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Temperature and doping dependencies of electron mobility in ZnO semiconductor has been calculated using an iterative 
technique. The following scattering mechanisms, i.e., impurity, polar optical phonon, acoustic phonon, piezoelectric, and 
electron-plasmon are included in the calculation. It is shown that electron-plasmon scattering influence substantially the 
low-field electron mobility in bulk ZnO. We found that the electron mobility decreases monotonically as the temperature 
increases from 100K to 600K. The low temperature value of the electron mobility increases significantly as the doping 
concentration is increased. The iterative results are in fair agreement with other recent calculations obtained using the 
relaxation-time approximation and experimental methods.  

 
 

1.     Introduction 

ZnO is a wide band gap semiconductor, and 
therefore, has a high breakdown field and low 
thermal generation rate. These properties combined 
with good thermal conductivity and stability make 
ZnO an attractive material for high power, high 
temperature and radiation harsh environment 
electronic devices. Monte Carlo simulations predict 
a peak electron velocity of 3×105 ms-1 and a 
saturation electron velocity of 1.3×10-5 ms-1 [1-5]. 
This makes possible high frequency operation of 
ZnO devices. For the above stated reasons, ZnO is 
of great interest for power FETs and optoelectronic 
device structures. ZnO based field-effect transistors 
have been reported to exhibit continuous wave 
outputs up to 6.9 W/mm [6] and high frequency 
operation [7] at fT = 67 GHz and fmax=140 GHz. 

The low-field electron mobility is one of the 
most important parameters that determine the 
performance of a field-effect transistor. The 
purpose of the present paper is to calculate electron 
mobility for various temperatures and ionized-
impurity concentrations. The formulation itself 
applies only to the central Γ valley conduction 
band. We have also considered band non-
parabolicity, admixture of p-type valence-band 
wave functions, degeneracy of the electron 
distribution to any arbitrary degree, and the 
screening effects of free carriers on the scattering 
probabilities. All the relevant scattering 
mechanisms, including the two-mode nature of the 
polar optic phonon and electron-plasmon scattering 
are taken into account. The Boltzmann equation is 
solved iteratively for our purpose, jointly 
incorporating the effects of all the scattering  
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mechanisms. Our calculated results are compared 
with the available experimental data on both 
temperature and the free electron concentration 
dependence of mobility. 

This paper is organized as follows. Details of 
the iterative model, the electron scattering 
mechanism, which have been used and the electron 
mobility calculations, are presented in Sec. 2 and 
the result of iterative calculations carried out on 
ZnO structure are interpreted in Sec. 3. 

2.     Model details 

To calculate the mobility, we have to solve the 
Boltzmann equation to get the modified probability 
distribution function under the action of a steady 
electric field. Here, we have adopted the iterative 
technique for solving the Boltzmann transport 
equation. Under the action of a steady field, the 
Boltzmann equation for the distribution function 
can be written as: 
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function due to electron scattering. In the steady-
state and under application of a uniform electric 
field the Boltzmann equation can be written as 
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Consider electrons in an isotropic, non-parabolic 
conduction band whose equilibrium Fermi 
distribution function is f0(k) in the absence of 
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electric field. Note the equilibrium distribution f0(k) 
is isotropic in k space, but is perturbed when an 
electric field is applied. If the electric field is small, 
we can treat the change from the equilibrium 
distribution function as a perturbation, which is 
first order in the electric field. The distribution in 
the presence of a sufficiently small field can be 
written quite generally as 
 

θcos)()()( 10 kfkfkf +=                        (3) 

 
Where, θ is the angle between k and F and f1(k) is 
an isotropic function of k proportional to the 
magnitude of the electric field. f(k) satisfies the 
Boltzmann equation (Eqn. 2) and it follows that 
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In general there will be both elastic and inelastic 
scattering processes. For example, impurity 
scattering is elastic and acoustic and piezoelectric 
scattering are elastic to a good approximation at 
room temperature. However, polar and non-polar 
optical phonon scattering are inelastic. Labeling the 
elastic and inelastic scattering rates with subscripts 
el and inel , respectively, and recognizing that for 
any process i, seli(k’, k) = seli(k, k’), Eqn. 4 can be 
written as 
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Note the first term in the denominator is simply the 
momentum relaxation rate for elastic scattering.  
 

Eqn. 5 may be solved iteratively by the relation 
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Where, f 1n (k) is the perturbation to the distribution 
function after the n-th iteration. It is interesting to 
note that if the initial distribution is chosen to be 
the equilibrium distribution for which f 1 (k) is 
equal to zero, then, we get the relaxation time 
approximation result after the first iteration. We 
have found that convergence can normally be 
achieved after only a few iterations for small 
electric fields. Once f 1 (k) has been evaluated to the 
required accuracy, it is possible to calculate 
quantities such as the drift mobility, µ, which is 
given in terms of spherical coordinates by 
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Here, we have calculated low field drift mobility in 
ZnO structure using the iterative technique. In the 
following sections electron-phonon, electron-
impurity, and electron-plasmon scattering 
mechanisms will be discussed. 

A.     Deformation potential scattering 

The acoustic modes modulate the inter-atomic 
spacing. Consequently, the position of the 
conduction and valence band edges and the energy 
band gap will vary with position because of the 
sensitivity of the band structure to the lattice 
spacing. The energy change of a band edge due to 
this mechanism is defined by a deformation 
potential and the resultant scattering of carriers is 
called deformation potential scattering. The energy 
range involved in the case of scattering by acoustic 
phonons is from zero to vkh2 , where v is the 
velocity of sound, since momentum conservation 
restricts the change of phonon wave vector to 
between zero and  2k, where k is the electron wave 
vector. Typically, the average value of k is of the 
order of 107 cm-1 and the velocity of sound in the 
medium is of the order of 105  cms-1. Hence, vkh2  
∼ 1 meV, which is small as compared to the 
thermal energy at room temperature. Therefore, the 
deformation potential scattering by acoustic modes 
can be considered as an elastic process except at 
very low temperature. The deformation potential 
scattering rate with either phonon emission or 
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absorption for an electron of energy E in a non-
parabolic band is given by Fermi's golden rule as 
[8-9] 
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Where, Dac is the acoustic deformation potential, ρ 
is the material density and α is the non-parabolicity 
coefficient. The formula clearly shows that the 
acoustic scattering increases with temperature. 

B.     Piezoelectric scattering 

The second type of electron scattering by acoustic 
modes occurs when the displacements of the atoms 
create an electric field through the piezoelectric 
effect. This can occur in the compound 
semiconductors such as the III-V and II-VI 
materials including ZnO that in fact has a relatively 
large piezoelectric constant. The piezoelectric 
scattering rate for an electron of energy E in an 
isotropic, parabolic band has been discussed by 
Ridley [10], who included the modification of the 
Coulomb potential due to free carrier screening. 
The screened Coulomb potential is written as 
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Where, εs is the relative dielectric constant of the 
material and q0 is the inverse screening length, 
which under non-degenerate conditions is given by  
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Where, n is the electron density. The expression for 
the scattering rate of an electron in a non-parabolic 
band structure, retaining only the important terms, 
can be written as [8-9] 
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Where, Kav  is the so called dimensionless average 
electromechanical coupling constant. 

C.     Polar optical phonon scattering 

The dipolar electric field arising from the opposite 
displacement of the negatively and positively 
charged atoms provides a coupling between the 
electrons and the lattice which results in electron 
scattering. This type of scattering is called polar 
optical phonon scattering and at room temperature 
and is generally the most important scattering 
mechanism for electrons in III-V semiconductors. 
This is also the case in ZnO despite the fact that the 
optical phonon energy is particularly high at ∼ 93 
meV, which suppresses the phonon population and 
also electrons must reach that energy before 
phonon emission is possible. The scattering rate 
due to this process for an electron of energy E in an 
isotropic, non-parabolic band is [8-9] 
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Where, Nop is the phonon occupation number and 
the upper and lower cases refer to absorption and 
emission, respectively. For small electric fields, the 
phonon population will be very close to 
equilibrium so that the average number of phonons 
is given by the Bose-Einstein distribution 
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Where,  opωh  is the polar optical phonon energy. 
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D.     Non-polar optical phonon scattering 

Non-polar optical phonon scattering is similar to 
deformation potential scattering. In that, the 
deformation of the lattice produces a perturbing 
potential, but in this case the deformation is carried 
by optical vibrations. The non-polar optical phonon 
scattering rate in non-parabolic bands is given by 
[8-9]  
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Where, Dod is the optical deformation potential and, 

opEE ωh±= ' is the final state energy phonon 

absorption (upper case) and emission (lower case).  

E.     Impurity scattering 

This scattering process arises as a result of the 
presence of impurities in a semiconductor. The 
substitution of an impurity atom on a lattice site 
will perturb the periodic crystal potential and result 
in scattering of an electron. Since the mass of the 
impurity greatly exceeds that of an electron and the 
impurity is bonded to neighboring atoms, this 
scattering is very close to being elastic. Ionized 
impurity scattering is dominant at low temperatures 
because, as the thermal velocity of the electrons 
decreases, the effect of long-range Coulomb 
interactions on their motion is increased. The 
electron scattering by ionized impurity centres has 
been discussed by Brooks-Herring [11], who 
included the modification of the Coulomb potential 
due to free carrier screening. The scattering rate for 
an isotropic, non-parabolic band structure is given 
by [8-9] 
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Where, ni is the impurity concentration, q0 is the 
screening length and ks is the dielectric constant of 
the material. 

F.     Electron-plasmon scattering 

The electron-plasmon interaction Hamiltonian can 
be written in random phase approximation as [12-
13] 
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Here, +
qa , qa  and +

kc , kc  are the creation and 

annihilation operators for plasmons and electrons, 
respectively. The matrix element 
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Where, )(qpω  is the dispersion relation for 

plasmons, q and k are the plasmon and electron 
momenta, respectively, e and m* are the charge and 
effective mass of an electron, ε the background 
dielectric constant, and  Ω the real-space volume. 
The first term in parentheses in Eqn. 15 describes 
the plasmon absorption process that obeys the 
energy conservation law as 
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Where, εk is the energy of electron with momentum 
k. In a similar manner, the plasmon emission 
process, in accordance with the second term in 
parentheses in Eqn. 15, is governed by the energy 
conservation law which can be written as 
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Note that Eqn. 17 describes the emission of 
plasmon with momentum -q. To impart a more 
conventional form to the energy conservation law, 
replace the variable of summation q in terms 
governing the plasmon emission in eqn. 1 by -q. 
Then we can rewrite Eqn. 15 as 
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The notation of Eqn. 15 leads to the following form 
of the energy conservation law for the emission 
processes 
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From the Fermi Golden rule, we can calculate the 
electron-plasmon scattering rates for emission We 
and absorption Wa 
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Where, k and k' are electron momenta in an initial 
state i  and a final state f , respectively. Here 

and further, the upper signs in formulae correspond 
to the plasmon emission, whereas the lower ones 
do to the plasmon absorption. By using Eqn. 15 and 
the energy conservation requirements in the forms 
of Eqns. 18 and 20, which are consistent with this 
notation of Hint, Eqn. 21 becomes 
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Where,Nq is the Bose-Einstein distribution function 
for plasmons. The integration bounds with respect 
to q are defined from the following conditions 
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Where, kf is the electron momentum at the Fermi 
surface. 

3.     Results 

The electron-plasmon scattering is included only in 
the low effective mass Γ valley. So, we have just 
taken into account the temperature and electron 
concentration dependence of the electron mobility 
in the Γ valley, which arises due to the different 
scattering mechanisms. The effect of the electron-
plasmon scattering on the electron mobility as a 
function of temperature is shown in Fig. 1. As it is 
seen, the inclusion of the electron-plasmon 
scattering leads to the effective heating of the hot-
electron system. 

 

 

Fig.1: Calculated electron mobility in bulk ZnO as a 
function of temperature assuming a donor concentration 
of 1022 m-3 for the electron-plasmon scattering included 
and without the electron-plasmon scattering. 

Fig. 2 shows the calculated variation of the electron 
mobility as a function of the donor concentration in 
bulk ZnO crystal structure at room temperature. 
The mobility does not vary monotonically between 
donor concentrations of 1021 m-3 and 1024 m-3 due 
to the dependence of electron-plasmon scattering 
on donor concentration, but shows a maximum near 
1022 m-3 for both structures. 
 

 

 
Fig.2: Calculated low-field electron drift mobility in 
ZnO as a function of different donor concentration at 
room temperature for the electron-plasmon scattering 
included and without the electron-plasmon scattering. 

4.     Conclusions 

Using an iterative method, it was shown that the 
electron-plasmon scattering in the Γ valley 
substantially affects the electron mobility and 
transport properties in ZnO. It is shown that the 
electron mobility increase by 10%, and the Ohmic 
mobility drops by the same percent. This is caused 
by the combined effect of effective heating of 
electron gas by electron-plasmon scattering and the 
predominantly forward peaked momentum 
relaxation for all electron momenta.  
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