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Abstract. We establish a new method to prove Hyers-Ulam-Rassias stability of the
quartic functional equation

f(2x + y) + f(2x− y) + 6f(y) = 4[f(x + y) + f(x− y) + 6f(x)]

in non-Archimedean normed linear spaces.

1. Introduction

In 1940, Ulam [20] at the University of Wiscosin proposed the following stability
problem:
Let (G1, ∗) be a group and let (G2, �, d) be a metric group with the metric d(., .).
Given ε > 0, does there exists δ(ε) > 0 such that if h : G1 → G2 satisfies the
inequality

d
(
h(x ∗ y), h(x) � h(y)

)
< δ x, y ∈ G1,

then there is a homomorphism H : G1 → G2 with d
(
h(x),H(x)

)
< ε for all

x ∈ G1?
In 1941, Hyers [5] gave a partial answer to this question. Hyers’ theorem was

generalized by T. Aoki [1] for additive mappings and by Th. M. Rassias [18] for
linear mappings by considering an unbounded Cauchy difference. The concept of
the Hyers–Ulam–Rassias stability was originated from Th. M. Rassias’ paper [18]
for the stability of the linear mappings and its importance in the proof of further
results in functional equations.
During the last decades several stability problems for various functional equations
have been investigated by many mathematicians; we refer the reader to [3], [6], [7],
[11], [12], [19] and references therein.

The functional equation

f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y)(1.1)
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is called the quartic functional equation, since the function f(x) = x4 is a solution
of (1.1). Note that f is called quartic because of the identity

(1.2) (2x+ y)4 + (2x− y)4 = 4(x+ y)4 + 4(x− y)4 + 24x4 − 6y4.

Every solution of the quartic functional equation is said to be a quartic mapping.
It is proved in [10] that a function f : X → Y between real normed spaces is quartic
if and only if there exists a symmetric biquadratic function F : X ×X → Y such
that f(x) = F (x, x) for all x ∈ X. The first result on the stability of the quartic
functional equation was obtained by J. M. Rassias [17]. Also L. Cădariu [2], H. -M.
Kim [9], S. H. Lee, S. M. Im and I. S. Hwang [10], Najati [15] and C. Park [16]
investigated the stability of quartic functional equation.

Let K be a field. A non-Archimedean absolute value on K is a function | | :
K → R such that for any a, b ∈ K we have

(i) |a| ≥ 0 and equality holds if and only if a = 0,

(ii) |ab| = |a||b|,

(iii) |a+ b| ≤ max{|a|, |b|}.

The condition (iii) is called the strict triangle inequality. By (ii), we have |1| =
| − 1| = 1. Thus, by induction, it follows from (iii) that |n| ≤ 1 for each integer n.
We always assume in addition that | | is non trivial, i.e., that there is an a0 ∈ K
such that |a0| 6= 0, 1.

Let X be a linear space over a scalar field K with a non-Archimedean non-trivial
valuation | . |. A function || . || : X → R is a non-Archimedean norm (valuation) if
it satisfies the following conditions:

(i) ||x|| = 0 if and only if x = 0;

(ii) ||rx|| = |r|||x|| for all r ∈ K and x ∈ X;

(iii) the strong triangle inequality (ultrametric); namely,

||x+ y|| ≤ max{||x||, ||y||} (x, y ∈ X).

Then (X, || . ||) is called a non-Archimedean space.
Due to the fact that

||xn − xm|| ≤ max{||xj+1 − xj || : m ≤ j ≤ n− 1} (n > m)

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a non-
Archimedean space. By a complete non-Archimedean space we mean one in which
every Cauchy sequence is convergent.
In 1897, Hensel [4] discovered the following important example of non-Archimedean
numbers:
Let p be a prime number. For any nonzero rational number a = prm

n
such that
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m and n are coprime to the prime number p, define the p-adic absolute value
|a|p = p−r. Then | | is a non-Archimedean norm on Q. The completion of Q with
respect to | | is denoted by Qp and is called the p-adic number field.

During the last three decades theory of non-Archimedean spaces has gained
the interest of physicists for their research in particular in problems coming from
quantum physics, p-adic strings and superstrings (cf. [8]). Although many results
in the classical normed space theory have a non-Archimedean counterpart, but their
proofs are essentially different and require an entirely new kind of intuition, cf. [13],
[14].

In [13], the stability of some functional equations in non-Archimedean normed
spaces are investigated. We develop a new method which seems to be more appli-
cable to treat Hyers–Ulam–Rassias stability of the quartic functional equation in
non-Archimedean normed linear spaces.

2. Quartic stability

Throughout this section we will assume that V and X are linear spaces over a
non-Archimedean field K. For a function f : V → X, we define

Df(x, y) = f(2x+ y) + f(2x− y)− 4f(x+ y)− 4f(x− y)− 24f(x) + 6f(y).

J. M. Rassias in [17] has shown that for every quartic mapping q : V → X,

q(2x) = 24q(x) (x ∈ V ).

We need to the following generalization of this result:

Lemma 2.1. Let q : V → X be a quartic function, then for each integer n ∈ K,

(2.1) q(nx) = n4q(x) (x ∈ V ).

Proof. If we substitute x = y = 0 in (1.1), we see that q(0) = 0. This proves (2.1)
for n = 0. For the case n = 1, (2.1) is obvious. Lemma 1.3 of [17] proves the result
for n = 2. Let k ≥ 2 and for each n = 0, 1, · · · , k, (2.1) holds. Put y = (k − 1)x in
(1.1), to obtain

q((k + 1)x) + q(−(k − 2)x) = 4q(kx) + 4q(−(k − 1)x) + 24q(x)− 6q((k − 1)x)

for all x ∈ V . By Lemma 1. 2 of [17], q is even, so that by induction hypothesis

(2.2) q
(
(k+1)x

)
+(k−2)4q(x) = 4k4q(x)+4(k−1)4q(x)+24q(x)−6(k−1)4q(x)

for all x ∈ V . By (1.2) and (2.2), it follows that

q
(
(k + 1)x

)
= (k + 1)4q(x) (x ∈ V ).

This proves the Lemma. �
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Now we are ready to state the main result of the paper:

Theorem 2.2. If X is a complete non-Archimedean normed space and f :
V → X is an even function such that f(0) = 0 and for which there exists
a function ϕ : V × V → [0,∞) such that for some positive integer k ≥ 2,
limn→∞ |k|4nϕ(k−nx, k−ny) = 0 uniformly on V 2 and

‖Df(x, y)|| ≤ ϕ(x, y) ∀x, y ∈ V,(2.3)

then there exists a unique quartic mapping q : V → X and an integer m such that

||q(x)− f(x)|| ≤ max{|k|4(j−1)ψk(k−jx) : 1 ≤ j ≤ m} ∀x ∈ V,

where

ψ1(x) = 0, ψ2(x) =
1
|2|
ϕ(x, 0), ψ3(x) = max{ϕ(x, x), |2|ϕ(x, 0)},

ψ4(x) = max{ϕ(x, 2x), |4|ψ3(x), |6|ψ2(x)}
and for n ≥ 4,

ψn+1(x) = max{ϕ(x, (n− 1)x), |4|ψn(x), |6|ψn−1(x), |4|ψn−2(x), ψn−3(x)}

Proof. Put y = 0 in (2.3) to obtain

(2.4) ||2f(2x)− 25f(x)|| ≤ ϕ(x, 0) ∀x ∈ V.

This means that

(2.5) ||f(2x)− 24f(x)|| ≤ 1
|2|
ϕ(x, 0) = ψ2(x) ∀x ∈ V.

By replacing y by x in (2.3), we see that

(2.6) ||f(3x) + f(x)− 4f(2x)− 24f(x) + 6f(x)|| ≤ ϕ(x, x) ∀x ∈ V.

It follows from (2.5) and (2.6) that

||f(3x)− 34f(x)|| ≤ max{||f(3x)− 4f(2x)− 17f(x)||, ||4(f(2x)− 24f(x))||}
≤ max{ϕ(x, x), |2|ϕ(x, 0)} = ψ3(x) ∀x ∈ V.(2.7)

Replacing y by 2x in (2.3), we have

(2.8) ||f(4x)− 4f(3x)− 4f(−x)− 24f(x) + 6f(2x)|| ≤ ϕ(x, 2x) (x ∈ V ).

By (2.5) and (2.7) for each x ∈ V , we obtain

||f(4x)− 44f(x)|| ≤ max
{
||f(4x)− 4f(3x)− 4f(−x)− 24f(x) + 6f(2x)||,

|4|||f(3x)− 34f(x)||, |6|||f(2x)− 24f(x)||
}

(2.9)

≤ max{ϕ(x, 2x), |4|ψ3(x), |6|ψ2(x)} = ψ4(x).
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In general for n ≥ 4, put y = (n− 1)x in (2.3), then for all x ∈ V ,

||f((n+ 1)x)− 4f(nx) + 6f((n− 1)x)− 4f((n− 2)x) + f((n− 3)x)− 24f(x)||
≤ ϕ(x, (n− 1)x).

Therefore for n ≥ 4 and each x ∈ V ,

||f((n+ 1)x)− (n+ 1)4f(x)|| ≤ max
{
ϕ(x, (n− 1)x), |4|ψn(x), |6|ψn−1(x),

|4|ψn−2(x), ψn−3(x)
}

= ψn+1(x).

In particular,

(2.10) ||f(kx)− k4f(x)|| ≤ ψk(x) ∀x ∈ V

and limn→∞ |k|4nψk(k−nx) = 0 uniformly on V . By replacing x with k−nx and
multiplying both sides of the inequality in |k4(n−1)|, we see that

(2.11) ||k4(n−1)f(k−(n−1)x)− k4nf(k−nx)|| ≤ |k4(n−1)|ψk(k−nx) ∀x ∈ V.

Since the right side of the above inequality tends to zero as n→∞, {k4nf(k−nx)}
is a Cauchy sequence in non-Archimedean complete space X, so it converges to
some function

q(x) = lim
n→∞

k4nf(k−nx).

For each x, y ∈ V , we have

||Dq(x, y)|| ≤ max
{
||q(u)− k4nf(k−nu)||, ||k4nDf(k−nx, k−ny)|| :

u ∈ {2x+ y, 2x− y, x+ y, x− y, x, y}
}

≤ max
{
||q(u)− k4nf(k−nu)||, |k4n|ϕ(k−nx, k−ny) :

u ∈ {2x+ y, 2x− y, x+ y, x− y, x, y}
}
.(2.12)

The inequality (2.12) shows that q is quartic, since the right hand side of (2.12)
tends to zero as n tends to ∞. By (2.11), we have

||k4mf(k−mx)− f(x)|| = ||
m∑

j=1

k4jf(k−jx)− k4(j−1)f(k−(j−1)x)||

≤ max{||k4jf(k−jx)− k4(j−1)f(k−(j−1)x)|| : 1 ≤ j ≤ m}
≤ max{|k|4(j−1)ψk(k−jx) : 1 ≤ j ≤ m} ∀m.

Since {|k|4(j−1)ψk(k−jx)} on V uniformly converges to zero, there is some m such
that for each x ∈ V and n ≥ m,

|k|4(n−1)ψk(k−nx) ≤ max{|k|4(j−1)ψk(k−jx); 1 ≤ j ≤ m}.
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It follows that for each n ≥ 1,

||k4nf(k−nx)− f(x)|| ≤ max{|k|4(j−1)ψk(k−jx); 1 ≤ j ≤ m}.

By taking limit of the left hand side of the above inequality as n tends to ∞, we
see that

||q(x)− f(x)|| ≤ max{|k|4(j−1)ψk(k−jx); 1 ≤ j ≤ m}.

Let q′ : V → X be a quartic mapping such that

||q′(x)− f(x)|| ≤ max{|k|4(j−1)ψk(k−jx); 1 ≤ j ≤ m}.

Then for each x ∈ V , by Lemma 2.1, we have

||q′(x)− q(x)|| = ||k4nq′(k−nx)− k4nq(k−nx)||
≤ max{||k4nq′(k−nx)− k4nf(k−nx)||, ||k4nf(k−nx)− k4nq(k−nx)||}
≤ max{|k|4(n+j−1)ψk(k−(j+n)x); 1 ≤ j ≤ m}.

As n tends to infinity, the right hand side of the above inequality tends to zero and
the uniqueness assertion follows. �

3. Applications

The following result is due to J. M. Rassias [17]:

Theorem 3.1. Let X be a normed linear space and let Y be a real complete normed
linear space. Assume that there exists a constant c > 0 such that

||Df(x, y)|| ≤ c ∀x, y ∈ X.

Then q(x) = limn→∞ 2−4nf(2nx) exists and defines a quartic mapping from X to
Y such that

||f(x)− q(x)|| ≤ 17c
180

for all x ∈ X.

The following example shows that this result is not true in non-Archimedean
normed spaces:

Example 3.2. Let p > 2 be a prime number and f : Qp → Qp be defined by
f(x) = 2 for all x ∈ Qp. Since |2| = 1,

|Df(x, y)| = 1

for all x, y ∈ Qp. However,

|2−4nf(2nx)− 2−4mf(2mx)| = 1 ∀x, y ∈ Qp.
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Hence {2−4nf(2nx)} is not a Cauchy sequence.

However, we have the following version of Rassias’s result for non-Archimedean
normed spaces.

Corollary 3.3. Let p > 2 be a prime number and K = Qp. If f : V → X satisfies

||Df(x, y)|| < ε (x, y ∈ V ).

for some ε > 0, then there is a unique quartic mapping q : V → X such that

(3.1) ||f(x) + f(−x)− 2f(0)− 2 q(x)|| < ε (x ∈ V ).

In particular if f is even then

(3.2) ||f(x)− f(0)− q(x)|| < ε (x ∈ V ).

Proof. Let g(x) =
(
f(x)+f(−x)

)
/2−f(0), then g is an even function with g(0) = 0.

Since |2| = 1, for each x ∈ V we have

||Dg(x, y)|| ≤ max{||Df(x, y)−Df(0, 0)||, ||Df(−x,−y)−Df(0, 0)||}
≤ max{||Df(x, y)||, ||Df(−x,−y)||, ||Df(0, 0)||} < ε.

Applying Theorem 2.2 for g, ϕ(x, y) = ε and k = p, we can find a unique quartic
mapping q : V → X which satisfies (3.1). If f is even, since |2| = 1,

||f(x)−f(0)−q(x)|| = |2|.||f(x)−f(0)−q(x)|| = ||f(x)+f(−x)−2f(0)−2 q(x)|| < ε.

�

Remark 3.4. Thanks to the proof of Theorem 2.2, the condition

“limn→∞ |k|4nϕ(k−nx, k−ny) = 0 uniformly on V 2”

of the theorem can be replaced by the following:

(a) limn→∞ |k|4nϕ(k−nx, k−ny) = 0 pointwise on V 2 and

(b) there is some integer m such that

ϕ(k−nx, k−ny) ≤ max{ϕ(k−jx, k−jy) : 1 ≤ j ≤ m} (x, y ∈ V, n ≥ m).

Corollary 3.5. Let f : V → X and ϕ : V 2 → [0,∞) satisfy the following condi-
tions:

(i) For some r < 4, ||Df(x, y)|| ≤ ||x||r + ||y||r for each x, y ∈ V .

(ii) There is some integer k ∈ K such that |k| < 1.
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Then there is a unique quartic mapping q : V → X such that

||f(x)− q(x)|| ≤ α|k|−r||x||r (x ∈ V )

for some 1 ≤ α ≤ 2.

Proof. The argument used in Theorem 2.2 for ϕ(x, y) = ||x||r + ||y||r shows that
there is some 1 ≤ α ≤ 2 such that ψk(x) = α||x||r. Since r < 4,

lim
n→∞

|k|4(n−1)ψk(k−nx) = lim
n→∞

α|k|n(4−r)−4||x||r = 0 (x ∈ V )

and

|k|4(n−1)ψk(k−nx) ≤ max{|k|n(j−1)ψk(k−jx) : j ≥ 1} = α|k|−r||x||r (x ∈ V, n ≥ 1).

Thanks to the proof of Theorem 2.2, we can find a unique quartic mapping q : V →
X such that

||f(x)− q(x)|| ≤ α|k|−r||x||r (x ∈ V ).

�
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