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An iteration calculation has been carried out to study electron transport properties in
zincblende and wurtzite GaN materials. The two-mode nature of the polar optic phonons
is considered jointly with deformation potential acoustic, piezoelectric, ionized impurity
scattering. Band non-parabolicity, admixture of p functions, arbitrary degeneracy of the
electron distribution, and the screening effects of free carriers on the scattering proba-
bilities are incorporated. Electron drift mobility in both zincblende and wurtzite GaN
crystal structures are calculated for different temperature and doping dependencies. It
is found that the electron mobility decreases monotonically as the temperature increases
from 100 K to 600 K. The low temperature value of electron mobilty increases signifi-
cantly with increasing doping concentration. The agreement of iterative results with the
available experimental data is found to be satisfactory.
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1. Introduction

Gallium nitride has long been considered a promising material for electronic and

optoelectronic device applications.1–4 The wide and direct energy gap, large break-

down field, high thermal conductivity, and favorable electron-transport characteris-

tics, make the GaN ideally suited for high-power and high-speed applications. While

initial efforts to study this material was hindered by growth difficulties, recent im-

provements in the material quality have made possible the realization of a number

of GaN-based devices. In particular, lasers,5 transistors and photodetectors6 have

been fabricated with these materials. These developments have fueled considerable

interest in the GaN material. In order to analyze and improve the design of GaN-

based devices, an understanding of the electron transport that occurs within these

materials is necessary. While electron transport in bulk GaN has been extensively

examined,7–9 the sensitivity of these results to variations in the material parameters

has yet to be considered.
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This paper presents the iteative calculation results of electron transport in bulk

GaN materials. Most of the calculations have been carried out using a non-parabolic

ellipsoidal valley model to describe transport in the conduction band. However,

the simpler and less computationally intensive spherical parabolic band scheme

has also been applied, to test the validity of this approximation. The iterative

calculations take into account the electron-lattice interaction through polar optical

phonon scattering, deformation potential acoustic phonon scattering (treated as an

elastic process), piezoelectric and electron–plasmon scattering. Impurity scattering

due to ionized and neutral donors is also included, with the latter found to be

important at low temperature due to the relatively large donor binding energy which

implies considerable carrier freeze-out at low tempearure. This paper is organized

as follows.

Details of the iterative model and the electron mobility calculations are

presented in Sec. 2 and the results of iterative calculations carried out on GaN

structures are interpreted in Sec. 3.

2. Model Details

In principle, the iterative and Monte Carlo techniques give exact numerical predic-

tions of electron transport phenomena in bulk semiconductors.10,11 Both of them

can include the details of the microscopic electronic processes and can be extended

to time-dependent phenomena. In low electric fields, the effects of scattering, which

depend on the details of the distribution function, can be dealt with more conve-

niently by the iterative technique because it processes the whole distribution func-

tion at each step of the procedure. In contrast, the Monte Carlo method is highly

susceptible to statistic fluctuations in the ensemble when the departure from equi-

librium is small because of the weakness of the electric field effects.12–14 For these

reasons, we used the iterative method to determine the low field electron mobility

in bulk GaN.

Rode’s iterative technique provides a compact method of solution of the Boltz-

mann equation in the low field regime.15–17 The Boltzmann transport equation for

the distribution function f(r,k, t) is

∂f

∂t
+ v · ∇rf +

eF

~
· ∇kf =

(

∂f

∂t

)

coll

, (1)

where (∂f
∂t

)coll represents the change of distribution function due to the electron

scattering. In the steady-state and under application of a uniform electric field, the

Boltzmann equation can be written as

eF

~
· ∇kf =

(

∂f

∂t

)

coll

. (2)

Consider electrons in an isotropic, non-parabolic conduction band whose equilib-

rium Fermi distribution function is f0(k) in the absence of electric field. Note the
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equilibrium distribution f0(k) is isotropic in k space but is perturbed when an

electric field is applied. If the electric field is small, we can treat the change from

the equilibrium distribution function as a perturbation which is first-order in the

electric field. The distribution in the presence of a sufficiently small field can be

written quite generally as

f(k) = f0(k) + f1(k) cos θ , (3)

where θ is the angle between k and F and f1(k) is an isotropic function of k, which

is proportional to the magnitude of the electric field. f (k) satisfies the Boltzmann

Eq. (2) and it follows that

eF cos θ

~

∂f0

∂k

=
∑

i

{
∫

cos θ′f ′

1[s
′

i(1 − f0) + sif0]d
3k′

− f1 cos θ

∫

[si(1 − f ′

0) + s′if
′

0]d
3k′

}

,

(4)

where the sum is over scattering processes i. For a more compact notation, we

have written f(k′) = f ′, si(k,k′) = si and si(k
′,k) = s′i. si(k,k′) = si is the

probability for scattering out of state k into the differential element d3k′ at k′. For

the isotropic conduction band, si(k,k′) depends on only k, k′ and the cosine of the

angle φ between them, and the relation
∫

cos θ′A(cos φ)d3k′ = cos θ

∫

cosφA(cos φ)d3k′ , (5)

may be used to manipulate Eq. (4). Here, A(cosφ) is an arbitrary function of cosφ

but does not otherwise depend on θ and θ′. From Eqs. (4) and (5), we obtain

eF

~

∂f0

∂k
=

∑

i

{
∫

cosφf ′

1[s
′

i(1− f0)+ sif0]d
3k′

− f1

∫

[si(1− f ′

0)+ s′if
′

0]d
3k′

}

. (6)

In general, there will be both elastic and inelastic scattering processes. For example,

impurity scattering is elastic and acoustic and piezoelectric scattering are elastic to

a good approximation at room temperature. However, polar and non-polar optical

phonon scattering are inelastic. Labelling the elastic and inelastic scattering rates

with subscripts el and iel respectively and recognising that, for any process i,

seli(k
′,k) = seli(k,k′), Eq. (6) can be written as

f1(k) =
(−eF/~)(∂f0/∂k) +

∑

j

∫

cosφf ′

1[s
′

ielj(1 − f0) + sieljf0]d
3k′

∑

i

∫

(1 − cosφ)selid3k′ +
∑

j

∫

[sielj (1 − f ′

0) + s′ieljf
′

0]d
3k′

. (7)

Note the first term in the denominator is simply the momentum relaxation rate for

elastic scattering. Equation (7) may be solved iteratively by the relation

f1n(k) =
(−eF/~)(∂f0/∂k) +

∑

j

∫

cosφf ′

1(n−1)[s
′

ielj(1 − f0) + sieljf0]d
3k′

∑

i

∫

(1 − cosφ)selid3k′ +
∑

j

∫

[sielj(1 − f ′

0) + s′ieljf
′

0]d
3k′

, (8)
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where f1n(k) is the perturbation to the distribution function after the nth iter-

ation. It is interesting to note that if the initial distribution is chosen to be the

equlibrium distribution, for which f1(k) is equal to zero, we get the relaxation time

approximation result after the first iteration. We have found that convergence can

normally be achieved after only a few iterations for small electric fields. Once f1(k)

has been evaluated to the required accuracy, it is possible to calculate quantities

such as the drift mobility µ, which is given by

µ =

∫

v · Ff(k)d3k

F 2
∫

f(k)d3k
. (9)

In terms of spherical coordinates,

µ =

∫

∞

0
vk2(f1/F )dk

3
∫

∞

0
k2f0dk

. (10)

The Kane approximation relation18 between electron group velocity and effective

mass m∗ in a non-parabolic band is

v(k) =
~k

m∗

1

(1 + 2αE)
, (11)

and substituting this result in Eq. (10), we find that

µ =
~

3m∗F

∫

∞

0 (k3/1 + 2αE)f1dk
∫

∞

0 k2f0dk
. (12)

Here, we have calculated low field drift mobility in GaN structures using the it-

erative technique. The effects of piezoelectric, acoustic deformation, polar optical

phonons and ionized impurity scattering have been included in the model. It is

also assumed that the electrons remain in the Γ-valley of the Brillouin zone. The

valley is isotropic in the case of zincblende GaN and approximated as such for the

wurtzite crystal structure.

3. Low-Field Transport Results in Bulk GaN

Low field electron mobility in GaN as a function of temperature and doping concen-

tration has been performed by Dhar et al.18 and Albercht et al.19 Their calculations

show that an electron mobility as high as 900 cm2V−1s−1 could be achieved in the

case of uncompensated GaN at room temperature. In the case of high quality sam-

ples with very low compensation, a mobility of more than 800 cm2V−1s−1 at room

temperature with a similar doping concentration has been reported. On the other

hand, there has been very little work on the calculation of low-field electron mobil-

ity in GaN. Chin et al.20 have used the variational principle to calculate low-field

electron mobilities and compared their results with fairly old experimental data.

They have tried to fit the experimental data with an overstimated compensation ra-

tio. In old samples, low-field electron mobility was due to poor substrate and buffer
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Table 1. Important parameters used in our calculations for zincblende

and wurtzite GaN materials which are taken from Refs. 13–17.

Zb-GaN Wz-GaN

Density ρ (kgm−3) 6100 6150

Sound velocity vs (ms−1) 4570 4330

Piezoelectric constant p (cm−2) 0.375 0.375

Longitudinal sound velocity vs (ms−1) 4570 4330

Low-frequency dielectric constant εs 9.5 9.5

High-frequency dielectric constant ε∞ 5.35 5.35

Acoustic deformation potential D (eV) 8.3 8.3

Polar optical phonon energy ~ωop (meV) 99 99

Bandgap Eg (meV) 3.2 3.5

Non-parabolicity α (eV−1) 0.213 0.189

Electron effective mass:
m∗

‖
(Γ-A direction) 0.15 0.18

m∗
⊥ (Γ-M direction) 0.15 0.2

quality and other growth related problems. The iterative technique has been used

by Rode and Gaskill21 for low-field electron mobility in GaN for the dependence of

mobility on electron concentration, but not on temperature, and ionized impurity

scattering has been estimated within the Born approximation, which might be the

reason for poor fitting at high electron concentrations.

Here, we have performed a series of low-field electron mobility calculations

for both GaN structures. Low-field mobilities have been derived using iteration

method. Important parameters used throughout the calculations are listed in

Table 1. Figure 1 shows the calculated electron drift mobilities versus temperature

and donor concentration for zincblende and wurtzite GaN. The electron drift mobil-

ities at room temperature that we find are 1300 and 900 cm2V−1s−1 for zincblende

and wurtzite structures, respectively, for an electric field equal to 104 Vm−1 and

with a donor concentration of 1022 m−3. The material parameters used to calculate

the electron drift mobilities are tabulated in Table 1. For the wurtzite crystal struc-

ture, it is assumed that the conduction band is isotropic with an effective mass 0.2

m0. This is a reasonable approximation since m∗

l and m∗

t differ by only 10%.

The results plotted in Fig. 1(a) indicate that the electron drift mobility of

wurtzite GaN is lower than that for the zincblende structure at all temperatures.

This is largely due to the higher Γ valley effective mass in the wurtzite phase. Fig-

ure 1(b) shows the calculated variation of the electron mobility as a function of

the donor concentration for both GaN crystal structures at room temperature. The

mobility does not vary monotonically between donor concentrations of 1021 and

1025 m−3 due to the dependence of electron scattering on donor concentration, but

reaches a value of 1500 and 1000 cm2V−1s−1 for zincblende and wurtzite crystal

structures, respectively. In order to understand the scattering mechanisms which

limit the mobility of GaN under various conditions, we have performed calculations
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Fig. 1. (a) Electron drift mobility of GaN in zincblende and wurtzite structures versus temper-
ature. Donor concentration is approximately 1022 m−3. (b) Electron drift mobility of GaN in
zincblende and wurtzite structures versus donor concentration at room temperature.

of the electron drift mobility when particular scattering processes are ignored. The

solid curve in Fig. 2 shows the calculated mobility for wurtzite GaN including all

scattering mechanisms whereas the dashed, dotted, and open-circle curves show the

calculated mobility without ionized impurity, piezoelectric and polar optical scat-

tering, respectively. It can be seen that below 300 K, the ionized impurity scattering

is dominant while at the higher temperatures, electron scattering is predominantly

by optical modes. Thus, the marked reduction in mobility at low temperatures seen

in Fig. 2 can be ascribed to impurity scattering and that at high temperatures to

polar optical phonon scattering. In Fig. 2, the mobility in the absence of band non-

parabolicity is plotted as a dash-dot curve. Non-parabolicity leads to approximately

a 10% reduction relative to the mobility for parabolic band at room temperature.

This is because non-parabolicity increases the electron effective mass and also the

scattering rates through the density of states.

The temperature variation of the electron drift mobility in zincblende and

wurtzite GaN for different donor concentrations is shown in Fig. 3. It is evident

from this figure that the curves approach each other at very high temperatures,

where the mobility is limited by longitudinal optical phonon scattering, whereas

the mobility varies inversely with donor concentration at low temperatures as we

would expect from the foregoing discussion.
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Fig. 2. Comparison of electron drift mobility in wurtzite GaN with donor concentration of
1024 m−3 and when individual scattering processes are ignored. The effect of Γ-valley non-
parabolicity is also shown.
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Fig. 3. Calculated low-field electron drift mobility of zincblende and wurtzite GaN as functions
of temperature for different donor concentrations.
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4. Conclusion

In conclusion, we have studied the electron transport characteristic associated with

zincblende and wurtzite GaN. Temperature-dependent and free-electron concentra-

tion dependent of the electron mobility in both GaN structures have been compared.

It has been found that the low-field electron mobility is significantly higher for the

zincblende GaN structure than zincblende structure due to the lower Γ electron

effective mass in this crystal structure. Several scattering mechanisms have been

included in the calculation. Ionized impurities have been treated beyond the Born

approximation using a phase shift analysis. Screening of ionized impurities has been

treated more realistically using a multi-ion screening formalism, which is more rel-

evant in the case of highly compensated III–V semiconductors like GaN.
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