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Abstract

In this paper, we provide counterexamples to show that some concepts of negative dependence are
strictly stronger than others. In addition, we solve an open problem posed by Hu,et.al.(2005) refer-
ring to whether strong negative orthant dependence implies that negative superadditive dependence.
A characterization of independence via moment conditions is shown to hold in the class of negative
upper orthant dependence random variables. Moreover, if (X1, X3, ..., X;) is a correlated normal
random vector, we construct independence random variables Y1, Y%, ..., ¥, and Matrix A, such that
Y = AX under certain negative dependence structures.
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1 Introduction and Preliminaries

Various results in probability and statistics have been derived under the assumption that some underly-
ing random variables have the negative dependence property. Several concepts of negative dependence
have been introduced in recent years. Some of them can be derived from positive dependence ordering
by compairing a random vector with a vector having the same marginals, but independent components.
For instance negative superadditive and negative orthant dependence are of this type (Shaked and Shan-
thikumar, 2007).Many implications among different dependence concepts are well known. The reader is
referred to Joe(1997), Hu (2000), Hu and Yang (2004) and Hu et.al.(2004, 2005) for an extensive treat-
ment of the topic. Furthermore, the characterization of stochastic independence via uncorrelatedness has
been studied by many authors in some classes of negative or positive dependence. For example, Lehmann
(1966) proved such a characterization for the positive and negative quadrant dependence random vari-
ables, Riischendorf (1981) characterized the stochastic independence in the class of upper positive orthant
dependence under some suitable moment conditions. Hu, (2000) proved that if X, ..., X, are negatively
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superadditive dependent and uncorrelated random variables then X, ..., X, are stochastic independent.
Block and Fang (1988, 1990) characterized the stochastic independence for some dependence structures
also Joag-Dev (1983) characterized the stochastic independence in classes of negative association and
strong negative orthant dependence random variables via uncorrelatedness. This paper is organized as
follows: Section 1 recalls some well known concepts of negative dependence and presents some well known
implications from them. In section 2, we provide several counterexamples and show that some concepts
of negative dependence are strictly stronger than others. Moreover, we solve an open problem posed
by Hu.et.al.(2005) referring to whether strong negative orthant dependence implies that negative super-
additive dependence. Moreover, we characterize stochastic independence in the class of upper negative
orthant dependence random variables. We, Construct independence random variables via uncorrelated-
ness, under certain negative dependence structures in Section 4.

Definition 1: A function ¢ : R™ — R is called superadditive if for all z,y € R™

oz Vy) + oz Ay) > ¢(x) + oly),

where V is for componentwise maximum and A is for componentwise minimum. A function ¢(x1,x2, ..., 2 )
is superadditive if and only if ¢(x;, z;; 2!%7)) is superadditive in (z;,z;) for any i < j with the other vari-
ables held fixed. This follows from Kemperman (1977). If ¢ has continuous second partial derivatives,
then the superadditivity of @ is equivalent to %ﬁ% > 0,1 <i#j<m. (Miller and Scarsini, 2000).
Let (Xy,...,X,),n > 3 be a random vector defined on a probability space ({, F, P).

Definitions 2: A random vector (X4,..., X;,) is said to be:

fa) (Joag-Dev and Proschan, 1983). Negatively associated (NA) if for every pair of disjoint nonempty
subsets 41, Ay of {1,2,...,n},

Cov(fi(X;,i€ Av), f2(Xj, 5 € A2)) <0,

whenever fi and f> are coordinatewise nondecreasing functions and covariance exists.
(b) Weakly negatively associated (WNA) if for all nonnegative and nondecreasing functions f;,i =
1.2,...n

B2, f(X)) < TP, Ef(X5)

(e) Negatively upper orthant dependent (NUOD) if for all ; € R,i = 1,2,...,n
P((1Xi > @) < [[ PO > w0), (1)
i=1 i=1
Negatively lower orthant dependent (NLOD) if for all &, € R,i = 1,2,...,n

n n
P((IXi < @) < [] P(Xi < ), (2)
i=1 i=1
And negatively orthant dependent (NOD), if both (1) and (2) hold.
{d) (Hu,2000). Negatively superadditive dependent. (NSD) if

EQI(X]‘.XQ,...,X“;) S ECD( ’lw ’21'--3}’771% (3)

where V1,5, ..., Y,, are independent with X; =% Y; for each i and o is a superadditive function such that
the expectations in (3) exist.The concepts of positively superadditive dependent is defined with reversing
inequality in (3).

(e) Linearly negative dependent (LIND) if for any disjoint subsets 4 and B of {1,2,...,n} and A; > 0,i =
1,2,...,n, the random variables » ;- 4 A;X; and ) jen A; X; are negative quadrant dependent.

(f) (Joag-Dev, 1983). Strongly negative orthant dependent (SNOD) if for every set of indices A in
{1,2,..,n} and for all x; € R,i=1,2,...,n , the following three conditions hold,

. P[ﬂ:.l:l(X', > I;)] < P[X; >zt € A]P[X'J > .’l.‘j,j S :’lc],
. P[ﬂ?:l(Xg <)) £ PIX; < wy,i € AJPIX; <y, 5 € A,
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o PXi>xii € A X <y, j € AT S P(X > a0 € )P(X; <y, j € A7),

The following implications are well known.

i) If (X1,..., X5) is NA then it is LIND, WNA and consequence NUOD.

1) If (X1,..., X,,) is NA then it is NSD.(Christofides and Vaggelatou, 2004).

iii) If (Xy,..., X) is NSD then it is NUOD.(Hu, 2000).

iv) If (X1,...,X,) is NA then it is SNOD and if (X, ..., X,,) is SNOD then it is NOD.( Joag-Dev, 1983)

It is well known that some of negative dependence concepts do not imply others.
i) Neither of the two dependence concepts NUOD and NLOD implies the other (Bozorgnia et.al, 1996)
ii) Neither NUOD nor NLOD imply NA. (Joag-Dev and Proschan, 1983).
iii) The NSD does not imply LIND and NA.(Hu, 2000).
iv) The NSD does not imply SNOD. (Hu, et.al., 2005).

2 Some counterexamples

In this section, we present some counterexamples showing that some concepts of negative dependence are
strictly stronger than others. Throughout this section, p(i, j, k) will denote P[X) =i, X» = j, X3 = k].
Lemma 1: Neither of the two dependence concepts SNOD and LIND implies the other.

Proof: i) ( LIND does not imply SNOD). Let (X, X2, X3) have the following joint probability function.

p(1,1,1) = 0.05,p(1,0,0) = p(0,1,0) = 0.225,p(0,0,1) = 0.22,

p(0,0,0) = 0.063,p(1,1,0) = 0.08,p(0,1,1) = 0.06,p(1,0,1) = 0.075,
It can be shown that (X1, X, X3) is LIND and NOD. However,

3
1 1 1 1
Pl (X > )= 005> P[Xy > S]P[Xy > 5, X3 > ] = 0.0473,
i=1

establishing that (X, X2, X3) is not SNOD.
ii) (SNOD does not imply LIND). Let (X, X2, X3, Xy) have the joint probability function as given in
Table 6 of Hu, et.al.(2005). Then (X, X2, X3, Xy) is SNOD but not LIND, since

9 8
PY121,Y:>2]= = > PY, 2 1.P[Y, > 2] = —,
[lf.zf] 32 [1,][27] 32
Where Y7 = Xy, Y5 = Xo + X3 + X,
The next Lemma indicates that strong negative orthant dependence does not imply NSD which gives the
answer to the question posed by Hu, et.al.(2005).
Lemma 2: The SNOD does not imply NSD.

Proof: Consider a random vector (X, X2, X3) with the following joint probability function.

1 2

2 10

,0,1) = 1,0) = —,p(1,1,0) = 1,1) =p(1,0,1) = —.

p(0.0,1) = p(0,1,0) = +.p(L.L.0) = p(0.1,1) = p(1,0,1) = 15
It can be verified that (X, X2, X3) is SNOD, since for all a;,b; € R, i = 1,2,3. The conditions of
Definition 2 (f) are hold. But (X, X2, X3) is not NSD. Let f(z,z2,23) = max{z; + 22 + 23 — 1,0} ,
this function is supermodular since it is a composition of an increasing convex real value function and an

increasing supermodular function. For this function we get
56000 50494

Ef(Xy, X2, Xs) = oong > Bf (L, Yo, ¥s) = .
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Where Y7, Y5, Y3 are independent random variables with X; =** Y; for each i = 1,2,3.
The following example illustrates that the converse implication NA = LIN D fails to hold.
Example 2 : Let (X, X5, X3) have the following joint probability function.

2 3
p(U,U,U) = U,]}(O,U, 1) = p(l,U,O) = 7??(11 111) BT
15 15
2
p(0,1,0) = p(1,1,0) = Ul,l):p(l‘U,l):—..
Tt is easy to show that (X, X2, X3) is LIND. However, for the following increasing functions,

(.L‘1 - IL (1‘2 - 11—5) if x> 05 xe > 0.5
S, z2) { L if 2 <0.5, 22 <05

54

";|_

and

-1 i w5 <05

157

5’(553) _ { (23 Lp‘), if w3 >0.5

we have Cov(f(X1, X2),9(X3)) > 0. So, (X, X2, X3) is not NA.
Example 3: (NOD implies neither NA nor LIND). Let (X, X5, X3) have the following joint probability
function:

p(0,0,0) = p(1,0,1) = 0,p(0,1,0) = p(0,0,1) = —

p(0,1,1) = p(1,1,0) = p(1,1,1) = ,p(l 0,0) =

e It is easy to see that (X, X5, X3) is ND |

o If fay,a0) = Im>%‘l.2>%) and g(xs) = Iz > %) then E(f(X1, X2).9(X3)) > Ef(X1, Xa2).Eg(Xs).
Therefore, (X1, X2, X3) is not NA.
e The random vector (X, X2, X3) is not LIND. Since, the random variables Y} = X; + X> and

Y5 = X5 are PQD.
e The NOD does not imply SNOD, because for 0 < a; < 1,7 = 1,2,3, we have

3

1 4
P[()(Xi > a))] = 10 > P> a1, Xo > @] P[Xs > as] = .
i=1

2.1 Characterization of independence

It is well known that uncorrelatedness of two random variables X and Y does not imply stochastic inde-
pendence of X and V', except in special cases. It is important to charactrize stochastic independence via
uncorrelatedness under certain dependence structures. Several authors have discussed dependence struc-
tures in which uncorrelatedness implies independence. Among them are Lehmann (1966), Jogdeo (1983),
Block and Fang (1988, 1990) and Hu (2000). Now, we characterize the stochastic independence in the
class of NUOD random variables under condition B[, X = [[;op EX;, for all T C {1,2,...,n}. Let
X = (X1, X3,.., X,,) be a random vector, and X+ be another n-dimensional random vector whose uni-
variate marginal distributions coincide with the marginals of X, and whose components are independent.
Then, the concept of NUOD is equivalent to X is smaller than X! in the upper orthant order (denoted
by X <., X1). So, Theorem 6.G.1 in Shaked and Shanthikumar, (2007) implies that, X <,, X* if and

only if,
ETT i < [T Efx), (4)
i=1

i=

for every collection {fi, fa, ..., fn} of univariate nonnegative increasing functions. Therefore, NUOD is
equivalent to WNA. Also, recall that, Lehmann (1966) proved that NUOD of X, and X, is equivalent
to Cov(f(X1),9(X2)) <0, for all nonnegative and nondecreasing Borel functions f and g . Therefore
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NUOD is equivalent to weak negative association for n = 2.
Remark 1: The condition of non-negativity functions f;,i = 1,2,....,n in (4) is a necessary condition.
To see this consider Example 3. If fi(x) = fa(z) = I, 1) and f3(x) =z — - Then

E{[1(X1) f2(X2) [5(X3)} > Ef (X)) E[o(Xo)E f3(Xs).

Corollary 1: Let (X, X»,...,X,) be a non-negative NUOD random vector, then, by a simple gen-
eralization of Theorem 1 of Riischendorf (1981), E([]}, X;) = [I;, E(X:) implies independence of
(X1, X0y X).

Corollary 2: Let (X3, Xs,...,X,,) be NUOD a random vector assuming that E []; . X;, exists for all
T c {1,2,..,n}. Then, Theorem 2 in Block and Fang (1988) implies that, E [[;cy Xi = [[;op EX;, for
all T C {1,2,...,n}, if and only if Xy, X, ..., X,, are independent.

3 Construction Independence random variables

Let (Xy,Xs,..., X)) be an arbitrary random vector, then in many statistical problems, it is useful to
construct uncorrelated random variables Y7,Y5, ..., Y, and real valued function

f: R" = R, such that X = f(Y). In particular, f can be a linear function. It seems to be impor-
tant to find real valued functions gy, g2, ..., g, that make g1 (Y1), g2(¥3), ..., gn(¥%) uncorrelated. Gupta,
et.al.(2000) have been proved the existence of real valued functions f, fa, ..., fn such that (X1, X», ..., X)) =
(f1(Y1), .., [u(YR)), a.e. where ¥7,Y5, ..., Y, are uncorrelated.

The following theorem explain the approach of Gupta et.al.(2000) in constructing uncorrelated random
variables.

Theorem 1 Let (X;, Xs,..., X,,) be an arbitrary random vector with covariance matrix

Y = (0;). Then, there exist indicator random variables Uy, Us, ..., Uy, such that (Uy, U5, ..., Uy) is inde-
pendence of (X1,Xs,....X,,) and V; = X; + elU;, ae. i= 1,2 ... n are uncorrelated (if ¢ is suitably
chosen) and Y; uniquely determines X; ( and U;).

Remark 2 i) Without loss of generality, we may suppose that 0 < X; < 1,i = 1,2, ...,n, otherwise apply
the one-to-one transforms Y; = % + %axctan(Xi), aei=1,2..,n.

i) We can easily reconstruct X; (and U;) from Y;, this is where we use the restriction 0 < X; <1, then
Xi=Y;, - c[%}, a.e. where [\] denotes the integer part.(Gupta, et.al.2000).

Lemma 3 Let (X1, Xs,...,X,,) be a NA random vector which is independent of (Uy, Us,...,Up). Then
for any constant ¢, the random variables Y; = X; 4 c.Uj,a.e. i =1,2,...,n are NA.

Proof Let f and g be real valued and coordinatewise nondecreasing functions, then for every pair of
disjoint nonempty subsets A and B of {1,2,...,n}, we have

E(f(Yi,i € A)g(Y;,j € B))

E{E[f(}(l +eli,i € A)g()(;}' + CUjrj € B)|L"'1, :L'n}}
E{E[f(X; + cUs,i € AUy, .., Un|E[g(X; + eUj,j € B)|Uy, ., U]}
E{f(Yi,i € A)}E{g(Yj,j € B)}

IhIA

Remark 3 Under the assumptions of Theorem 1. Let the random vector (X, Xa,..., X;,) be pairwise
negative dependent (PND), then by Theorem 1 in Lehmann (1966) the random variables ¥; = X; +
Ui, ae. =12 ..nare PND. Also, if the random vector (Xy, Xs, ..., X,,) is NSD, then Corollary
9.A.10 in Shaked and Shanthikumar (2007) implies that ¥; = X; + e.Uj,a.e. i = 1,2,...,n are NSD.
Therefore, the following results are hold in classes of NA, NSD and pairwise negative dependent of random
variables.

Now, we apply the approach of Gupta,et.al.(2000) for construction independence random variables for
some negative dependence structures.

Corollary 3 Under the assumptions of Theorem 1, let the random vector (X, Xo,..., X,,) be negative
association, Then

o If (N1, Ns..., N,,) is a normal random vector with correlation matrix R = (p;;) where (N1, Na..., N,,)
is independent of (X1, Xa, ..., Xy) and pj; = —sin(5%z0i;). We define U; = sgn(N;),i = 1,2,...,n,
and selecting a constant ¢ such that R = (p;;) become positive definite, then for all i # j, we have
Cov(Y;,Y;) = 045+ *.Cov(U;, U;) = 0 where Cov(U;,U;) = 4P(N; < 0, N; € 0)—1 = Z arcsin(p;;)
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for all i # j. Therefore, by Lemma 3 (Y1, Y5, ...,Y,) is NA and by Theorem 1 in Joag-Dev (1983),
(¥1,Y%, ..., Y},) is independent.

e Let (N, N»...,N,) be a random vector with n-dimensional FGM distribution. Then, the marginal
bivariate distribution functions are given by,

Fij(‘dfnyj) = Fz’(ﬁ‘-'z')FJ(yj)[l + C‘fu(l - Fi(l'i))(l - Fb(%))] 1<i<j<n.

Where Fj(z;) is a specified cumulative distribution function, i = 1,2, ...,nand forall 1 <i < j < n,
|vij] < 1 (Mari and Kotz, 2001).
i)-If the margin of distributions are N(0,72), then

Cov(Y3,Y;) = 045 + P Cov(Us, Uy) = 0 & ayy = 12— —li‘,z"".
Which, selecting the constant ¢ such that |a;;| < 1, implies independence of (Y7,Y3,....15).
ii)- If the margin of distributions are Exponential with parameters A;,i = 1,2, ...,n, then P(N; <
0,N; <0)=0,s0 Cov(U;,U;) = =1 for all 1 <i < j <n. This implies that

Cou(Y;, V) =08 a5 = .
Remark 4 In Corollary 3, we assumed that the random vector (X, Xs,..., X;,) is NA then a;; < 0 for
all i # j. However, we observe that in FGM family distributions with exponential marginal distributions
Cou(Y;,Y;) =0 & 0y =, 1 <i < j<n,that is a construction to approach of Gupta et.al.(2000)
which is not general.
3.1 Construction of independence normal variables

It is well known that for a normally distributed n-dimensional random vector stochastically independence
is equivalent to C'ov(X) = I -the identity matrix. Moreover, if (X, X5, ..., X,,) is a normal random vector
with Covariance matrix ¥ = (o;), then the following results are well known:

® The random vector (X, Xo,...,X,,) is NAif oy; <O forall i # 7, i,j = 1,2,...,n. (Joag-Dev and
Proschan, 1983).

e The random vector (X, Xy,..., X,,) is NSD if o; <O for all ¢ # j, i,j = 1,2,...,n. (Hu, 2000).
A| #0) from

In the following, we will show that, how to construct the linear function Y=AX, (where
correlated normal random variables, that (Y3,Y5,...,Y,) is independent.
Example 4 Let (X, X3) have a N5(0, X) distribution with £ = (o3;) and 013 # 0. Set,

Y1 =anXy +apds, Yo =anX; —anXs

such that ajjass — ajoa9; # 0. Then it is easy to verify that:
i) The random vector (¥7,Y3) have a N3(0,X,) distribution with

Cov(Y1,Y2) = anagi011 + a1z2a02093 + (11622 + a1za01 )o1s.

So, (¥1,Y3) is NA if Cou(Y1,Y3) < 0.

4i) In particular, for o = g9 = ¢ if p12 = —m with aj1a29 + @12a01 # 0 then Theorem 1 in

Joag-Dev (1983) yield independence of (Y7, Y3). In this case X = A™'Y where A = (a;;).

Example 5 Let (X, X,, X3) have a N3(0,X) distribution with ¥ = (o;;) and oy; # 0 for all i # j.
We define Y=A.X with |4| # 0. Then it is easy to show that (¥7,Y5,Y3) is N3(0,X,), therefore the
random vector (Yy,¥3,V3) is NA if Cov(¥;,Y;) < 0 for all @ # j and is independent if Cov(Y;, ¥;) = 0.
So, we can construct independence random variables into dependence ones. In particular, if A = (a;;)
where a; = —1 and a;; = 1,(i # j),i,j = 1,2,..,n. Then, Corr(X; X;) < T Te for all i £ j

20i0;
oito; =0 I

and k # i,j yield negative association of (}7,Y2,Y3) and independence if Corr(X;, X;) = Soia;
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addition, if o, = a3 = g3 and -1 < pj; < % for all ¢ # j, then the random vector (Y7,Y5,Y5) is NA and
is independent if p;; = % for all i # j. In this case X; = Yl‘gy L Xs = Y‘;“,Xg = YI;YE

Example 6 Let (X, X5,...,X,) (n > 3) be a multivariate normal random vector with o; = a,i
1.2,..,n and Corr(X;, X;) = p<O0forall i # j. If A= (ay;), where a;; = —1 and a;; = 1,(i # j),i,j

1,2,...,n. Then ¥Y=A.X is a NA normal random vector if -1 < p < 7ﬁ‘ Also (V1,Y5,....Y,) i

@

independent if p = 7ﬁ‘

4 Conclusions

e The counterexamples have been presented in Sections 1 and 2 show that the following implications
holding among these concepts of dependence are strict for all n > 3:

.VUOD = J‘\‘YOD = SNOD = NA = NSD = JV{/'O.D A4 ‘VN“l
4

LIND
e The characterization of stochastic independence in smaller class LIND | is still an open problem.

e In approach of Gupta et.al.(2000), we cannot hope that there always exist one-to-one functions
fi, with which Theorem 1 holds. Moreover, we can construct the linear transforms of correlated
normal random variables which are independent under some dependence structures.
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