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Influence of Electron-Plasmon Scattering on L ow-Field Mobility in ZnO

H. Arabshahi * and M. Rezaee Rokn-Abadi
Physics Department, Ferdowsi University of Mashhad, Mashhad, Iran

Temperature and doping dependencies of electrorilitgob ZnO semiconductor has been calculated gisin iterative
technique. The following scattering mechanisms, irapurity, polar optical phonon, acoustic phonpigzoelectric, and
electron-plasmon are included in the calculatidris Ishown that electron-plasmon scattering infagesubstantially the
low-field electron mobility in bulk ZnO. We foundhat the electron mobility decreases monotonicalthee temperature
increases from 100K to 600K. The low temperaturkievaf the electron mobility increases significgnéls the doping
concentration is increased. The iterative resulésia fair agreement with other recent calculatiomsained using the

relaxation-time approximation and experimental rodth

1. Introduction

ZnO is a wide band gap semiconductor, and
therefore, has a high breakdown field and low
thermal generation rate. These properties combined
with good thermal conductivity and stability make
ZnO an attractive material for high power, high
temperature and radiation harsh environment
electronic devices. Monte Carlo simulations predict
a peak electron velocity of x20° ms* and a
saturation electron velocity of %30° ms® [1-5].

This makes possible high frequency operation of
ZnO devices. For the above stated reasons, ZnO is
of great interest for power FETs and optoelectronic
device structures. ZnO based field-effect transisto
have been reported to exhibit continuous wave
outputs up to 6.9 W/mm [6] and high frequency
operation [7] at{f= 67 GHz and {,=140 GHz.

The low-field electron mobility is one of the
most important parameters that determine the
performance of a field-effect transistor. The
purpose of the present paper is to calculate electr
mobility for various temperatures and ionized-
impurity concentrations. The formulation itself
applies only to the central valley conduction
band. We have also considered band non-
parabolicity, admixture of p-type valence-band
wave functions, degeneracy of the electron
distribution to any arbitrary degree, and the
screening effects of free carriers on the scatgerin
probabilities. Al the relevant scattering
mechanisms, including the two-mode nature of the
polar optic phonon and electron-plasmon scattering
are taken into account. The Boltzmann equation is
solved iteratively for our purpose, jointly
incorporating the effects of all the scattering

* arabshahi@um.ac.ir

mechanisms. Our calculated results are compared
with the available experimental data on both
temperature and the free electron concentration
dependence of mobility.

This paper is organized as follows. Details of
the iterative model, the electron scattering
mechanism, which have been used and the electron
mobility calculations, are presented in Sec. 2 and
the result of iterative calculations carried out on
ZnO structure are interpreted in Sec. 3.

2. Model details

To calculate the mobility, we have to solve the
Boltzmann equation to get the modified probability
distribution function under the action of a steady
electric field. Here, we have adopted the iterative
technique for solving the Boltzmann transport
equation. Under the action of a steady field, the
Boltzmann equation for the distribution function
can be written as:
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function due to electron scattering. In the steady-
state and under application of a uniform electric
field the Boltzmann equation can be written as

& o f= (ij

Consider electrons in an isotropic, non-parabolic
conduction band whose equilibrium Fermi
distribution function isfy(k) in the absence of

Where,(ﬂj represent the change of distribution
coll

(2)
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electric field. Note the equilibrium distributidg(k)

is isotropic ink space, but is perturbed when an
electric field is applied. If the electric field $snall,
we can treat the change from the equilibrium
distribution function as a perturbation, which is
first order in the electric field. The distributidn
the presence of a sufficiently small field can be
written quite generally as

f(k) = fo(k) + fy(k) cost 3)

Where,0 is the angle betweenandF andfy(k) is
an isotropic function ofk proportional to the
magnitude of the electric field(k) satisfies the
Boltzmann equation (Eqn. 2) and it follows that
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In general there will be both elastic and inelastic
scattering processes. For example, impurity
scattering is elastic and acoustic and piezoetectri
scattering are elastic to a good approximation at
room temperature. However, polar and non-polar
optical phonon scattering are inelastic. Labelimgy t
elastic and inelastic scattering rates with supseri

el andinel , respectively, and recognizing that for
any process, si(k’, k) = sii(k, k'), Egn. 4 can be
written as

(%)

Note the first term in the denominator is simplg th
momentum relaxation rate for elastic scattering.
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Egn. 5 may be solved iteratively by the relation

(6)

Where,f 1, (k) is the perturbation to the distribution
function after then-th iteration. It is interesting to
note that if the initial distribution is chosen e
the equilibrium distribution for whick ; (k) is
equal to zero, then, we get the relaxation time
approximation result after the first iteration. We
have found that convergence can normally be
achieved after only a few iterations for small
electric fields. Oncé; (k) has been evaluated to the
required accuracy, it is possible to calculate
guantities such as the drift mobility, which is
given in terms of spherical coordinates by

, j:(k3 11+ 20F) £,d%k
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Here, we have calculated low field drift mobility i
ZnO structure using the iterative technique. In the
following sections electron-phonon, electron-
impurity, and electron-plasmon  scattering
mechanisms will be discussed.

> [ @-cosp)sad®k + Y [Isis @~ fo) + S " Fold %

A. Deformation potential scattering

The acoustic modes modulate the inter-atomic
spacing. Consequently, the position of the
conduction and valence band edges and the energy
band gap will vary with position because of the
sensitivity of the band structure to the lattice
spacing. The energy change of a band edge due to
this mechanism is defined by a deformation
potential and the resultant scattering of carrisrs
called deformation potential scattering. The energy
range involved in the case of scattering by acousti
phonons is from zero t®avk, wherev is the
velocity of sound, since momentum conservation
restricts the change of phonon wave vector to
between zero and 2k, where k is the electron wave
vector. Typically, the average value of k is of the
order of 16 cmi* and the velocity of sound in the
medium is of the order of $0cms®. Hence, 27vk

0 1 meV, which is small as compared to the
thermal energy at room temperature. Therefore, the
deformation potential scattering by acoustic modes
can be considered as an elastic process except at
very low temperature. The deformation potential
scattering rate with either phonon emission or
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absorption for an electron of energy E in a non-
parabolic band is given by Fermi's golden rule as
[8-9]

2D2 V2K T
Rl =Y 22l K
TR
EQl+aE
T+ 206) [(1+aE) +1/3(aE)?|  (8)

Where, . is the acoustic deformation potentigl,
is the material density aralis the non-parabolicity
coefficient. The formula clearly shows that the
acoustic scattering increases with temperature.

B. Piezoelectric scattering

The second type of electron scattering by acoustic
modes occurs when the displacements of the atoms
create an electric field through the piezoelectric
effect. This can occur in the compound
semiconductors such as the llI-V and I1-VI
materials including ZnO that in fact has a reldtive
large piezoelectric constant. The piezoelectric
scattering rate for an electron of energy E in an
isotropic, parabolic band has been discussed by
Ridley [10], who included the modification of the
Coulomb potential due to free carrier screening.
The screened Coulomb potential is written as

e?  exp(qr)

V(r) =
(") ATEE r

©)

Where, & is the relative dielectric constant of the
material and g is the inverse screening length,
which under non-degenerate conditions is given by

) ne?

= 10
%o EoE KT (10)

Where, n is the electron density. The expression fo
the scattering rate of an electron in a non-parabol

band structure, retaining only the important terms,
can be written as [8-9]

vm e KavK T —1/2
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Where, K, is the so called dimensionless average
electromechanical coupling constant.

C. Polar optical phonon scattering

The dipolar electric field arising from the oppesit
displacement of the negatively and positively
charged atoms provides a coupling between the
electrons and the lattice which results in electron
scattering. This type of scattering is called polar
optical phonon scattering and at room temperature
and is generally the most important scattering
mechanism for electrons in 1lI-V semiconductors.
This is also the case in ZnO despite the factttiat
optical phonon energy is particularly high[@©93
meV, which suppresses the phonon population and
also electrons must reach that energy before
phonon emission is possible. The scattering rate
due to this process for an electron of energy &nin
isotropic, non-parabolic band is [8-9]
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Where,
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Where, N, is the phonon occupation number and
the upper and lower cases refer to absorption and
emission, respectively. For small electric fields, the
phonon population will be very close to
equilibrium so that the average number of phonons
is given by the Bose-Einstein distribution

N =—1 (13)

op op
exp( ) -1
B

Where, hw,, is the polar optical phonon energy.
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D. Non-polar optical phonon scattering

Non-polar optical phonon scattering is similar to
deformation potential scattering. In that, the
deformation of the lattice produces a perturbing
potential, but in this case the deformation is carried
by optical vibrations. The non-polar optical phonon
scattering rate in non-parabolic bands is given by
[8-9]

1/2

D (M*m)
(k) =—=

1+ 20E) Y2 (E)|Nop , Nop +1]
(14a)

Where, Rqis the optical deformation potential and,
E=E'thwyis the final state energy phonon

absorption (upper case) and emission (lower case).

E. Impurity scattering

This scattering process arises as a result of the
presence of impurities in a semiconductor. The
substitution of an impurity atom on a lattice site
will perturb the periodic crystal potential and result
in scattering of an electron. Since the mass of the
impurity greatly exceeds that of an electron and the
impurity is bonded to neighboring atoms, this
scattering is very close to being elastic. lonized
impurity scattering is dominant at low temperatures
because, as the thermal velocity of the electrons
decreases, the effect of long-range Coulomb
interactions on their motion is increased. The
electron scattering by ionized impurity centres has
been discussed by Brooks-Herring [11], who
included the modification of the Coulomb potential
due to free carrier screening. The scattering rate for
an isotropic, non-parabolic band structure is given
by [8-9]

1+20E
1+ 4/ 2/B) i) 1y
(14b)
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Where, nis the impurity concentration,qds the
screening length and, ks the dielectric constant of
the material.

F. Electron-plasmon scattering

The electron-plasmon interaction Hamiltonian can
be written in random phase approximation as [12-
13]

Hint = ZMq (aqcl:+qck + &Jrqcl:+qck) (15)
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Here, aa, a, and Cc, C are the creation and

annihilation operators for plasmons and electrons,
respectively. The matrix element

/ e’n® 2 (16)
M, = |[——— (20k /
q saem e, (a) (2dk +q°)/q

Where, a,(q) is the dispersion relation for

plasmons, q and k are the plasmon and electron
momenta, respectively, e and m* are the charge and
effective mass of an electros, the background
dielectric constant, andQ the real-space volume.
The first term in parentheses in Eqn. 15 describes
the plasmon absorption process that obeys the
energy conservation law as

Exeg €k =hap (@) 20 a7)

Where,g is the energy of electron with momentum
k. In a similar manner, the plasmon emission
process, in accordance with the second term in
parentheses in Eqn. 15, is governed by the energy
conservation law which can be written as

€k T €k+q :hap(Q)ZO (18)

Note that Eqn. 17 describes the emission of
plasmon with momentum -q. To impart a more
conventional form to the energy conservation law,
replace the variable of summation q in terms
governing the plasmon emission in eqn. 1 by -g.
Then we can rewrite Egn. 15 as

Hint = Z(Mqaq0:+qox + M—anQf—qGK) (19)
The notation of Eqn. 15 leads to the following form
of the energy conservation law for the emission
processes

Ek ~Ex-q =hay(9) 20 (20)
From the Fermi Golden rule, we can calculate the

electron-plasmon scattering rates for emission W
and absorption W

we,a(k)=27” g—sg‘<f|Him|i>‘2x

Ie

~ & thawy ()] (21)
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Where, k and k' are electron momenta in an initial
state|i) and a final statd f), respectively. Here

and further, the upper signs in formulae correspond
to the plasmon emission, whereas the lower ones
do to the plasmon absorption. By using Eqgn. 15 and
the energy conservation requirements in the forms
of Egns. 18 and 20, which are consistent with this
notation of Hy, Eqn. 21 becomes

dq, 2
2T Mz O &g — & £heg(0)] %
V\éa(k):?@ q4 e ~ NG ]
N+ Do (N
Where,N, is the Bose-Einstein distribution function

for plasmons. The integration bounds with respect
to g are defined from the following conditions

(22)

w, (g) <hkg/m" Fhg? /2m’
b(0) <7kq : q * 23)
w, (@) 27k q/m’ +hg®/2m

Where, k is the electron momentum at the Fermi
surface.

3. Results

The electron-plasmon scattering is included only in
the low effective mas§ valley. So, we have just
taken into account the temperature and electron
concentration dependence of the electron mobility
in the I valley, which arises due to the different
scattering mechanisms. The effect of the electron-
plasmon scattering on the electron mobility as a
function of temperature is shown in Fig. 1. Assit i
seen, the inclusion of the electron-plasmon
scattering leads to the effective heating of the ho
electron system.
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Fig.1: Calculated electron mobility in bulk ZnO as a
function of temperature assuming a donor conceaotrat
of 1072 m* for the electron-plasmon scattering included
and without the electron-plasmon scattering.
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Fig. 2 shows the calculated variation of the etactr
mobility as a function of the donor concentratian i
bulk ZnO crystal structure at room temperature.
The mobility does not vary monotonically between
donor concentrations of $om® and 18* m* due

to the dependence of electron-plasmon scattering
on donor concentration, but shows a maximum near
10%? m® for both structures.
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Fig.2: Calculated low-field electron drift mobilitjn
ZnO as a function of different donor concentratemn
room temperature for the electron-plasmon scatierin
included and without the electron-plasmon scatterin

4. Conclusions

Using an iterative method, it was shown that the
electron-plasmon scattering in thé& valley
substantially affects the electron mobility and
transport properties in ZnO. It is shown that the
electron mobility increase by 10%, and the Ohmic
mobility drops by the same percent. This is caused
by the combined effect of effective heating of
electron gas by electron-plasmon scattering and the
predominantly forward peaked momentum
relaxation for all electron momenta.
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