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Hydrodynamic Model for Non-equilibrium and Hot Electron Transport
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Abstract : A hydrodynamic approach is used to illustrate hot-electron and intervalley transfer effects in ZnO

MESFET. The model is based on the solutions of the highly coupled non-linear partial differential equations of the full

hydrodynamic model. These solutions allow to calculate the electron drift velocity and other device parameters as a

function of the applied electric field. Using hydrodynamic method our calculation results show that due to the high

drain current density we can expect ZnO devices have superior high power and high gain performance. Our results of

numerical calculations are in fair agreement with other theoretical or experimental methods.
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1 INTRODUCTION

Semiconductor device modeling includes a wide range
of areas in solid state physics, applied and computa-
tional mathematics. Transport of carriers in semicon-
ductors under applied electric field was first explained
as a combination of drift due to the field, and diffu-
sion due to concentration gradients. In the presence
of high fields that change rapidly over small distances,
the drift-diffusion equations, however, lose thier va-
lidity and non-local and hot-carrier effects begin to
dominate device performance. In effect, apart from
carrier density and velocity, carrier energy (or equiv-
alently, temperature) needs to be considered because
the carriers are not in thermal equlibrium with the
lattice. In SiC and ZnO materials which are used for
high-speed device design [1-4], inertia effects play an
important role since the impulse and energy relaxation
times of the electron gas are close to the picosecond
range. The most elaborate and practicable approach
for the description of charge transport in semiconduc-
tors used for device simulation would be the Monte
Carlo method [5-9]. The advantage of this technique
is a complete picture of carrier dynamics with refer-
ence to microscopic material parameters, e.g. effective
masses and scattering parameters. But the method
must be still considered as very consuming and hence
not economical to be used by device designers.
Besides the simplest concept which is the traditional

drift-diffusion model, there is a much more rigorous
approach to the problem, namely the so-called hydro-
dynamic model. The hydrodynamic model we are in-
terested in is an extension of the drift diffusion equa-
tions. It consists of a set of Euler equations with
certain source terms and a Poisson equation for the
electrical potential [10-14]. This model is capable of
capturing some important features of semiconductor
devices which are not accounted for in the classical
drift-diffusion model.

Electron dynamics in compound semiconductors is
determined by the multivalley band structure of the
conduction band and scattering processes which in-
clude intravalley and intervalley scattering. The in-
travalley processes may consist of intravalley phonon,
ionized impurity and electron-electron scattering,
which conserve the number of electrons in the val-
ley. However, the intervalley processes provide elec-
tron population, energy and momentum exchanges
between non-equivalent valeys. In compound semi-
conductor such as ZnO, the lowest conduction band
includes a central valley and several satellite valleys
where the energy separations between valley minima
are much greater than the phonon energy and the val-
ley minima are situated in various locations in the
Brillouin zone. In addition, the electron effective mass
in each valley is significantly different from the oth-
ers. Therefore, electrons in different valleys should
be considered as different species, and transport be-
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2 Hydrodynamic Model for Non-equilibrium and Hot...

haviour of electrons in each valley at the kinetic level
in the semiclassical regime is determined by distribu-
tion function. The Boltzmann transport equation in
various valleys are coupled through intervalley scat-
tering that introduces exchanges of electron popula-
tion, energy and momentum between valleys. Con-
sequently, the hydrodynamic description for electron
behaviour in each valley is given by a set of hydrody-
namic equations, and the hydrodynamic equations in
various valleys are coupled through intervalley transi-
tions. At high electric fields, a large number of elec-
trons are hot enough to overcome the energy sepa-
ration between central and satellite valleys. In this
case, the frequent intervalley scattering dominates the
scattering processes, and it therefore significantly in-
fluences nonequilibrium transport phenomena of elec-
trons. To accurately describe nonequilibrium hot elec-
tron transport phenomena at the hydrodynamic level,
a set of multivalley hydrodynamic equations that is
capable of properly including exchanges of electron
population, energy and momentum between valleys is
thus necessary.

This paper is organised as follows. In section 2, we
give a short definition of the hydrodynamic model for
ZnO structure. It is emphasized that a analysis of the
physical features of the charge carrier transport mod-
els is the basis for a clear understanding of their limits
of applicability. In section 3 results of hydrodynamic
model in ZnO MESFET are interpreted.

2 BASIC EQUATIONS

The single-gas hydrodynamic equations have been car-
ried out to simulate the electron transport properties
in ZnO MESFET. Our programe was performed using
an analytical band structure model. The equations
for each valley are, however, coupled through collision
terms. The corresponding relaxation rates may be of
the order of a picosecond and are therefore relatively
large. The hydrodynamic model equations consist of
the continuity equation,

∂n

∂t
+

→
∇ .

→
j = 0, (1)

for unipolar devices it is possible to neglect charge
carrier generation and recombination term so the mo-
mentum balance equation given by [11],

∂
→
p

∂t
+ (∇p)v + (p∇)v =

−en
→
E −∇(nkT ) −

→
p

τp
, (2)

or alternatively (only for x-component),

∂[m∗(ϵ′)n
→
vx]

∂t
+ ∇[m∗(ϵ′)nvxv] =

−qn
→
Ex −∂(nkT )

∂x
− m∗(ϵ′)n

→
vx

τp(ϵ′)
, (3)

and the energy balance equation is

∂ϵ

∂t
+ ∇(vϵ) =

−qnv
→
E −∇(nkTv) −∇(−k∇T ) −

ϵ − 3
2nkTL

τϵ(ϵ′)
, (4)

where n, ϵ (ϵ′=ϵ/n), and v are the electron density,
the electron energy density (average electron energy)
and the electron drift velocity, respectively.

→
vx is

the x-component of the electron drift velocity and
→
p= m∗n

→
v is the momentum density. Correspod-

ing equations are valid for the y and z components.
T is the electron temperature and ϵ′0 = 3/2kTL is the
average termal equilibrium energy of electrons, where
TL is the lattice temperature. The electronic current

density
→
j inside the active device is

→
j = −ne

→
v , so

the total current density is,

→
j t= −ne

→
v +ϵ0ϵr

∂
→
E

∂t
. (5)

The momentum relaxation time τp(ϵ′) is related to
the mobility of the electrons via µ(ϵ′) = em∗(ϵ′)τp(ϵ′),
and the energy relaxation time τϵ(ϵ′) describes the ex-
change of energy between the heated electron gas and
the lattice. τp and τϵ and the effective electron mass
m∗ are assumed to be functions of the mean electron
energy.

The hydrodynamic equations, together with Pois-
son’s equation,

∆ϕ = −
→
∇ E = − e

ϵ0ϵr
(N+

d − n), (6)

form a complete set of equations that can be used
to solve for the electron density, velocity, energy and
electric field for given boundary conditions. A closing
relation for the mean electron energy ϵ′, the electron
temperatute T and velocity

→
v is,

ϵ′ =
1
2
m∗(ϵ′)v2 +

3
2
kT + βU (ϵ′)∆EΓU . (7)

The last term in equation 7 accounts for the fact that
a minimum energy of about ∆EΓU=1.5 eV is neces-
sary to excite an electron from central Γ-valley to the
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3 Hydrodynamic Model for Non-equilibrium and Hot...

nearest upper valley. βU is the relative fraction of elec-
trons in the upper valley for the stationary homoge-
neous case. The term βU (ϵ′)∆EΓU is often neglected,
but this may lead to an overestimation of the electron
temperature of more than 1000 K at high energies.

In our simulated model time discretization is used
for all the hydrodynamic equations by forward Eu-
ler differencing method. The discretization is always
written down only for the x-component of vectorial
quantities in the sequel, since the corresponding ex-
pressions for y-components are then easy to drive.
The simplest method for assigning charged particles
to cells is the nearest-grid-point scheme in which the
total charge found in a cell is assigned to the midpoint
of that cell. After each sampling Poisson’s equation
is solved and the electric field is updated. Poisson’s
equation is solved by a combined fast Fourier trans-
form [15] and Buneman cyclic reduction method [16-
17] developed by Walmsley and Abram [18]. This cal-
culational scheme is integrated with a capacity matrix
approach [17] that facilitates the use of individual rect-
angular regions to form more complicated structures.
Poisson’s equation is expressed in discrete form as a
set of three-point finite difference equations.

After setting all the material and device parame-
ters, the simulation is started in a state of charge
neutrality everywhere in the device. The simulated
particles are distributed appropriately among all the
mesh cells to achieve the required neutrality. In the
two-dimensional device models used here there is no
variation of electron density or electric field normal
to the x− y plane and scaler quantities at a timestep
like electron density nt

i,j , energy ϵt
i,j , temperature T t

i,j

and potential ϕt
i,j , are located at the center of the

cells, whereas vectorial quantities like the electric field
components Et

x;i+ 1
2 ,j

, Et
y;i+j+ 1

2
or the velocity compo-

nents vt
x;i+ 1

2 ,j
, vt

y;i+j+ 1
2

are always calculated first at
midpoint between the scaler quantities. For example,
we can define for electric field the following interme-
diate value as,

Ex;i,j =
1
2
(Ex;i− 1

2 ,j + Ex;i+ 1
2 ,j). (8)

The fundamental quantities are calculated using
boundary conditions at each timestep. For example
the momentum balance equation is discretized in the

following form,

pt+1
x;i+ 1

2 ,j
− pt

x;i+ 1
2 ,j

∆t
= −qnt

i+ 1
2 ,jE

t
x;i+ 1

2 ,j

− k

∆x
(nt

i+1,jT
t
i+1,j − nt

i,jT
t
i,j)n

t
i+ 1

2 ,j

−(pt
x;i+ 1

2 ,jvx;i+ 1
2 ,j − pt

x;i− 1
2 ,jvx;i− 1

2 ,j)/∆x

−(pt
x;i+ 1

2 ,jvy;i,j+ 1
2 ,j − pt

x;i+ 1
2 ,j−1vy;i,j− 1

2
/∆y

−pt
x;i+ 1

2 ,j/τ t
p;i+ 1

2 ,j , (9)

where px;i+ 1
2 ,j ≥ 0 and py;i,j+ 1

2
≥ 0 and the same

discretization are used in y direction of the electron
velocity as well. From the momentum density we can
obtain the new particle current density by,

jt+1
x;i+ 1

2 ,j
= pt+1

x;i+ 1
2 ,j

m∗
i+ 1

2 ,j , (10)

and the momentum density at (i,j) is extrapolated
from neighbouring points in the direction of the elec-
tron flow x-component,

pt+1
x;i,j =

3
2
pt+1

x;i− 1
2 ,j

− 1
2
pt+1

x;i− 3
2 ,j

: pt+1
x;i+ 1

2 ,j
≥ 0

pt+1
x;i,j =

3
2
pt+1

x;i+ 1
2 ,j

− 1
2
pt+1

x;i+ 3
2 ,j

: pt+1
x;i+ 1

2 ,j
≤ 0, (11)

and finally we have,

vt+1
x;i,j = pt+1

x;i,jn
t
i,jm

∗t
i,j , (12)

vt+1
x;i+ 1

2 ,j
= jt+1

x;i+ 1
2 ,j

nt
i+ 1

2 ,jm
∗t
i+ 1

2 ,j . (13)

The electron temperature is related to the en-
ergy density by the relation ϵt

i,j = 3
2nt

i,jkT t
i,j +

1
2m∗

i,jn
t
i,j(v

2t
x;i,j +v2t

y;i,j)+βt
U ;i,j∆EΓU and can assume

to be dependent variable. The upwind discretization
of the energy balance equation is given by,

ϵt+1
i,j − ϵt

i,j

∆t
= −ent

i,j(v
t+1
x;i,jE

t
x;i,j + vt+1

y;i,jE
t
y;i,j)

−
ϵt
i,j − 3

2nt
i,jkTL

τ t
ϵ;i,j

−(jt
x;e,i+ 1

2 ,j − jt
x;e,i− 1

2 ,j)/∆x

−(jt
x;p,i+ 1

2 ,j − jt
x;p,i,i− 1

2 ,j)/∆x

−(jt
x;h,i,j+ 1

2
− jt

x;h,i− 1
2 ,j)/∆x

−(jt
y;e,i,j+ 1

2 ,j − jt
y;e,i,j− 1

2
)/∆y

−(jt
y;p,i,j+ 1

2
− jt

y;p,i,j− 1
2
)/∆y

−(jt
y;h,i,j+ 1

2
− jt

y;h,i,j− 1
2
)/∆y, (14)

where the energy current density is defined as,

jt
x;e,i+ 1

2 ,j = vt+1
x;i+ 1

2 ,j
ϵt
i+ 1

2 ,j , (15)

jt
x;p,i+ 1

2 ,j = kjt+1
x;i+ 1

2 ,j
T t

i+ 1
2 ,j , (16)
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Buffer layer  (II)

Doped active  layer (I)

2×1024 m-3

(I) 2×1023 m-3

(II) 5×1022 m-3

drainsource gate

1 m 1 m
0.2 m

Figure 1: The two-dimensional model of ZnO MESFET.
The modelled structure is divided into three regions, as in-
dicated. Electron particles are initially distributed keeping
all regions charge neutral. The location of the source and
the drain implants and the top and back buffer layer are
marked.

and,

jt
x;h,i+ 1

2 ,j = kt
i+ 1

2 ,j(T
t
i+1,j − T t

i,j)/∆x. (17)

Using the calculated mean electron energy, the
other electron transport parameters are also updated.
Also, using the particle current density j = nev, the
current continuity equation is discretized in a conser-
vative way as,

nt+1
i,j − nt

i,j

∆t
= −(jt

x;,i+ 1
2 ,j − jt

x;i− 1
2 ,j)/∆x

−(jt
y;,i+j+ 1

2
− jt

y;i,j− 1
2
)/∆y. (18)

The particles that leave cell (i,j) in x-direction enter
cell (i+1,j) and analogously for the y-direction.

3 CALCULATION RESULTS

Fig. 1 shows a schematic of the modelled ZnO MES-
FET. The overall device length is 2µm in the x-
direction and the device has a 0.2µm gate length and
0.15µm source and drain length. The source and drain
have ohmic contacts and gate is in Schottky contact in
1 eV to represent the contact potential at Au/Pt. The
source and drain regions are doped to 2 × 1024 m−3

electron concentration and the top and down buffer
layers are doped to 2 × 1023 m−3 and 5 × 1022 m−3

electron concentration, respectively.
The device is simulated at room temperature. In or-

der to obtain stable and physically meaningful results,
the field cell size used for the central region of the sim-
ulated MESFET is 20 × 1 nm2 (horizontal×vertical),
but that in high doped source and drain regions is
finer (5 × 1 nm2).

10.0 60.0
0

2e+07

4e+07

6e+07

L
on

gi
tu

di
na

l e
le

ct
ri

c 
fi

el
d 

(V
/m

)

30  Volt
20  Volt
10  Volt

S G D

0 2.5
Distance (microns)

Figure 2: longitudinal electric field throught the simu-
lated device for various source-drain bias when the gate
voltage is −1 V at T = 300 K.

Fig. 2 shows the longitudinal electric field for var-
ious source-drain bias when the gate voltage is −1
V. The longitudinal electric field plotted in figure 2
shows the high electric field in the region under the
gate where the hot electrons are seen to exist in the
upper valley due to attaining enough energy to be
scattered into the satellite conduction valley.

Figs. 3 and 4, respectively, show the steady-state
Γ-valley band profile and the total electron density as
a function of distance from the source when the drain-
source potential drop is 20 V and the gate voltage is
-1 V. Note that almost all the drain-source potential
is dropped within the gate-drain region of the chan-
nel, leaving a flat potential profile near the source and
drain. As electrons move towards the drain, they lose
potential energy and gain sufficient kinetic energy to
transfer to the upper conduction valleys where their
drift velocity is reduced. Figure 4 demonstrate the
electron density through the device. The gate deple-
tion region is clearly seen where the electron density
is several orders of magnitude lower than it is near the
source and drain.

Fig. 5 shows electron transport data recorded
through the source-drain section when the source-
drain bias is 20 V and the gate voltage is −1 V es-
pecifically, the variations of Γ-valley band profile, drift
velocity, average electron kinetic energy and the total
electron density throughout the simulated device. The
average electron velocity reaches about 2 × 105 ms−1

and then declines towards the drain. The steep de-
crease in the average kinetic energy on the drain side
of the gate is due to the transfer of electrons to the
upper valley. The electron density through the device
is shown in figure 5d. The gate depletion region is
clearly seen where the electron density is several or-
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5 Hydrodynamic Model for Non-equilibrium and Hot...

Figure 3: Interpolated contour plot showing the steady-
state Γ-valley band profile through the simulated ZnO
MESFET at room temperature when the bias applied to
the gate is -1 V and the drain-source bias is 20 V.

Figure 4: Electron density throughout the modelled re-
gion of the ZnO MESFET when the bias applied to the
gate is -1 V and the drain-source bias is 20 V.

ders of magnitude lower than it is near the source and
drain.

CONCLUSIONS

A hydrodynamic model was used to model steady-
state electron transport in a ZnO metal semiconduc-
tor field effect transistor. Our calculation results show
that due to the high drain current density we can ex-
pect ZnO devices have superior high power and high
gain performance.
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