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Abstract – A Monte Carlo method has been developed for the study of electron transport 
properties in ZnO taking into account the electron-plasmon scattering effect. It is shown that 
electron-plasmon scattering affects substantially the hot-electron energy distribution function and 
transport properties in bulk ZnO. The following  scattering mechanisims, i.e, impurity, polar 
optical phonon, acoustic phonon, piezoelectric are also included in the calculation. Ionized 
impurity scattering has been treated beyound the Born approximation using the phase-shift 
analysis. 
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I. Introduction 
The problems of high-field transport in 

semiconductors have been extensively investigated both 
theoretically and experimentally for many years. Many 
numerical methods available in the literature (Monte 
Carlo method, Iterative method, variational method, 
Relaxation time approximation, or Mattiessen's rule) 
have lead to approximate solutions to the Boltzmann 
transport equation [1-4]. The Monte Carlo method has 
been widely used to study hot-electron problems [5-9]. 
The principle of this method is to simulate on a 
computer the motion of one electron in momentum 
space through a large number of scattering processes 
taking note of the time that the electron spends in each 
element of momentum space during its flight, this time 
being proportional to the distribution function in the 
elements. The procedure used for the following the 
motion of an electron requires random numbers to 
represent the time which the electron drifts before being 
scattered, and to represent the final state after the 
scattering event. The probability distribution for these 
random numbers can be completely specified in terms 
of the electric field strength and the transition 
probabilities due to the various scattering processes. 
Electrons in bulk material suffer intravalley scattering 
by polar optical, non-polar optical, acoustic phonons 
and piezoelectric scattering, intervalley phonons, and 
ionized impurity scattering.  
Acoustic and piezoelectric scattering are assumed 

elastic and the absorption and emission rates are 
combined under the equipartition approximation, which 
is valid for lattice temperatures above 77 K. Elastic 
ionised impurity scattering is described using the 
screened Coulomb potential of the Brooks-Herring 
model. 
It is also found that [10] electron-plasmon scattering 
affects substantially the electron transport properties in 
polar semiconductors under strong applied electric field, 
which is close in value to the intervalley transfer 
threshold field. It is shown [11] using the Monte Carlo 
simulations that the electron-plasmon scattering is 
responsible for an increase of magnitude of both 
threshold electric field and maximum drift velocity. The 
electron-plasmon scattering rates were calculated [10] 
within the framework of a well-known random phase 
approximation. Here, we present more accurate results 
of a Monte Carlo simulation of hot-electron distribution 
function and transport characteristics in ZnO with 
electron-plasmon scattering processes included. 
This article is organized as follows. Details of the 
electron-plasmon scattering and the Monte Carlo 
simulation are presented in section II, and the results of 
steady-state transport simulations including electron-
plasmon  scattering  are discussed in section III. 
 

II. Model details and electron scattering  
Electronic transport in ZnO material under high 

applied electric field is studied using the ensemble 
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Monte Carlo simulation. The band structure of the 
material under study is approximated with an analytical 
formulation using non-parabolic spherical valleys. 
Though usage of an analytical band structure is 
questionable at high applied electric field strengths 
wherein impact ionization can occure, we adopt its 
usage here for the following reasons. First, due to the 
large number of compositions examined, it is too 
computationally expensive to utilize full band models 
with their concomitant numerically derived scattering 
mechanisms. Second, we have found that the analytical 
model well reflects the low field dynamics critical for 
assessing the carrier mobility. Since we restrict our 
work here only to high field phenomena, an analytical 
band structure is satisfactory. 
The familiar three-valley Γ-U-K approximation of the 
first conduction band has been used for the wurtzite 
crystal structure of ZnO.  
Band edge energies, effective masses and non-
parabolicities are derived from empirical 
pseudopotential calculations. 
We assume that all donors are ionized and that the free-
electron concentration is equal to the dopant 
concentration. For each simulation, the motion of ten 
thousand electron particles are examined, the 
temperature being set to 300 K, and the doping 
concentration being set to 10 22  m -3.  In the case of the 
ellipsoidal, non-parabolic conduction valley model, the 
usual Herring-Vogt transformation matrices are used to 
map carrier momenta into spherical valleys when 
particles are drifted or scattered. Electrons in bulk 
material suffer intravalley scattering by polar optical, 
non-polar optical and acoustic phonons scattering, 
intervalley phonons, ionized impurity and electron-
plasmon scattering. Acoustic scattering is assumed 
elastic and the absorption and emission rates are 
combined under the equipartition approximation, which 
is valid for lattice temperatures above 77 K. Elastic 
ionized impurity scattering is described using the 
screened Coulomb potential of the Brooks-Herring 
model. Band edge energies, effective masses and non-
parabolicities are derived from empirical 
pseudopotential calculations. 
In the following section different scattering mechanisms 
will be discussed. 

II.1. Deformation potential scattering 

The acoustic modes modulate the inter atomic 
spacing. Consequently, the position of the conduction 
and valence band edges and the energy band gap will 
vary with position because of the sensitivity of the band 
structure to the lattice spacing. The energy change of a 
band edge due to this mechanism is defined by a 
deformation potential and the resultant scattering of 
carriers is called deformation potential scattering. The 
energy range involved in the case of scattering by 
acoustic phonons is from zero to vkh2  , where v is the 

velocity of sound, since momentum conservation 
restricts the change of phonon wavevector to between 
zero and  2k, where k is the electron wavevector. 
Typically, the average value of  k is of the order of 107 
cm-1  and the velocity of sound in the medium is of the 
order of 105  cms-1. Hence, vkh2  ∼ 1 meV , which is 
small compared to the thermal energy at room 
temperature. Therefore, the deformation potential 
scattering by acoustic modes can be considered as an 
elastic process except at very low temperature. The 
deformation potential scattering rate with either phonon 
emission or absorption for an electron of energy E in a 
non-parabolic band is given by Fermi's golden rule as 
[6-7] 
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where Dac is the acoustic deformation potential, ρ is the 
material density and α is the non-parabolicity 
coefficient. The formula clearly shows that the acoustic 
scattering increases with temperature. 

II.2. Piezoelectric scattering 

The second type of electron scattering by acoustic 
modes occurs when the displacements of the atoms 
create an electric field through the piezoelectric effect. 
This can occur in the compound semiconductors such as 
the III-V and II-VI materials including ZnO, which in 
fact has a relatively large piezoelectric constant. The 
piezoelectric scattering rate for an electron of energy E 
in an isotropic, parabolic band has been discussed by 
Ridley [12] who included the modification of the 
Coulomb potential due to free carrier screening. The 
screened Coulomb potential is written as 
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where  n is the electron density. The expression for the 
scattering rate of an electron in a non-parabolic band 
structure retaining only the important terms can be 
written as [6-7] 
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where Kav  is the dimensionless so called average 
electromechanical coupling constant. 
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II.3. Polar optical phonon scattering 

The dipolar electric field arising from the opposite 
displacement of the negatively and positively charged 
atoms provides a coupling between the electrons and 
the lattice which results in electron scattering. This type 
of scattering is called polar optical phonon scattering 
and at room temperature is generally the most important 
scattering mechanism for electrons in III-V 
semiconductors, and this is also the case in ZnO despite 
the fact that the optical phonon energy is particularly 
high at ∼ 93 meV which suppresses the phonon 
population and also electrons must reach that energy 
before phonon emission is possible. The scattering rate 
due to this process for an electron of energy E in an 
isotropic, non-parabolic band is [6-7] 
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where Nop is the phonon occupation number and the 
upper and lower cases refer to absorption and emission, 
respectively. For small electric fields, the phonon 
population will be very close to equilibrium so that the 
average number of phonons is given by the Bose-
Einstein distribution 
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where  opωh  is the polar optical phonon energy. 

II.4. Non-polar optical phonon scattering 

Non-polar optical phonon scattering is similar to 
deformation potential scattering, in that the deformation 
of the lattice produces a perturbing potential but in this 
case the deformation is carried by optical vibrations. 
The non-polar optical phonon scattering rate in non-
parabolic bands is given by [6-7]  
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where Dod is the optical deformation potential and  

opEE ωh±= ' is the final state energy phonon absorption 

(upper case) and emission (lower case).  

II.5. Intravalley impurity scattering 

This scattering process arises as a result of the 
presence of impurities in a semiconductor. The 
substitution of an impurity atom on a lattice site will 
perturb the periodic crystal potential and result in  
scattering of an electron. Since the mass of the impurity 
greatly exceeds that of an electron and the impurity is 
bonded to neighboring atoms, this scattering is very 
close to being elastic. Ionized impurity scattering is 
dominant at low temperatures because, as the thermal 
velocity of the electrons decreases, the effect of long-
range Coulombic interactions on their motion is 
increased. The electron scattering by ionized impurity 
centres has been discussed by Brooks-Herring [13] who 
included the modification of the Coulomb potential due 
to free carrier screening. The scattering rate for an 
isotropic, non-parabolic band structure is given by [6-7] 
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where ni is the impurity concentration, q0 is the 
screening length and ks is the dielectric constant of the 
material. 

II.6. Intravalley alloy scattering 

   Alloy scattering refers to the scattering due to the 
random distribution of the component atoms of the alloy 
among the available lattice sites. Harrison  et al. [14] 
assumed that the alloy crystal potential can be described 
as a perfectly periodic potential which is then perturbed 
by the local deviations from this potential, due to the 
disordering effects in the alloy. Using the Harrison 
model [14], the scattering rate due to the chemical 
disorder in a ternary alloy of electrons in a non-
parabolic band is given by [6-7] 
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where  x denotes the molar fraction of one of the binary 
components of the alloy, Ω is the volume of the 
primitive cell and ∆U is the spherical scattering 
potential. 
 

II.7. Intervalley scattering due to optical phonons  

 
The constant energy surfaces for the conduction band of 
ZnO derive from several valleys. Thus, under the 
application of high electric field, electrons can be 
scattered from an initial state in a certain valley to a 
final state in a non-equivalent valley. For example, in 
wurtzite ZnO this process occurs when an electron in 
the Γ valley is heated and is able to transfer to the 
higher U and K valleys. In the case of Γ to zone edge 
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valley scattering the process involves a substantial 
change of electron wavevector. Acoustic and optical 
phonons of sufficiently large wavevector can effect the 
transition but in view of the large wavevectors involved 
it is normal to treat all processes like deformation 
scattering by optical phonons. Then the total 
nonequivalent intervalley scattering rate from a state k 
in a certain valley to a set of Zf different valleys is given 
by [6-7] 
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where opωh  is the optical phonon energy and fiε∆  is 

the difference between the energies of the bottoms of 
the final and initial valleys. (DtK)i is the coupling 
constant, which depends on the initial and final valleys 
and the branch of phonons involved in the transition. 
Nop is the phonon occupation number, with the upper 
and lower cases corresponding to phonon absorption 
and emission, respectively. 

II.8. Electron-plasmon scattering 

 
The electron-plasmon interaction Hamiltonian can be 
written in random phase approximation as [15] 
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Here +
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kc , kc  are the creation and 

annihilation operators for plasmons and electrons, 
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where )(qpω  is the dispersion relation for plasmons, q 

and k are the plasmon and electron momenta, 
respectively, e and m* are the charge and effective mass 
of an electron, ε the background dielectric constant, and  
Ω the real-space volume. The first term in parentheses 
in equation 11 describes the plasmon absorption process 
which obeys the energy conservation law as 
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where εk is the energy of electron with momentum k. In 
a similar manner, the plasmon emission process, in 
accordance with the second term in parentheses in 
equation 11, is governed by the energy conservation law 
which can be written as 
 

                      0)( ≥=− + qpqkk ωεε h                 (14) 

 
Note that equation 14 describes the emission of plasmon 
with momentum -q. To impart a more conventional 
form to the energy conservation law, repalce the 
variable of summation q in terms governing the 
plasmon emission in equation 1 by -q. Then we can 
rewrite equation 11 as 
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The notation of equation 11 leads to the following form 
of the energy conservation law for the emission 
processes 
                      0)( ≥=− − qpqkk ωεε h                    (16) 

 
From the Fermi Golden rule, we can calculate the 
electron-plasmon scattering rates for emission We and 
absorption Wa 
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where k and k' are electron momenta in an initial state 
i  and a final state f , respectively. Here and further 

the upper signs in formulae correspond to the plasmon 
emission, whereas the lower ones do to the plasmon 
absorption. By using equation 11 and the energy 
conservation requirements in the forms of equations 13 
and 15 which are consistent with this notation of Hint, 
equation 17 becomes 
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where Nq is the Bose-Einstein distribution fuction for 
plasmons. The integration bounds with respect to q are 
defined from the following conditions 
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where kf  is the electron momentum at the Fermi 
surface. 

III. Calculated results 
The electron-plasmon scattering is included only in 

the low effective mass Γ valley. So, we have just taken 
into account the electric field dependence of the 
electron concentration in the Γ valley, which arises due 
to the intervalley electron transfer, when calculating the 
plasmon frequency in the Γ valley. The effect of the 
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electron-plasmon scattering on the steady-state electron 
distribution function is shown in figure 1. As it is seen, 
the inclusion of the electron-plasmon scattering leads to 
the effective cooling of the hot-electron system. 
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Fig. 1. Electron energy distribution function  f(ε)  for electric field 
strength of 10 KV/cm with the electron-plasmon scattering included 
and without the electron-plasmon scattering at room temperature. 

 
 

In figure 2 the plasmon emission and absorption rates 
are shown as functions of the electron energy. As it can 
be seen, the plasmon scattering occurs when the initial 
electron energy exceeds the threshold energy. At this 
threshold energy the electron-plasmon scattering rates 
with emission and absorption of plasmons rise sharply 
up to 1.7×1014 and 1.3×1014 s-1, respectively and then 
reduces slowly for higher energy. This result shows the 
importance of electron-plasmon scattering on electron 
transport properties in ZnO material. 
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Fig. 2. Electron-plasmon scattering rates with emission and absorption 
of plasmons as a functions of the electron energy at room temperature.  

 
Figure 3 depicts the mean electron drift velocity as a 

function of the steady electric field. As it can be seen, 
the electron-plasmon causes the threshold electric field 
to rise since the process of increasing the energy of 
electrons to transfer to the upper valleys is hindered as 
it is clear in figure 4. At the same time, electron 
momentum scattering happens predominantly at small 

scattering angles thereby resulting in a higher electron 
drift velocity. 
From figure 3, it follows that the electron-plasmon 
scattering in the central Γ valley substantially affects the 
transport properties in ZnO, the threshold electric field 
and maximum electron drift velocity increase by %30 
and %17, respectively, and Ohmic mobility drops by  
%15. 
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Fig. 3. Calculated electron steady-state drift velocity in bulk ZnO 

     as a function of applied electric field assuming a donor    
     concentration  of 1022 m-3 for the electron-plasmon scattering    
     included and without  the electron-plasmon scattering at room   
     temperature. 

 
 
In figure 5, the relative Γ valley electron population 

is shown as a function of the electric field. It is seen that 
the electron population in the central Γ valley increases 
with including electron-plasmon scattering. 
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Fig. 4. Average electron kinetic energy as a function of applied  
electric field in bulk ZnO for the electron-plasmon scattering  
included and without the electron-plasmon scattering at room  
temperature. 
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Fig. 5. Central Γ valley occupancy as a function of applied electric  
field in bulk ZnO for the electron-plasmon scattering included and 
 without the electron-plasmon scattering at room temperature.  

 

IV. Conclusion 
Using an ensemble Monte Carlo method, it was 

shown that the electron-plasmon scattering in the Γ 
valley substantially affects the hot-electron energy 
distribution function and transport properties in ZnO. It 
is shown that the threshold electric field and maximum 
drift velocity increase by %30 and %17, respectively, 
and Ohmic mobility drops by %15. This is caused by 
combined effects of effective cooling of electron gas by 
electron-plasmon scattering and predominantly forward 
peaked momentum relaxation for all electron momenta.  
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