. Ghadimi, A. A. Ebrahimi Valmoozi, M. Pourayoubi, Z. Kristallogr. NCS 2007, 222, 339.
- [11] S. Ghadimi, A. A. Ebrahimi Valmoozi, M. Pourayoubi, Acta. Crystallogr. 2007, E63, o3260.
- [12] M. Pourayoubi, S. Ghadimi, A. A. Ebrahimi Valmoozi, Acta. Crystallogr. 2007, E63, 04093.
- [13] D.E.C. Corbridge, Phosphorus, an Outline of its Chemistry, Biochemistry and Technology, Elsevier, Amsterdam 1995.
- [14] Bruker, SMART (version 5.059), Bruker Molecular Analysis Research Tool, Bruker AXS, Madison, WI (USA) 1998.
- [15] G. M. Sheldrick, SADABS (version 2.01), Bruker/ Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, WI (USA) 1998.
- [16] G. M. Sheldrick, SHELXTL (version 5.10), Structure Determination Software Suit, Bruker AXS, Madison, WI (USA) 1998.