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a b s t r a c t

In some long term studies, we encounter a series of dependent and censored observations.
Randomly censored data consist of i.i.d. pairs of observations (Xi, δi)i = 1, . . . , n. If δi = 0,
Xi denotes a censored observation, and if δi = 1, Xi denotes a survival time, which is the
variable of interest. One of the global stochasticmeasures of the distance between a density
and its kernel density estimator is integrated square error. In this paper, we apply the
technique of strong approximation to establish an asymptotic expansion for the integrated
square error of the kernel density estimate, when censored data are showing some kind of
dependence.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

In medical follow-up or in engineering life testing studies, the life time variable may not be observable. Let X1, . . . , Xn
be a sequence of life times, having a common unknown continuous marginal distribution function F with a density function
f = F ′ and hazard rate λ = f /(1− F). The random variables are not assumed to be mutually independent. Let the random
variable Xi be censored on the right by the random variable Yi, so that one observes only

Zi = Xi ∧ Yi and δi = I(Xi ≤ Yi),

where∧ denotes minimum and I(.) is the indicator of the event specified in parentheses. In this random censorship model,
the censoring times Y1, . . . , Yn are assumed to be independently and identically distributed and they are also assumed to
be independent of the Xi’s. For easy reference, denote with G the distribution of the Yi’s. Since censored data traditionally
occur in lifetime analysis, we assume that Xi and Yi are nonnegative. The actually observed Zi’s have a distribution function
H satisfying

H(t) = 1− H(t) = (1− F(t))(1− G(t)).

Denote by

F∗(t) = P(Z ≤ t, δ = 1),

the sub-distribution function for the uncensored observations. Define

Nn(t) =
n∑
i=1

I(Zi ≤ t, δ = 1) =
n∑
i=1

I(Xi ≤ t ∧ Yi),
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the number of uncensored observations less than or equal to t , and

Yn(t) =
n∑
i=1

I(Zi ≥ t),

the number of censored or uncensored observations greater than or equal to t and also the empirical distribution functions
of H̄(t) and F∗(t) are respectively defined as

Y n(t) = n−1Yn(t), Nn(t) = n−1Nn(t).
Then the Kaplan–Meier estimator for 1− F(t), based on the censored data is

1− F̂n(t) =
∏
s≤t

(
1−

dNn(s)
Yn(s)

)
, t < Z(n),

where Z(i)’s are the order statistics of Zi and dNn(t) = Nn(t)− Nn(t−).
As is known (see, e.g. Gill, 1980), for a d.f. F on [0,∞), the cumulative hazard functionΛ is defined by

Λ(t) =
∫ t

0

dF(s)
1− F(s−)

,

andΛ(t) = − log(1− F(t)) for the case that F is continuous. The empirical cumulative hazard function Λ̂n(t) is given by

Λ̂n(t) =
∫ t

0

dNn(s)
Yn(s)

,

which is called the Nelson–Aalen estimator ofΛ(t) in the literature.
Based on theKaplan–Meier estimator, Blumand Susarla (1980) proposed to estimate f , by a sequence of kernel estimators

fn, defined by

fn(t) =
1
hn

∫
K
(
t − s
hn

)
dF̂n(s), (1.1)

where K is a kernel function having finite support on [−1, 1] and hn is a sequence of positive bandwidths tending to zero as
n→∞. As an estimator for λ, we shall consider

λn(t) =
1
hn

∫
K
(
t − s
hn

)
dΛ̂n(s). (1.2)

It is well known that the most widely accepted stochastic measure of the global performance of a kernel estimator is its
integrated square error (ISE), defined by

ISE(fn) =
∫
(fn(t)− f (t))2dt. (1.3)

Indeed, it is often suggested that fn be constructed to minimize mean integrated square error (MISE), defined by

MISE(fn) =
∫
E (fn(t)− f (t))2 dt,

in an asymptotic sense. The asymptotic behavior of ISE has been studied extensively by many authors. In the uncensored
case, Bickel and Rosenblatt (1973) employed the uniform strong approximation of the empirical process by the Brownian
bridge to obtain a central limit theorem for the ISE of the Rosenblatt–Parzen kernel estimators of a density function. Hall
(1982) established an asymptotic expansion in probability for the integrated square error of kernel density estimator using
strong approximation. Hall (1984) derived central limit theorem for the ISE of density estimator using martingale theory
and U-statistics approach. In the right censored case, Yang (1993) employed the martingale techniques by Gill (1983) to get
a central limit theorem for the ISE of the product limit kernel density estimators. Zhang (1998) applied the technique of
strong approximation to establish an asymptotic expansion for ISE of the kernel density estimate fn. Sun and Zheng (1999)
proved a central limit theorem for the ISE of the kernel hazard rate estimators in left truncated and right censored data.
However, for the case that censored observations are dependent, there are hardly few results available. Jomhoori et al.

(2007) studied the central limit theorem for ISE of the kernel hazard rate estimator under dependent censorship. The main
aim of this paper is to derive an asymptotic expansion for integrated square error of kernel density and hazard estimates, for
the case in which the underlying lifetime are assumed to be α-mixing whose definition is given below. For easy reference,
let us recall the following definition.

Definition 1. Let {Xi, i ≥ 1} denote a sequence of random variables. Given a positive integerm, set

α(m) = sup
k≥1
{|P(A ∩ B)− P(A)P(B)|; A ∈ F k

1 , B ∈ F ∞k+m}, (1.4)

where F k
i denote the σ -field of events generated by {Xj; i ≤ j ≤ k}. The sequence is said to be α-mixing (strongly mixing)

if the mixing coefficient α(m)→ 0 asm→∞.
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Among various mixing conditions used in the literature, α-mixing, is reasonably weak and has many practical applications.
There exist many processes and time series fulfilling the strong mixing condition. As a simple example we can consider the
Gaussian AR(1) process for which

Zt = ρZt−1 + εt ,
where |ρ| < 1 and εt ’s are independently identically distributed random variables with standard normal distribution. It
can be shown (see Ibragimov and Linnik, 1971, pp. 312–313) that {Zt} satisfies strong mixing condition. The stationary
autoregressive moving average (ARMA) processes, which are widely applied in time series analysis, are α-mixing with
exponential mixing coefficient, i.e., α(n) = e−νn for some ν > 0. The threshold models, the EXPAR models (see Ozaki,
1979), the simple ARCH models (see Engle, 1982; Masry and Tjostheim, 1995 and Masry and Tjostheim, 1997) and their
extensions (see Diebolt and Guégan, 1993) and the bilinear Markovian models are geometrically strongly mixing under
some general ergodicity conditions. Auestad and Tjostheim (1990) provided excellent discussions on the role of α-mixing
for model identification in nonlinear time series analysis.
Now, for the sake of simplicity, the assumptions used in this paper are as follows.

Assumptions. (1) Suppose that {Xi, i ≥ 1} is a sequence of stationary α-mixing random variables with continuous
distribution function F .

(2) Suppose that the censoring time variables {Yi, i ≥ 1} are i.i.d. random variables with continuous distribution function G
and are independent of {Xi, i ≥ 1}.

(3) α(n) = O(n−ν) for some ν > 3.
(4) The kernel function K is symmetric, of bounded variation on (−1, 1) and satisfies the following conditions:∫ 1

−1
K(t)dt = 1,∫ 1

−1
tK(t)dt = 0,∫ 1

−1
t2K(t)dt = σ 2 6= 0,∫ 1

−1
|dK(t)| = ν.

(5) f and λ are twice continuously differentiable on [0, τ ]where τ = sup{t : H(t) < 1}.

The layout of the paper is as follows. In Section 2, we construct a two parameter Gaussian process that strongly
approximates two empirical processes. In Section 3, we apply the strong approximation result of Section 2 to establish
an asymptotic expansion of integrated square error of the kernel density and hazard rate estimates.

2. Strong approximation for the empirical processes

In this section, we construct a two parameter mean zero Gaussian process that strongly uniformly approximates the
empirical processes Zn1(t) =

√
n(Λ̂n(t)−Λ(t)) and Zn2(t) =

√
n(̂Fn(t)− F(t)).

Theorem 1. Suppose that Assumptions (1)–(3) are satisfied. On a rich probability space, there exists a two parameter mean zero
Gaussian process {B(u, v) u, v ≥ 0} such that,

sup
t≥0
|Zn1(t)− B(t, n)| = O((log n)−λ) a.s., (2.1)

sup
t≥0
|Zn2(t)− (1− F(t))B(t, n)| = O((log n)−λ) a.s. (2.2)

Proof. First, in view of Lemma 1 of Cai (1998), {(Xi, Yi); i ≥ 1} is a sequence of α-mixing random variables with mixing
coefficient 4α(n). In particular, so is {(Xi, Yi); Xi ≥ Yi, i = 1, . . . , n}. Then, it follows from Theorem 1 of Cai (1998) that

sup
t≥0
|Y n(x)− H(x)| = O(an) a.s., (2.3)

where

an =
(
log log n
n

)1/2
.

Furthermore, it follows from Theorem 3 of Dhompongsa (1984) that there exist two Kiefer processes {k(i)(u, v); u, v ≥
0}, i = 1, 2 with covariance functions

E[k(i)(u, v)k(i)(u′, v′)] = Γ (i)(u, u′)min(v, v′), i = 1, 2
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and Γ (i)(u, u′) is defined by

Γ (i)(u, u′) = Cov(g(i)1 (u), g
(i)
1 (u

′))+

∞∑
k=2

[Cov(g(i)1 (u), g
(i)
k (u

′))+ Cov(g(i)1 (u
′), g(i)k (u))],

where g(1)k (u) = I(Zk ≤ u, δk = 1)− F∗(u) and g
(2)
k (u) = I(Zk ≤ u)− H(u), such that, for some λ > 0 depending only on ν,

given in assumption (3),

sup
t∈R
|Nn(t)− F∗(t)− k(1)(t, n)/n| = O(bn), a.s. (2.4)

and

sup
t∈R
|Y n(t)− H(t)− k(2)(t, n)/n| = O(bn), a.s. (2.5)

where
bn = n−1/2(log n)−λ.

Now, usual decomposition of Zn1(t) implies

Zn1(t) =
√
n[Λ̂n(t)−Λ(t)] =

√
n

[∫ t

0

dNn(x)

Y n(x)
−

∫ t

0

dF∗(x)

H(x)

]

=
√
n
∫ t

0

[H(x)− Y n(x)]

H
2
(x)

dF∗(x)+
√
n
∫ t

0

d[Nn(x)− F∗(x)]

H(x)
+ Rn1(t)

where

n−1/2Rn1(t) =
∫ t

0

(Y n(x)− H(x))2

Y n(x)H
2
(x)

dF∗(x)+
∫ t

0

(
1

Y n(x)
−

1

H(x)

)
d[Nn(x)− F∗(x)]

= I1 + I2.

Define, for t ≥ 0, a two parameter Gaussian process

B(t, n) =
k(1)(t, n)/

√
n

H(t)
−

∫ t

0

k(1)(x, n)/
√
n

H
2
(x)

dH(x)−
∫ t

0

k(2)(x, n)/
√
n

H
2
(x)

dF∗(x).

Clearly E(B(t, n)) = 0. Let

β1(t, n) =
√
n(Nn(t)− F∗(t))− k(1)(t, n)/

√
n,

and

β2(t, n) =
√
n(Y n(t)− H(t))− k(2)(t, n)/

√
n.

Theorem 1 is about the order of

sup
t≥0
|Zn1(t)− B(t, n)| = sup

t≥0
|Rn1(t)+ Rn2(t)|, (2.6)

where

Rn2(t) =
β1(t, n)

H(t)
−

∫ t

0

β1(x, n)

H
2
(x)
dH(x)−

∫ t

0

β2(x, n)

H
2
(x)
dF∗(x).

To deal with Rn1(t), we deduce from (2.3)

I1 = O(a2n) a.s. (2.7)

To estimate I2, divide the interval [0, τ ] into subintervals [xi, xi+1], i = 1, . . . , kn where kn = O(a−1n ), and 0 = x1 < x2 <
· · · < xkn+1 = τ are such that H(xi+1)− H(xi) = O(an). It is easy to check that

|I2| =
∫ t

0

(
1

Y n(x)
−

1

H(x)

)
d[Nn(x)− F∗(x)]

≤ 2 max
1≤i≤kn

sup
y∈[xi,xi+1]

|Ȳ−1n (y)− Ȳ−1n (xi)− H̄−1(y)+ H̄−1(xi)|

+ kn sup
0≤x≤τ

|Ȳ−1n (x)− H̄−1(x)| max
1≤i≤kn

|Nn(xi+1)− Nn(xi)− F∗(xi+1)+ F∗(xi)|
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≤ C max
1≤i≤kn

sup
y∈[xi,xi+1]

|Y n(y)− Y n(xi)− H(y)+ H(xi)| + C max
1≤i≤kn

|Nn(xi+1)− Nn(xi)− F∗(xi+1)+ F∗(xi)| + O(a2n)

≤ max
1≤i≤kn

{
sup

y∈[xi,xi+1]
|k(2)(y, n)− k(2)(xi, n)|/n+ |k(1)(xi+1, n)− k(1)(xi, n)|/n

}
+ O(bn).

Theorem 1.15.2 of Csörgő and Révész (1981) implies

I2 = O

((
log log kn
nkn

)1/2)
+ O(bn) = O(bn) a.s. (2.8)

Therefore, by combining (2.7) and (2.8), we have

sup
t≥0
|Rn1(t)| = O((log n)−λ) a.s. (2.9)

Next, by applying (2.4) and (2.5), we have

sup
t≥0
|Rn2(t)| = O((log n)−λ) a.s. (2.10)

Combining (2.6), (2.9) and (2.10) we obtain (2.1). It can be shown that

F̂n(t)− F(t) = (1− F(t))[Λ̂n(t)−Λ(t)] + O
(
log log n
n

)
a.s. (2.11)

Therefore (2.2) is proved via (2.11). �

Remark 1. In the α-mixing case, we cannot achieve the same rate as in the iid case i.e. O(n−1/2(log n)2) (see Burke et al.,
1988, Theorem 1). The main reason is that our approach utilizes the strong approximation introduced by Dhompongsa
(1984) as a kiefer process with a negligible reminder term of order O(n−1/2(log n)−λ). This is not as sharp as in iid case.

3. Integrated square error of the kernel estimators

In this section, we consider the ISE of the kernel density estimator on the interval [0, τ − ε] and find an asymptotic
expansion for this error in terms of the sample size n and the bandwidth hn. Also, we derive the same result for the ISE of
λn. We shall only prove Theorem 2 in detail, since for λn the arguments are similar.
For any ε > 0, the integrated square error of fn on the interval [0, τ − ε] is defined to be

ISE(fn) =
∫ τ−ε

0
(fn(t)− f (t))2dt.

Theorem 2. Let hn be a sequence of positive bandwidths satisfying hn = O(n−1/6) as n → ∞. Suppose that
assumptions (1)–(5) hold, then for any ε > 0, we have

ISE(fn) =
h4nσ

2
2

4

∫ τ−ε

0
[f ′′(t)]2dt +

ν2

nh2n

∫ τ−ε

0
F̄ 2(t)B2(t, n)dt + op(h4n)+ op

(
1
nh2n

)
, (3.1)

where B(u, v) is the two parameter Gaussian process defined in Theorem 1.

Corollary 1. Under the same conditions of Theorem 2

ISE(λn) =
h4nσ

2
2

4

∫ τ−ε

0
[λ′′(t)]2dt +

ν2

nh2n

∫ τ−ε

0
B2(t, n)dt + op(h4n)+ op

(
1
nh2n

)
. (3.2)

Remark 2. In the iid case, when observations are subject to random right censoring, Zhang (1998), with optimal bandwidth
of hn = O(n−1/5), established an asymptotic expansion for ISE. This condition, does not, seem to be in our work.
The proof of Theorem 2 is based on the following three lemmas. We begin with introducing some further notations. We

define

f̃n(t) =
1
hn

∫
∞

0
K
(
t − s
hn

)
dF(s),

Qn1 =
∫ τ−ε

0

[∫ 1

−1
F̄(t − hnu)B(t − hnu, n)dK(u)

]2
w(t)dt,

Qn2 =
∫ τ−ε

0

[∫ 1

−1
F̄(t − hnu)B(t − hnu, n)dK(u)

]
w(t)dt,

wherew(t) is some(measurable) function defined on (0,∞).
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To study asymptotic expansion for ISE of Kernel density estimators, we also need to study the modulus of continuity of
approximating process B(u, v). In the first lemma,we prove the globalmodulus of continuity of theGaussian process B(u, v).

Lemma 1. Let hn be a sequence of positive numbers for which

lim
n→∞

log h−1n
log log n

= ∞. (3.3)

Then

sup
0≤t≤τ−ε

sup
−1≤u≤1

|B(t − hnu, n)− B(t, n)| = O
(√
2hn log h−1n

)
a.s. (3.4)

Proof. First, we have

|B(t − hnu, n)− B(t, n)| ≤
∣∣∣∣k(1)(t − hnu, n)/√nH(t − hnu)

−
k(1)(t, n)/

√
n

H(t)

∣∣∣∣+ sup
0≤x≤τ−ε

∣∣∣∣k(1)(x, n)√
n

∣∣∣∣
∣∣∣∣∣H(t − hnu)− H(t)H

2
(τ )

∣∣∣∣∣
+ sup
0≤x≤τ−ε

∣∣∣∣k(2)(x, n)√
n

∣∣∣∣
∣∣∣∣∣F∗(t − hnu)− F∗(t)H

2
(τ )

∣∣∣∣∣
= I1 + I2 + I3.

It can be shown, after simple algebra that for large n,

sup
0≤t≤τ−ε

sup
−1≤u≤1

∣∣∣∣k(1)(t − hnu, n)/√nH(t − hnu)
−
k(1)(t, n)/

√
n

H(t)

∣∣∣∣ = sup
0≤x≤τ−ε

sup
0≤y≤hn

∣∣∣∣k(1)(x+ y, n)− k(1)(x, n)H(τ )
√
n

∣∣∣∣
+ sup
0≤t≤τ−ε

sup
−1≤u≤1

∣∣∣∣k(1)(t, n)√
n

∣∣∣∣ ∣∣∣∣ 1
H̄(t − hnu)

−
1
H̄(t)

∣∣∣∣
= I11 + I12.

By the global modulus of continuity for the Kiefer processes (see Theorem 1.15.2 of Csörgő and Révész, 1981), we have

I11 = O
(√
hn log h−1n

)
a.s. (3.5)

To deal with I12, according to the Mean Value Theorem and the law of iterated logarithm for the Kiefer processes (see
Theorem A of Berks and Philipp, 1977), we have

I12 = O(hn
√
log log n) a.s. (3.6)

It follows from (3.5) and (3.6) that

sup
0≤t≤τ−ε

sup
−1≤u≤1

I1 = O
(√
hn log h−1n

)
a.s. (3.7)

Likewise, we observe that

sup
0≤t≤τ−ε

sup
−1≤u≤1

I2 = O(hn
√
log log n) a.s., (3.8)

sup
0≤t≤τ−ε

sup
−1≤u≤1

I3 = O(hn
√
log log n) a.s. (3.9)

Therefore, Eqs. (3.7)–(3.9) imply (3.4). �

The next lemma establishes an asymptotic expansion for Qn1.

Lemma 2. Let f (t) andw(t) be continuous on [0, τ ]. Under assumptions (1)–(5) and for any ε > 0, we have

Qn1 = ν2
∫ τ−ε

0
F̄ 2(t)B2(t, n)|w(t)|dt + Op

(√
2hn log h−1n

)
.

Proof. Simple algebra shows

Qn1 =
∫ τ−ε

0

{∫ 1

−1
F̄(t − hnu)[B(t − hnu, n)− B(t, n)]dK(u)+

∫ 1

−1
F̄(t − hnu)B(t, n)dK(u)

}2
w(t)dt

= Kn1 + Kn2 + Kn3, (3.10)
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where

Kn1 =
∫ τ−ε

0

{∫ 1

−1
F̄(t − hnu)[B(t − hnu, n)− B(t, n)]dK(u)

}2
w(t)dt,

Kn2 =
∫ τ−ε

0
B2(t, n)

{∫ 1

−1
F̄(t − hnu)dK(u)

}2
w(t)dt,

Kn3 = 2
∫ τ−ε

0

{∫ 1

−1
F̄(t − hnu)[B(t − hnu, n)− B(t, n)]dK(u)

}
×

{∫ 1

−1
F̄(t − hnu, n)dK(u)

}
B(t, n)w(t)dt.

To deal with Kn1, we apply Lemma 1

|Kn1| ≤
∫ τ−ε

0

{
|B(t − hnu, n)− B(t, n)| |F̄(t − hnu)||dK(u)|

}2
|w(t)|dt

= Op(2hn log h−1n ). (3.11)

A Taylor expansion of F yields

|Kn2| ≤
∫ τ−ε

0
B2(t, n)

{∫ 1

−1
|F̄(t − hnu)||dK(u)|

}2
|w(t)|dt

= ν2
∫ τ−ε

0
F̄ 2(t)B2(t, n)|w(t)|dt + Op(hn). (3.12)

Likewise, applying Lemma 1 gives

|Kn3| = Op

(√
2hn log h−1n

)
. (3.13)

Combining (3.10) with (3.11)–(3.13) completes the proof.
�

The following lemma pertains to the asymptotic behavior for Qn2.

Lemma 3. Under the conditions of Lemma 2, we have for any ε > 0

Qn2 = Op

(√
2hn log h−1n

)
. (3.14)

Proof. First, we can write

Qn2 = Kn4 + Kn5 + Kn6, (3.15)

where

Kn4 =
∫ τ−ε

0

[∫ 1

−1

(
F̄(t − hnu)− F̄(t)

)
(B(t − hnu, n)− B(t, n)) dK(u)

]
w(t)dt,

Kn5 =
∫ τ−ε

0
B(t, n)

[∫ 1

−1

(
F̄(t − hnu)− F̄(t)

)
dK(u)

]
w(t)dt,

Kn6 =
∫ τ−ε

0

[∫ 1

−1
F̄(t)B(t − hnu, n)dK(u)

]
w(t)dt.

Applying (3.4) with mean value theorem gives

|Kn4| ≤ Mf hn

∫ τ−ε

0

∫ 1

−1
|B(t − hnu, n)− B(t, n)||dK(u)||w(t)|dt

= Op

(√
2h3n log h

−1
n

)
, (3.16)

whereMf = sup0≤t≤τ |f (t)|. Furthermore, we have

|Kn5| ≤
∫ τ−ε

0
|B(t, n)|

[∫ 1

−1
|F̄(t − hnu)− F̄(t)||dK(u)|

]
|w(t)|dt
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≤ Mf hnν
∫ τ−ε

0
|B(t, n)||w(t)|dt

= Op(hn). (3.17)

The term Kn6 can be written as

Kn6 =
∫ τ−ε

0
F̄(t)

[∫ 1

−1
(B(t − hnu)− B(t, n))dK(u)

]
w(t)dt

= Op

(√
2hn log h−1n

)
.

This, in conjunction with (3.15)–(3.17) completes the proof. �

Proof of Theorem 2. Using Theorem 1 and for large n, we have

fn(t)− f̃n(t) = −
1
√
nhn

∫
∞

0

√
n[̂Fn(s)− F(s)]dK

(
t − s
hn

)
=

1
√
nhn

∫ 1

−1
F̄(t − hnu)B(t − hnu, n)dK(u)+ Op

(
(log n)−λ
√
nhn

)
, (3.18)

uniformly in t ∈ [0, τ − ε]. Since f is twice continuously differentiable on [0, τ ], it is easy to see that

f̃n(t)− f (t) =
1
2
f ′′(t)h2nσ

2
+ o(h2n), (3.19)

uniformly in t ∈ [0, τ ]. Combining (3.18) with (3.19) yields

fn(t)− f (t) =
1
√
nhn

∫ 1

−1
F̄(t − hnu)B(t − hnu, n)dK(u)+

1
2
h2nσ

2f ′′(t)+ Op

(
(log n)−λ
√
nhn

)
+ op(h2n) (3.20)

uniformly in t ∈ [0, τ − ε]. From (3.20) we deduce that

ISE(fn) =
∫ τ−ε

0
[fn(t)− f (t)]2dt

=
1
4
h4nσ

4
∫ τ−ε

0
[f ′′(t)]2dt +

1
nh2n
Dn1 +

hnσ 22
√
n
Dn2

+

[
op(h2n)+ Op

(
(log n)−λ
√
nhn

)][
op(h2n)+ Op

(
(log n)−λ
√
nhn

)
+ h2nσ

4
∫ τ−ε

0
f ′′(t)dt +

2
√
nhn
Dn3

]
, (3.21)

where

Dn1 =
∫ τ−ε

0

[∫ 1

−1
F̄(t − hnu)B(t − hnu, n)dK(u)

]2
dt,

Dn2 =
∫ τ−ε

0
f ′′(t)

[∫ 1

−1
F̄(t − hnu)B(t − hnu, n)dK(u)

]
dt,

Dn3 =
∫ τ−ε

0

[∫ 1

−1
F̄(t − hnu)B(t − hnu, n)dK(u)

]
dt.

Applying Lemma 2 withw(t) = 1 yields

Dn1 = ν2
∫ τ−ε

0
B2(t, n)dt + Op

(√
2hn log h−1n

)
. (3.22)

Applying Lemma 3 withw(t) = f ′′(t) andw(t) = 1, respectively gives

Dn2 = Op

(√
2hn log h−1n

)
,

and

Dn3 = Op

(√
2hn log h−1n

)
.

This in conjunction with (3.21) and (3.22) completes the proof. �
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