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Abstract

In applications of differential geometry to problems of parametric inference, the notion of di-
vergence is often used to measure the separation between two parametric densities. Among them,
in this paper, we will verify measures such as Kullback-Leibler information, J-divergence, Hellinger
distances, a-Divergence,... and so on. Properties and results related to distance between probability
distributions derived via copula functions. Some results and inequalities obtained in view of depen-
dence and information measures.
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1 Introduction and Preliminaries

The study of copulas and the role they play is important in probability, statistics and stochastic
processes. Sklar (1959) found result due to copula. Many research papers and monograph published
after 1959 that can be find lots of them in Nelsen (2006) and Mari and Kotz (2006) and their references.
Frees and Valdez (1998) introduced the concept of copulas as a tool for understanding relationships among
multivariate outcomes. Also, dependence and copulas have linked with each other.

The concept of entropy originated in the nineteenth century as a creation of C. E. Shannon (1948).
During the last sixty years or so, a number of research papers, and monographs discussing and extending
Shannon’s original work have appeared. Among them Ali Ahmed et al (1989), Darbellay and Vajda (1998,
2000), Dragomir (2003), Blyth (1994), Torkkola (2003), Kapur (1989,1994), Borovkov(1998), Kagan,
Linnik & Rao (1973) and Kullback (1959) are using and extending in this research.

In this paper, various measures are obtained in view of copulas for bivariate distributions. Properties
of information measures and its link with copula is another direction of this research.
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2 Preliminaries and Result Related to some Information Mea-
sures

Let (2, B, 1) be a measure space and f be a measurable function from Q to [0, 0o}, such that fsz fdu=1.
The Shannon entropy (or simply the entropy) of f relative to p, is defined by

H(f.u) = / fIn fdu, (with flnf =0if f =0), (1)

and assumed to be defined for which fln f is integrable. If X is an r.v. with pdf f, then we refer to
H as the entropy of X and denotes also it by the notation Hy. In the case p is a version of counting
measure, (1) leads us to a specialized version that introduced by Shannon (1948) as Hx = — 31" | p; lnp;
where p; > 0 and Y| p; = L. One of the important issues in many applications of probability theory is
finding an appropriate measure of distance between two probability distributions. A number of divergence
measure for this purpose have been studied by Kullback and Leibler (1951), Renyi (1961) and a lot of
references related to various type of information measures can be find in Dragomir (2003).

Assume that the set x be the suitable support of distributions and the ¢—finite measure p are given
such that Q@ = {f : f —= R flz,y) > 0, fx fla.y)dp(x) = 1}. Consider F and G be two bivariate
distributions which are absolutely continuous w.r.t. measure y and % = f and % =gand G is a
distribution function. Here, we introduced shortly the form of some familiar information measures based

on bivariate distributions.
Kullback Leibler Information :

_ flz.v)
DiL(FG) = [ A e e 2)
x’— Divergence :
_ [f(z.y) — gl v)]?
Dua(F,6) = f/u fay @

Hellinger Distance:
Dur6) = [ [ T - VoG, (1)
XXX

a—Divergence :

1 e
PG = [ [ S P v, )
XXX
Jeffery’s Distance (J-Divergence):
fy),
D;(F,G) = L y) — 2 6
(26 = [ [ e ool TS ©)
Combination of version of a—Divergence:
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Bhattacharyya Distance:
puF.6) = [ [ Vi iiwsdn ®)
XY

Harmonic Distance:
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Triangular Discrimination:

—_ l [f(él“,y) _g(a:vy)]?
DA(F’G)*UW W@+ iy 10

Lei and Wang Divergence:

, _ _ 2@y
Diw(F.G) = f[xxxf(:r-,y)ln g(:lr,y)Jrf(w,y)d#' (11)

Relative Information Generating Function :

The relative information generating function of f given the reference measure g is defined by Guiasu
and Reischer (1985) as,

f (. 9) 11
R(F,G,1) j Fa,y)dpe, (12)
XX g z,y) ]

where ¢ > 1 and the integral is convergent on noting that R(F,G,1) = 1.
Power Divergence Measures :

Cressie and Read (1984) proposed the power divergence measure (PWD) which gathers most of the
interesting specification. This family is indexed by

1 Sz, y)
PWD(FR.G) = 155 [ A A - 0w (13)

The power divergence family implies different well-known divergence measures for different values of A.

PWD for A = —2,—1,-.5,0,1, implies Neyman Chi-square, Kullback Leibler, squared Hellinger dis-

tance, Likelihood disparity and Pearson Chi-square divergence respectively. Note that PWD(F,G) =
X+1 s[ROF.GA+1) 1]

e It is easy to see that DH(F, G) =2[1-Dgu(F,G)] < 2. Via Taylor expansion and approximation, we
can get, D (F.G) = 1D\2(F,G), Dy(F,G) = $[Dy2(F,G)+D,\2(G. F)], D\2(F,G) = 4Dy (F,G)
and D,2(F,G) > D;;(F G) The DCQ(F @) and D, (F.,G) are linked via the following identity :
Deo(F,G) = 16(— —1)4A + 16(1 — —)B where 4 and B are D,(F,G) with @ = 1 — § and
a = 1 — 27 respectively. The chi-squared divergence D\2(F,G) = Dgo(F,G) and Dy =(F,G) =
2DQ{F @) on taking # = 2 in (7) and a = —3 in (5) respectively. Also, the Helhnger distance
Dy(F,G) = 1Dco(F.G) and Dy (F.G) = %DQ(F,G) on taking # = 1 in (7) and a = 0 in (5)
respectively. The Hellinger distance is symmetric and has all properties of metric. Also, we have,
Dgy(F.G),Dua(F,G), Da(F,G) are symmetric and Dy (F,G) + Dyw (G, F) < Da(F,G).

3 Information measures in view of Copula Distributions

The copula function C(u,v) is a bivariate distribution function with uniform marginal on [0, 1], such
that

By Sklar’s Theorem (Sklar, 1959), this copula exists and is unique if F; and F5 are marginal continuous
distribution functions. Thus we can construct bivariate distributions F(x,y) = Cp(Fi(x), Fa(y)) with
given univariate marginal Fy and Iy by using copula C,(Nelsen, 2006). Then we have the following
properties:

e (Nelsen, 2006) Let F(z,y) be a joint distribution function with marginal Fy (z) and F>(y), then
(1) The copula Cr is given by

CF('U's 'U) = F(Fl_l(u)s FZ_I('U))a V‘U,U € [Oa 1];
where, Ffl and F{l are quasi-inverses of /] and F5 respectively.

ACF(u,v) | 8CF(uv) - ., _ Crluy) . " ot
e and =5l exist and c(u,v) = =552 is density function

(#i) The partial derivatives
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of Cp(u,v).
Ma and Sun (2008) defined copula entropy as follows :
Definition Let X be a random vector with copula density ¢(u). Copula entropy of X is

H.(X)= ffc(u) lne(u)du.

Kullback Leibler Information :

Dy (F.FF) = ]I fl e(u, v) In e(u, v)dudv. (14)
o Jo

In this case, Kullback Leibler information is called mutual information.

Theorem 1. Mutual information of the random variable is equal to the negative entropy of their corre-
sponding copula function,

Di(F. [ Fy) = —H.(X).

Proof : Via f(z,y) = c¢(Fi(x), Fa(y)) f1(z) f2(y) easily derived.

On noting Theorem 1, difference of the information contained in joint distribution and marginal
densities is equal to copula entropy. Hence,

x) =Y H(z;) + Ho(z).

Independency implies H.(z) = 0.

If we assume, .
0= []. — exp{72DKL(F, FIFQ)Hi,

when the dependence is maximal, Dy tends to infinity and 6* can be consider as a measure of
2 .
dependence. As an example, let X ~ N(u, X) where g = [y, p2] and ¥ = 7i po1a2
pPa1ay as
then, 6* =| p | that is a suitable measure for finding correlation in this case.

Let X and Y be identically distributed but not necessarily independent, then p = %XF}H})

where 0 < p <1 and p = 0 implies independence. So p =1 implies X and Y perfectly correlated.

x*— Divergence :

D, (F, Fy F) / lewo) 1P, (15)
c(u,v)
Hellinger Distance:
u(F,FiFy) = / / c(u,v) — 1)*dudv. (16)
a—Divergence :
1 bt (a+1)
Do (P, 10 Fy) = —.}f / 1= (e(u,v))” = Je(u, v)dudv. (17)
1-a? 0 o
Jeffery’s Distance (J-Divergence):
Dy(F,F\F,) = ] / [e(u, v) — 1] 1n e(u, v)dudo. (18)

Combination of version of a—Divergence:

Deo(F, I Fy) = f f [1 - (e(u, z))T] dudv. (19)
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Bhattacharyya Distance:

Dpp(F, Fi Fy) / ] Ve(u, v)dudv. (20)

Harmonic Distance:

2c(u,v)
Dy, (F, F F |dudv. 21
walF, FiFy) = [Lr‘ue)+l et (21)
Triangular Discrimination:
Da(F,FFy) = ] ] letw,v) = V7 ]dudv (22)
4 1= 1+ c(u,v)
Lei and Wang Divergence:
(2
Dyw(F, Fi F») —/ / e(u,v ln[1 +(‘(T(i U))]dudv. (23)

Relative Information Generating Function :
The relative information generating function of f given the reference measure g is defined by Guiasu
and Reischer (1985) as,

R(F,F1Fy,t f / e(u, v)] dudy. (24)

where ¢ > 1 and the integral is convergent on noting that R(F,G,1) = 1.
Power Divergence Measures :

Cressie and Read (1984) proposed the power divergence measure (PWD) which gathers most of the
interesting specification. This family is indexed hy

PWD(F,F1 ) = 0ED +1 j f [(e(w, v)* = 1)e(u, v)dudy. (25)

The power divergence family implies different well-known divergence measures for different values of A.

PWD for A = —-2,-1,-.5,0,1, implies Neyman Chi-square, Kullback Leibler, squared Hellinger dis-

tance, Likelihood disparity and Pearson Chi-square divergence respectively. Note that PWD(F,G) =
x+1 [R(F,G,A+1)-1].

4 Inequalities of Information Measures for weakly negative De-
pendence

Ranjbar et. al.(2008) presented a new definition of dependence which is discussed in this section.
Definition The random variables X and Y are said Weakly Negatively Dependent (WND) if there exist
a v > 1 such that, f(zy,22) < 7.f1(21).fa(®2) where f(zy,22), fi(21) and fo(z2) are joint density and
marginal densities of X and V', respectively.

The class of WND random variables is well defined and a large class of these random variables can
be find. The following examples are evidence of WND random variables:

Example (i) Suppose that Xy and X, have half-normal distribution, then

{z} + 25 — 2pzi 20} |21, 70 > 0,

f‘( ’(( ) e !
&Iy, T = erp|—
X, X bl b2 1 0] P 2(1 ,02)

fx, (x;) = \/je.{p{ffx hi=1,2.
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If —1 < p <0, then X; and X, are Negative Quadrant Dependence (NQD) random variables. Moreover,

fxowlanes) 1 —p* P 1

= exp (2] +x3) + —ryxe| < .
Ixienfxa@s  /1-p? 2(1—p2) "t T VI—p?

1—p?
Then f(z1,z2) < 4.fi1(z1). fo(x2), where v = 1/4/1 — p? > 1. So, X; and X, are WND.

(i7) Let X and Y be two random variables with joint Farlie-Gumbel-Morgenstern (FGM) distribution, we
have

Fxy(@y) = fx@)fy ) [+ a(l = 2Fx(2))(1 - 2F(y))] -
On the other hand, it’s obvious that

1+ a(l=2Fx (2))(1 - 2Fy (y)] < 1+al,

and
Ixoy (@ y) < [+ allfx (@) fy (1)

Therefore, the random variables X and Y are WND with v = 1+ || > 1. In addition, we know if
—1 < a <0, then X and Y are Negative Quadrant Dependence(NQD)
So, we have the following inequalities for the information measures :

DKL(F, F1F2) S ll’l"lf,
; 1
Dy(F.F1F) < (7 -1 Do(FRR) < ——[1—q777 ],

1-o?

4 8
D (F,F\Fy) < (v = 1)Inv, Deo(F Fi ) < ﬁﬁ[l -7

2
Dpn(F,FiFy) < 7, Dol F Fi Fy) < 72,
27

DA(F,FiF3) < (v = 1), Drw(F Fi F2) < 7In[3 e

J;

R(F,FiFy.t) <+'~', PWD(F,G) < -1}

=
ST
¢ The power divergence family implies different well-known divergence measures for different val-
ues of X. PWD for A = -2, —1,—-.5,0,1, implies Neyman Chi-square, Kullback Leibler, squared
Hellinger distance, Likelihood disparity and Pearson Chi-square divergence respectively. Note that

PWD(F, FyFy) = 5t [R(F.G A+ 1) — 1],

e v =1 implies that this two random variables are independent.

5 Conclusion

The mutual information is actually negative copula entropy. We derived forms of some information
measures based on copula functions. Also, result and characterization obtained via various information
measures on using copula. For various bivariate distributions finding characterizations and results with
novelty is the direction of continuing our research.
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