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a b s t r a c t

The power factor and torque of wind turbines are predicted using artificial neural networks
(ANNs) based on experimental data which have been collected for seven prototype vertical
Savonius rotors tested in a wind tunnel. In this research, the rotors with different config-
urations were located in the wind tunnel and the tests were repeated 4–6 times in order
to reduce errors. Since the Reynolds number has a negligible effect on power ratio, there-
fore tip speed ratio (TSR) is the main input parameter to be predicted in neural network.
Also, the rotor’s power factor and torque were simulated for different tip speed ratios
and different blade angles. The simulated results show a strong capability for providing
reasonable predictions and estimations of the maximum power of rotors and maximizing
the efficiency of Savonius turbines. According to artificial neural nets simulations and the
experimental results, increasing tip speed ratio leads to a higher power ratio and torque.
For all the tested rotors, a maximum and minimum amount of torque has happened at
angle of 60o and 120o, respectively.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Wind turbine is a device to change wind energy into mechanical energy. These turbines are classified into two categories,
horizontal and vertical axes. The horizontal axis wind turbines have complicated structures and are economically valuable
only in areas where the permanent winds and high speeds are available and are mainly employed for generating electricity.
The vertical axis wind turbines (VAWTs) such as Savonius turbines have a simple structure and are capable to operate at low
wind speed [1,2]. Unlike horizontal axis turbines, in vertical axis turbines, the rotation speed is low and torque is high [3].
These turbines are independent of the wind direction [4].

In vertical axis wind turbines such as Savonius [5] rotating axis is perpendicular to the wind direction. Therefore the sur-
face which is moved by air, after rotating half a round, should move in reverse direction of wind. This is the reason for power
ratio reduction. The Savonius rotor includes two half cylinder shape blades (nominal diameter D, height H), as shown in
Fig. 1.

Kavamora and his colleagues in 2001 studied the flow round Savonius rotor by DDM method (Domain Decomposition
Method). They examined torque ratio and power ratio of rotor in different speeds of air blow for semicircle blades [6].

One alternative method to predict wind turbine performances is artificial neural networks (ANNs). Neural networking in-
volves algorithms under which information is accumulated in programmed objects that are capable of learning through
much iteration using simulated or real data [7].
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ANNs have been utilized in energy systems. Comprehensive reviews of ANN applications in energy systems in general [8]
and in renewable energy systems in particular [9] are available.

The experimental data are typically very complex to model due to the underlying correlation among several variables of
different type. It is ordinary to have multivariate dependency with non-linear behavior. Furthermore, typical variables do not
meet the common Gaussianity assumption. Standard statistical techniques may fail for adequate modeling complex non-lin-
ear phenomena. In contrast, neural networks (NNs) are becoming widely used because they have shown ability to model
non-linear data and their non-reliance, on applied equations [8].

In this research, some of the data were employed in order to calculate the power ratio. Also the remaining data has em-
ployed for ANNs simulation of rotor’s power ratio at different Reynolds number and blade angles for each complete rotation

Nomenclature

A swept area of the rotor (pR2)
ANN Artificial neural network
Cp power factor
cj centre of the activation function
D diameter of rotor (m)
H height of rotor (m)
Fi effect of external forces
N number of data
Pw power (W)
R2 correlation coefficient index
Re Reynolds number
RBF radial basis function
RMSE root mean square error
S.D. standard deviation
SSE standard sum error
S gap distance (m)
T torque of vertical force to blade’s surface, (N m)
TSR tip speed ratio
u speed of blade’s tip (m/s)
ui speed of airflow in specific direction (m/s)
V wind speed (m/s)
yobs experimental values
yest estimated values
ypred predicted values
m kinematics viscosity (kg/m/s)
k tip speed ratio
h angular position of turbine, radian
q density (kg/m3)
x rotation speed of rotor
rj width of the activation function

Fig. 1. Schematic of a Savonius rotor. (a) Front view; and (b) semicircle shape.
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of wind turbines blades. Then, results were compared with the corresponding experimental data which show the simulation
has the capability of providing reasonable predictions for the maximum power of rotors and maximum efficiency of Savonius
wind turbines.

2. Theory

The model proposed in this work is based on a radial basis function (RBF) network. Since late 1980s, RBF networks have
been a subject of study and have been employed with success in numerous fields [10], their main applications being time
series forecasting and function approximation. In general, it can be said that a RBF network is a feed forward network that
consists of three layers: the input layer, the hidden layer and the output layer, as it is shown in Fig. 2. The hidden layer is
composed of a determined number of nodes or basis functions. These basis functions, also called kernel, which can be se-
lected among several types of functions, but for most applications they are chosen to be Gaussian functions. These types
of functions have the property of being local functions, which means that only they function with their centers close to
the input patterns will give a response. So, the hidden layer is composed of a variable quantity of nodes, distributed over
all the input space. Each node is a Gaussian function, characterized by a centre c and a width r that produces a non-linear
output. Let’s assume that the inputs of the network are given in a vector of d components, x = {x1, . . . , xd},The activation func-
tion, gj(x), is of the form:

gjðxÞ ¼ exp �ðx� cjÞ2

r2
j

 !
; j ¼ 1;2; . . . ;m ð1Þ

where cj is the centre of the activation function and rj its width.
In this research, the centers are set using the well known K-means algorithm [11]. The parameter m corresponds to the

number of nodes in the hidden layer. The design and training of RBF networks consist of the number of hidden nodes and
their structure which must be determined, that is, the centers and widths of the basis functions, and the weights of the out-
put layer. There are several methods for constructing and training a RBF network [12,13], and optimizing the design param-
eters [14], but the most common case is that the number of basis functions has to be given by complex specifications or by
means of a trial and error process. In this case, an own algorithm is implemented to select the structure and number of the
basis functions using the optimization routines from Matlab [15].

3. Neural network design

This step consists of designing the radial basis layer (number of neurons, centers and bias) as well as the calculus of the
output layer weights. In order to do in theoretical part, many randomly selected patterns of each training test data (N 6
power ratio and N 10 torque) were used to design the net, constituting what it is called the training data set. The patterns
corresponding to: maximum, minimum and median values of input and output variables of each training test (N 13 power
ratio and N 27 torque) employed to measure the net model accuracy, constituting what it is called the checking data set. The
reason for limiting the training data in design of the neural network is, on one hand, to limit the time consumed in setting up
the model and, on the other hand, to avoid unnecessary information that can cause over fitting. If all the data are included in
a single neural network model, it is very difficult to obtain a converged result. Hence, the data set for each rotor has been
used in different models. The architecture of nets is different but the number of data is general for training and testing model.

Normalization of inputs leads to avoidance of numerical overflows due to very large or very small weights [16]. Therefore,
Data were normalized between the upper limit 0 + DL and the lower limit 1 � DU, where DL and DU are small margins used to

Fig. 2. RBF network structure (xd = input to model: u/v, ŷk = output from model: Cp or xd = input to model: angle of rotor, ŷk = output from model: torque).
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give the network some extrapolation capability. The values for DL and DU used were 0.05 [17]. Data were normalized using
the linear normalization method as follows:

Vn ¼ ð1� DU � DLÞ
V � Vmin

Vmax � Vmin
þ DL ð2Þ

where Vn is the normalized value of V. The Vmax and Vmin are the minimum and maximum values of V, respectively,
(1 � DU � DL) and DL are positive constants. The magnitudes of (1 � DU � DL) and DL should be in range of:
DL � (1 � DU � DL) � 1 and (1 � DU) � 1. The software utilized for the ANNs modeling was Matlab Toolbox version 7.0.

The performance of the neural network model evaluated using the root mean square error (RMSE). The determination
coefficient (R2) of the modeled output and the measured training data can be related as follows:

R2 ¼ 1�
P

Pðyobs � yestÞ
2P

Pðypred � �yobsÞ2
ð3Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Pðyobs � yestÞ

2

N

s
ð4Þ

yobs, yest are experimental and estimated values, respectively, and N is the number of data. R2 is computed as:

R2 ¼ SSyy � SSE
SSyy

¼ 1� SSE
SSyy

ð5Þ

R2 measures the relative sizes of SSyy and SSE.
Actually, R2 indicates that how well the prediction of y can be achieved using this model by computing �y rather than just

using the mean value of �y as a predictor.
Note that when the ŷ model is utilized, the prediction depends on x because ŷ ¼ b0 þ b1x. Thus, x contains information

about y. If we just use �y to predict y, then x does not contribute information about y and thus the prediction of y does
not depend on x.

More formally:

– SSyy measures the deviations of the observations from their mean: SSyy ¼
P

Pðyi � �yÞ2. If �y is used to predict y, then SSyy

should be measured the variability of the y around the predicted value.
– SSE measures the deviations of observations from the predicted values: SSE ¼

P
Pðyi � ŷiÞ2.

When the RMSE is at its minimum value and R2 is high, P0.8, a model can be judged as very good [7,18].
After this, the algorithm designs a group of neural networks using different spread values for the activation function in a

wide range, from 0.05 to 25. Each of these neural networks, associated with a fixed spread, is designed with the training data
set using the K-means algorithm increasing the number of neurons until the marginal prediction error is insignificant. The
RMSE computed with the resulting neural network, net(s), using the checking data is fixed as the goal for the next neural
network design. The final stage of the algorithm consists of selecting the neural network as the one with minimum RMSE
computed using the checking data set.

4. Methods and materials

4.1. Produced samples

Savonius rotor has been tested with six different blade’s curves in a wind tunnel. The test section had dimension
0.4 � 0.4 � 14 m. In rotors I–V each blade had a semicircle shape with 16 cm diameter. The gap distance (S) were 0, 3.2,
3.8, 6.4, and 7.2 cm for rotors I–VI, respectively.

The distance gap changes the amount of drag force on back and front of blade for different angles with respect to the wind
direction. The height (H) in all produced models was 30 cm, and the thickness of blade 1 mm, which was made of aluminum
(Fig. 3).

4.2. Experimental methodology

Power coefficient was calculated by measuring rotor rotational speed and output torque, which were measured by two
dynamometers which were attached to the tip of each blade. All the tests were conducted under identical conditions in the
wind tunnel with a wind speed ranging from 8 to 14 m/s. First, the rotational speed and torque of each rotor were measured
in one revolution of the rotor and the results were compared. Then, the same test was carried out for each blade at different
Reynolds number. Results for rotors I and IV are presented here. Using the previous test results, the average power coefficient
for one complete revolution of rotor at a particular speed were computed for each blade curve and then, the results were
compared. With this comparison, optimum performance of the rotor was determined.
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Fig. 3. Shapes of experimented rotor’s blades.

Fig. 4. Comparison between values of desired and the best RBF networks for all rotors with training data.

Table 1
Root mean square error (RSME) and correlation coefficient (R2) for testing data in modeling with RBF network.

Spread Rotor I Rotor II Rotor III Rotor IV

RMSE R2 RMSE R2 RMSE R2 RMSE R2

0.05 0.002478 0.9857 0.001624 0.993 0.009033 0.9187 0.001835 0.9911
0.9 0.002274 0.9906 0.001889 0.9913 0.001854 0.993 0.001872 0.9909
1 0.002298 0.9918 0.001889 0.9913 0.001854 0.993 0.001872 0.9909
1.2 0.002274 0.9906 0.001889 0.9913 0.001854 0.993 0.001873 0.9909
5 0.00178 0.9931 0.001808 0.9914 0.001267 0.9976 0.001764 0.9908
10 0.001855 0.9913 0.001808 0.9914 0.001267 0.9976 0.001764 0.9908
25 0.001855 0.9913 0.001808 0.9914 0.001267 0.9976 0.001764 0.9908
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The power factor can be defined as the ratio between the power in turbine shaft (Pt) and the wind power (Pw) due to its
kinetic energy. Thus:

CP ¼
Pt

Pw
ð6Þ

Variables tip speed ratio (k), power factor (Cp) and Reynolds number (Re) can be defined using the following equations:

k ¼ u
V
¼ xD

2V
ð7Þ

Cp ¼
2Fu

qV3DH
ð8Þ

Re ¼ VD
m

ð9Þ

Fig. 5. Generalization performances of the best RBF networks for all rotors with testing data (rotor I: S.D. = 0.0151, rotor II: S.D. = 0.0148, rotor III:
S.D. = 0.0159, rotor IV: S.D. = 0.015) (input to ANN: u/v, output from ANN: Cp).
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Fig. 6. Comparison experimental data and RBF model test data in rotor I for spread 5 (R2 = 0.993, RMSE = 0.00178) (input to model: u/v, output from model:
Cp).
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where V is wind speed, D diameter of rotor, H height of rotor, u speed of blade’s tip, m kinematics viscosity, and x is the rota-
tion speed of rotor.

5. Results and discussion

This section summarizes the results obtained using the neural network model to simulate the power ratio and torque of a
vertical axis wind turbine. The aim is to check the effectiveness of the model and its generalization capability. In order to do
this, the predicted power ratio of the model is compared with the measured power ratio in the following way.

The output values of the model are classified into two groups. The first group shows the predicted values when using in-
put patterns belonging to train the network, that is, near the training data set. These results allow checking the effectiveness
of the model closer to the data set used for model. The second group represents the predicted values that do not belong to the
training data set. These values will allow testing the model.

Fig. 4 illustrates the best recall performances of RBF networks. Evidently, all plots generated by RBF networks pass
through each and every training data point.

For each network, the optimum values of isotropic spread were attained by minimization of root mean square error
(RMSE) and maximization of correlation coefficient (R2). Table 1 shows the RMSE and R2 results obtained for the designed
model, where different models with various spreads are used.

It can be concluded that there is an optimum modeling using test data. Since it provides the minimum degrees of freedom
sustained by testing data points.

The corresponding generalization performance of these networks is small but unrealistic oscillations as shown in Fig. 5.
Also in this figure the results for rotor IV shows a significant error comparing the other rotors. The reason for such a substan-
tial error is because the optimum spread of the ANN model has been employed only for rotor IV.

These fluctuations are due to the noise content of the training data and can be alleviated if the learning algorithm is
equipped with some proper noise filtering facility (as in RBF networks).

Fig. 6 presents a comparison between the testing and predicted values for the rotors in optimum spread of RBF model. It
can be seen that the predicted values for both groups, for the minimum RMSE from test data, are in very good agreement
with experimental data.

The unregularized network clearly over-fits the data and requires large oscillations (as shown in Fig. 7 for rotor I) to pass
through each and every noisy data point.
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Fig. 7. Zero regularization (isotropic spread 1) of performance of the all noisy data of rotor I (R2 = 0.985, RMSE 0.00247) (input to ANN: u/v, output from
ANN: Cp).

Table 2
The best isotropic spread for modeling with RBF net using testing data.

Spread Rotor I Rotor II Rotor IV Rotor IV

RMSE R2 S.D. RMSE R2 S.D. RMSE R2 S.D. RMSE R2 S.D.

0.05 0.00499 0.931 0.0171 0.00015 0.940 0.0153 0.00217 0.981 0.0143 0.00203 0.984 0.0146
0.9 0.00093 0.997 0.0155 0.00068 0.997 0.0121 0.00078 0.991 0.0106 0.00084 0.995 0.0112
1 0.00093 0.997 0.0155 0.00068 0.997 0.0121 0.00078 0.995 0.0106 0.00084 0.995 0.0112
1.2 0.00093 0.997 0.0155 0.00068 0.997 0.0121 0.00078 0.995 0.0106 0.00084 0.995 0.0112
5 0.00188 0.906 0.0060 0.00031 0.998 0.0065 0.00047 0.997 0.0082 0.00037 0.997 0.0069
10 0.00188 0.907 0.0060 0.00031 0.998 0.0065 0.00047 0.997 0.0082 0.00037 0.997 0.0069
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The results of torque on different isotropic spreads are presented in Table 2. This Table is similar to the table of power
ratio for different rotors. The 20% of set experimental data is selected patterns of each training test that are used to design
the net, constituting which is called ‘‘the training data set”. The patterns corresponding to maximum, minimum and median
values of input and output variables of each training test (80% of set data) were used to measure the net model accuracy,
constituting which is called ‘‘the checking data set”. Table 2 shows the best model is the lower RMSE and S.D. in which is
obtained from testing data.

The corresponding generalization performances of these networks are shown in Fig. 8. It can be seen that the predicted
values are in good agreements with experimental results. Also, increasing wind speed leads to the torque improvement. For
all tested rotors, the maximum amount of torque happens at angle of 60� and the minimum amount of torque happens at
angle of about 120�. Besides that, in rotor I area of the minimum torque is vast, however for other rotors it is not.

Fig. 8 shows that rotor II has the greatest torque output. Therefore, an excellent agreement between experimental data
and predicted values can be achieved by artificial neural networks and RBF model using the best isotropic spread.

6. Conclusion

In this paper, an ANN approach is presented to predict the power factor and torque in a Savonius wind turbine. The pro-
posed algorithm is found to be fast and accurate. The results reveal that the prediction accuracy from the ANN method are
quite high and a correlation coefficient of about one is obtained which shows an acceptable fitness through an appropriate
training and test of the nets. In addition, the results show a simple alteration in the architecture of the nets can increase the
scope of the vulnerability of the solution. Therefore, the findings of this study show that the artificial neural nets technique
can be applied as a powerful tool and effective way in predicting and assessing the performance of the wind turbines (power
ratio and torque). In addition, excellent agreement between experimental data and predicted values has been achieved by
artificial neural networks and RBF model of training points. As a result, the amount of experimental tests that needed to
be carried out on a pilot or large scale can be substantially reduced.
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Fig. 8. Comparing different charts obtained from the best RBF nets with experiment data for torque (rotor I: S.D. = 0.0155, rotor II: S.D. = 0.0153, rotor III:
S.D. = 0.0082, rotor IV: S.D. = 0.0069) (input to ANN: angle of rotor, output from ANN: torque).
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