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ABSTRACT—We propose a novel soft computing (SC) based approach to design fault 
detection and isolation (FDI) systems for industrial plants, in particular a highly nonlinear CNC 
X-axis drive system's component fault detection. The aim of this paper is twofold. One is to 
present a general description of various concepts such as the novel fuzzy-neuro architecture 
that uses fuzzy clustering to build a nominal model, fuzzy decision-making subsystems, a 
central processing unit for estimation of fault location, and finally RBF neural networks to 
estimate fault size. The other aim is to apply proposed method to diagnosis of component faults 
of a CNC X-axis drive system amid significant noise levels. Simulation results demonstrate the 
significance of the proposed approach. 
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1.  INTRODUCTION 
Fault Detection and Isolation (FDI) is an essential part in intelligent control of industrial 

plants due to an increasing demand for higher performance as well as higher safety and reliability. 
The early detection of faults can help avoid system shutdown, breakdown and even catastrophes 
involving human fatalities and material damage. Different fault detection and isolation techniques 
began by various researchers in the early 1970's, and various FDI approaches based on analytical 
redundancy have been reported since then [1]. These different techniques can be categorized to 
various general approaches such as the parity space approach [2,3], the parameter estimation 
approach [4,5,6], the state estimation approach [1,4,5] and the fault detection filter approach [7]. 
Most of the existing model-based schemes use quantitative models to estimate the states, system 
parameters or outputs of the system in order to generate necessary error signals [8]. A major 
problem associated with such approaches is that, in practice, it is almost impossible to obtain a 
model that exactly matches the process behaviour [9]. This is because these techniques are mostly 
limited to linear systems, and hence do not apply well to nonlinear systems. Consequently, there is 
an increasing demand for reliable methods of fault detection and diagnosis for non-linear systems, 
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particularly for systems with certain unknown non-linear characteristics [10,11]. To address the 
above nonlinearity problem, the investigation of FDI schemes has, in recent decade, entered into a 
new era by advances of artificial intelligent concepts such as fuzzy logic (FL), artificial neural 
networks (ANN) and genetic algorithms (GA). For example, considering the success of fuzzy 
logic-based real-time control schemes in recent years, it is reasonable to investigate new FDI 
schemes from the FL perspective. The main and unique advantage of FL systems is to treat system 
behavior using a set of if-then relations using both qualitative and quantitative information, i.e. 
both knowledge and experience of experts and measured data respectively [12]. Using this 
property, the rich information of experts (engineers and operators) about system conditions could 
be incorporated to design the diagnosis systems in the form of a knowledge-based FDI system 
[13]. The advantages of FDI systems based on FL are considered in [14,15,16]. For instance, 
fuzzy decision-making systems [17] and fuzzy thresholds [18,19] were used in residual evaluation 
and also fuzzy rules to either assist or replace the use of a model for diagnosis [20]. Also, different 
applications have shown the ability of ANNs to design suitable FDI systems in connection with 
both predictors of dynamic nonlinear models as well as pattern classifiers [12,21,22]. Others used 
various soft computing concepts, i.e. hybrid combinations of FL, ANN and GA, such as 
supervised and reinforcement training of ANN by GA or FL for reaching a higher quality of fault 
identification [11,23, 24]. Smarter and more capable FDI structures can be expected from 
combining the learning capability of ANN, the transparency and interpretability of fuzzy systems, 
as well as the optimizing capability of GA [22,25,26,27]. The above mentioned approaches 
generally either attend to the problem of residual generation or residual evaluation, as will be 
explained in more details in Section 2. Figure 1 describes the appropriate paradigm of intelligence 
for each of these soft computing views of FDI.  

 

Figure 1. Shows a general classification of different FDI approaches. 

We propose to attend to both problems of residual generation and evaluation using a novel 
soft computing based architecture. In particular, a novel fuzzy-neural FDI architecture is proposed 
that uses fuzzy clustering concept to build a nominal model, fuzzy decision-making subsystems 
and a central processing unit for estimation of fault location, and finally RBF neural networks to 
estimate fault size. The proposed method is then applied to diagnosis of component faults of a 
CNC X-axis drive system. 
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2. THE PROPOSED FDI APPROACH 
There are basically two viewpoints in design of model-based FDI techniques. One is to 

generate significant residuals and symptoms that contain rich and satisfactory information about 
faults as much as possible. The residual evaluation becomes relatively easy if residuals are well 
designed. The other is to design powerful diagnosis systems using sophisticated techniques, which 
reflect fault specification and adopt a reliable, safe and optimal decision accordingly, even if the 
residuals are not well-designed. Normally, the FDI systems based on analytical models, i.e. parity 
space, state/parameter estimation method, and so on, concentrate on addressing the first 
viewpoint, and intelligent decision-making systems based on FL, ANNs and GAs address the 
second viewpoint. In this paper, we demonstrate that a combination of the above two viewpoints 
can have potentially significant improvement to FDI systems. Namely, in the proposed soft 
computing based FDI system, because of the successful clustering-based modelling, the residuals 
regarding specific faults have uniquely recognizable patterns. Consequently the residuals are well-
designed, and a robust diagnosis system for residual evaluation can been designed. Figure 2 shows 
a schematic of the proposed FDI approach.  

 

Figure 2. Schematic of proposed FDI structure 

The structure is composed of six blocks, with the first block representing the actual system. 
The second block represents a nominal fault free process model using fuzzy clustering. Residuals 
are the difference between actual and fault-free signals of system. The third block represents the 
symptoms generation routine; several specifications of residuals are extracted here. The fourth 
block represents several primary fuzzy fault location estimators each with expertise only on a 
certain type of fault. The outcomes of these “local experts” are then processed by a central 
moderator; and finally, the last block represents the fault size estimation using RBF neural 
networks. It is important to note that in order to decide which type of AI-based or conventional 
models have the sufficient approximation properties to use in this research, a number of different 
soft computing modelling techniques such as in ANNs and FL and conventional modelling 
techniques such as ARMAX and ARX were considered and tested [28]. There, it was reported 
that the fuzzy clustering and RBF networks gave the best results in terms of accuracy of 
prediction and success in learning, i.e. less computational cost while maintaining higher accuracy 
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[29,30]. In the following section, a general perspective on design of the novel FDI structure is 
explained.  

2.1 Fuzzy Clustering for Design of Nominal Plant Model  
The heuristic and nonlinear nature of fuzzy rules and the relationship between fuzzy sets of 

different shapes are the basis of fuzzy logic's powerful capability for modelling a system whose 
complexity renders other more traditional approaches difficult to handle, such as conventional 
expert-based, mathematical, and/or statistical approaches. In general, fuzzy clustering concept 
consists of two steps. The first step is the fuzzy partitioning of the input pattern space into fuzzy 
subspaces and second step deals with the determination of the rules and membership functions for 
each subspace. The performance of this model depends on the choice of the fuzzy partitions. The 
suggested method does not necessarily require the physical knowledge of the process under 
observation since the input-output links are obtained by means of an identification scheme which 
uses a data driven fuzzy modelling scheme. Physical knowledge of the process is used elsewhere 
in design of fuzzy decision-making subsystems for estimating fault locations, see subsection 2.3. 
As will be shown, the residuals generated by the fuzzy clustering method are well-behaved. This 
in turn will simplify both detection and isolation of faults in following stages.  

2.2 Residual and Symptom Generation 
Residuals are fault indicators, based on deviations between the actual and fault-free (in 

absence of any fault) signals of system under consideration such as system outputs, state variables, 
system parameters and/or any of their combination. A useful residual signal is one that exhibits 
robustness against system uncertainties as well as sensitivity against known faults, two seemingly 
competing properties. It is very important to note that an adequate and powerful design of the 
residual generator allows fault isolatability, and consequently classification of the residuals into a 
specific fault-case. It will be evident that the fuzzy clustering-based nominal model can be 
successful in satisfying these objectives if the fuzzy fault free model is as accurate as possible. 
Symptom is a change of an observable quantity in a residual signal. For detection and diagnosis of 
a fault in a plant under consideration, several distinguished quantities are extracted from any 
residual as symptom indexes. These quantities are as follows: Maximum, Minimum, Steady state 
value, number of peaks and start point of any residual.  

2.3 Local Fuzzy Experts for Primary Estimation of Fault Location 
During fault isolation process, several fuzzy decision making local experts (LE) are used to 

examine the symptoms. Every one of these local experts provides advice for a specific fault type. 
A moderator then extracts features from these advice signals, and classifies them appropriately in 
order to isolate faults reliably. When knowledge about a certain fault type is interpreted as local, a 
system designer can incorporate his own expertise to adapt/optimize it separately from other 
expertise about other fault types of the system. In this fashion, if there is any problem with the 
FDI scheme, such as stability, in a certain situation, the design can simply be adapted or optimized 
for the same situation without any ill-matched effect to others. In comparison, in traditional 
control techniques, the most parameters and factors of system have a global effect in system 
performance. Thus adaptation and optimization of a situation could have had undesirable effect 
upon other situations. In these cases, optimization problem is a very difficult and interwoven 
process. Using results from previous processing stages, i.e. residual and symptoms generation 
blocks, local fuzzy expert systems are designed for primary localization of faults, based on fault 
tree concept. Each one of the several local experts classifies the patterns of symptoms to perform a 
primary estimation of the occurrence of a particular fault fi condition.  Finally, using outputs of 



A Novel Soft Computing Approach to Component Fault Detection and Isolation of CNC X-Axis Drive System 181 

these LE subsystems, a fuzzy moderator performs a final yes/no decision on a given fault and 
indicates its possible state.  The outputs of LE subsystems are fault occurrence indexes that have 
elements with values between 0.5 and 1, with 0.5 meaning neutral state. As soon as one of the 
elements exceeds 0.5, fault occurrence is indicated. Here, the local expert LE design procedure is 
described. Step 1 is gathering data that would help explain the relation between significant 
quantifiable properties of residuals' symptoms and process conditions. When there is an accurate 
plant model, accurate and nonlinear fault occurrence conditions can be simulated by disturbing the 
model parameters. Then, the relation between these disturbances (simulated fault occurrences) and 
residual symptoms need to be found. In addition to using an accurate plant model, it is also 
possible to take advantage of experts and plant information bank based on numerical data and 
expert knowledge. Such simultaneous utilization of plant model, expert's knowledge and plant 
information bank can enhance the safety and validity of designer's decision. Step 2 is formulating 
the above-achieved relations with fuzzy if-then rules. A separate LE subsystem has been used to 
diagnose every known fault. It should be mentioned that these local decisions will be considered 
and analyzed by a central fuzzy moderator. Step 3 is to indicate fuzzy variables with suitable 
membership function limits. The membership function limits determine the threshold of fault 
detection, so they are carefully chosen to provide robustness to system uncertainties and yet high 
sensitivity to the fault occurrence. Step 4 is to write the fuzzy rules based on above steps. The 
performance of the LE subsystems is important for estimating the type of the fault with high 
certainty by the fuzzy moderator. 

2.4 Fuzzy Moderator for Declaration of fault Occurrence Situation 
A fuzzy moderator decides final yes/no decision on a given fault and indicates its possible 

location using output of the LE subsystems, numbers between 0.5 (no faulty) and 1 as fault 
occurrence indexes. The objective of this stage is to discriminate between a healthy system and a 
faulty system and, if faulty, whether a trained faults or novel faults is occurring as explicit as 
possible. Also, if it is a trained fault, it decides which fault regarding to output sensors and system 
components are occurring, but not the size of the fault. 

2.5 Fault Size Estimation Unit 
In fault size estimation unit, a separate neural estimator has been designed for each fault 

occurrence condition. These estimator networks have been trained by LE subsystems' output as 
well as output of the fuzzy moderator. 

The required data for training is derived from simulating fault occurrence conditions in plant 
model or gathering actual data from real plant. Figure 3 shows the hierarchy block diagram of 
above discussion in which m local fuzzy experts and m RBF networks analyze type and size of m 
known faults respectively. 

3. APPLICATION: CNC DRIVE SYSTEM DESCRIPTION 
In this section, a simulation example is used to study performance of the proposed hybrid 

methodology for a CNC X-axis drive subsystem. The axis drive is the positioning device for the 
relative movement between the work piece and the cutting tool. The drive system is usually 
composed of the position controller, servo system and a table or slide mechanism that feeds the 
workpiece towards the cutter [31]. Many of the parameters of CNC X-axis drive system in 
nominal (free-fault) condition are already available from the manufacturing handbook [32] but 
others such as friction coefficients, stiffness and backlash were measured experimentally [31]. 
Ebrahimi and Martin indicated that identification models of position controller and servo amplifier  
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Figure 3. Hierarchy of local expert decision making, fuzzy moderator and RBF networks. 

are accurate enough and their model was validated by comparing the model output with the actual 
output of the system for different sets of realistic inputs [33]. Figure 4 shows a block diagram 
model of X-axis drive system [33]. Twelve parameters are considered here which could typically 
cause known fault conditions within the system, consisting of M, CF, R, B, Kv, Km, J, BR, K2, K1, 
BL, and Kx . Table I shows the nominal parameters of CNC X-axis drive system categorized by 
type. The input to the X-axis drive system is a controlled voltage. Motor current, motor velocity 
and feed rate are three outputs of the X-axis drive system. These three outputs are chosen as fault 
indicators, and residuals are generated by inconsistency between the actual system and the 
nominal (free-fault) model.  

4. DESIGN PROCEDURE 
The proposed FDI mechanism consists of simulating a nominal model and symptom 

generation, a set of fuzzy local experts, a fuzzy moderator, and a set of RBF network for fault size 
estimation.  These stages, implemented in Matlab, will be explained in the following sections.  

 

Figure 4. Block diagram model of X-axis drive system. 
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Table I.  A listing of fault types, their parameters and symbols. 

Fault 
Type 

Values Symbol PARAMETERS PARTS 

10 270 M Mass 
12 126 CF Coulomb friction coefficient 

TABLE 

2 0.33 R Armature resistance 
1 1.16 L Armature inductance 
4 0.53 Kv Voltage constant 
3 0.53 Km Torque constant 

DC 
MOTOR 

5 0.04 J Inertia 
6 0.0024 B Viscous friction coefficient 
7 0.0016 K2 Rotary to linear constant 
8 0.0016 K1 Force to torque constant 

11 0.005 BL Backlash 
9 105 Kx Stiffness 

ROTARY 
PARTS 

 

4.1 Nominal Model 
A model based on fuzzy clustering method is used here to estimate the output signals of the 

nominal process. As reported [28], the resulting fuzzy model of CNC X-axis drive system has 
negligible modelling error. Considering that the outputs of the nominal model are well designed, 
i.e. residuals produce similar patterns for size variations of a given fault and significantly different 
patterns for different faults, it is not necessary to build faulty models bank.  Therefore, an 
appropriate model has been built by fuzzy clustering method when the system is working under 
healthy condition. 

Figures 5, 6 and 7 show the simulated outputs of process under nominal conditions using 
fuzzy clustering as well as actual signals in a fault-free situation. The figures on the left are the 
errors in approximation, on the order of 10-15. 

 
Figure 5. Motor current - actual vs. simulated data (left) and corresponding error (right) 

 
Figure 6. Feed rate - actual vs. simulated data (left) and corresponding error (right) 
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Figure 7. Motor velocity - actual vs. simulated data (left) and corresponding error (right) 

4.2 Residual Signals or Symptoms 
Figures 8-9 show typical generated residual signals as a result of a component failure. In 

these figures Re-I, Re-V and Re-FR describe the residual regarding to 1st, 2nd and 3rd output, i.e. 
motor current, motor velocity and feed rate, respectively.  

As can be seen, residuals regarding to changes of a specific parameter have a unique pattern 
and on the other hand have a different pattern than residuals regarding to other parameter 
changing. From the simulated results, it is evident that the residuals are corrupted with noise and 
hence a powerful fuzzy decision system for diagnosis of faults will be necessary. Symptoms such 
as maximum, minimum, starting point, steady state values and number of peaks are extracted from 
residuals. In this research, we studied 48 situations: four fault sizes (0.5%, 10%, 50%, 90%) for 
each of 12 fault types. Due to the number of case studies, only one situation is illustrated here. 

 

Figure 8. Residual signals of changing of 0.5% and 10% in viscous friction coefficient of 
rotary part (B) 
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Figure 9. Residual signals of changing of 50% and 90% in viscous friction coefficient of 
rotary part (B) 

4.3 Fault Detection and Isolation 
Using results from previous sections, i.e. symptom, and fault tree concept or faulty conditions 

(see subsection 2.3), a suitable decision mechanism has been designed to localize faults based on 
fuzzy logic. The decision mechanism consists of several fuzzy specialists, each trained and 
concerned for only one fault condition, and a fuzzy moderator to decide whether a known fault 
has occurred or not. The fuzzy moderator uses output of these fuzzy specialists to adopt a final 
yes/no decision on a given fault and to indicate its possible cause. As will be shown, a fuzzy 
specialist evaluates the pattern of residuals, or symptoms, and uniquely relates them to a particular 
fault condition [28]. The fuzzy specialist is created first by deciding on appropriate universe of 
discourse for each of fifteen inputs, i.e. maximum value, minimum value, steady state value, start 
point value and number of peaks of three residual signals, as well as its output, i.e. fault location 
index in plant components. Membership functions are assumed normal and of triangular and bell-
shaped functions. Figures 10-11 show the typical membership functions of fuzzy subsets of fifteen 
inputs and one output respectively. The terms of linguistic variable are used to describe the states 
of the fuzzy specialists as follows: Max(r), min(r), ss(r), int(r) and t(r) which indicate “maximum,” 
“minimum,” “steady state,” “start point” and “number of peaks” of signals under consideration 
respectively, and r is any  of the three residual signals. For example maxFR indicate maximum 
value of feed rate residual signal, ssV indicates steady state value of motor velocity residual 
signal, and also membership functions which is labeled as 'fault-x' is for output of fuzzy specialist, 
i.e. fault location index in plant components, in which 'x'  sign deals with system component. Each 
fuzzy specialist in the proposed FDI scheme contains one ‘if-then' rule. Figures 12-13 show the 
LE subsystem outputs (primary fault location) regarding to change in B and K2 respectively. 
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Figure 10. Membership functions for minimum, maximum and steady state values of 
residual signal of viscous friction coefficient of rotary part (B) 

 
Figure 11.  Membership functions for steady state, start point value, and peak residual 
signals of viscous friction coefficient of rotary part (B) and also membership functions 
corresponding to fuzzy decision subsystem output 

4.4 Fault Size Estimation 
There are separate RBF networks for each of the known (trained) faults; their task is to 

estimate the size of their corresponding faults. Thus each fault has its own RBF network, and 
during learning the various simulated sizes of a single fault are fed as teachers. It is important to 
note that in this procedure, size of faults may approach very accurate in simulation but in practical 
terms these are not expected because the aim of condition monitoring is to detect faults at an early 
stage.  
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Figure 12. Fuzzy specialist output corresponding to 3% changing of B 

 

Figure 13. Fuzzy specialist output corresponding to 56% changing of K2 

4.5 Simulation Results 
Several toolboxes of MATLAB are used here such as Simulink, Wavelet, Genetic 

Algorithms, neural networks and fuzzy logic. Figures 14-15 show the FDI system output 
regarding to 3% changing of B and 56% changing of K2respectively. In the Figures, the numbers 
from 1 to 12 correspond to the component faults in L, R, Km, Kv, J, B, K2, K1, Kx, M, BL, CF 
respectively as demonstrated in Table I. The below Figures indicate the final diagnostic system 
outputs (Fuzzy Moderator and RBF network), i.e. fault size and its location are depicted in two 
cases studies. The Figures attempt to draw a comparison between actual and estimated fault types 
and sizes from an operator perspective. Also, a number of incipient and abrupt faults have been 
considered in this research, but due to brevity few of them are presented here. In total, 400 tests 
were carried out; the FDI mechanism was able to always locate the fault locations. 

 

Figure 14. FDI system output corresponding to 3% changing of B 
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Figure 15. FDI system output corresponding to 56% changing of K2 

5. CONCLUSION 
In this paper, a novel intelligent algorithm is presented for fault detection and isolation (FDI) 

of dynamical systems. Twelve incipient and abrupt faults are detected and diagnosed using a set of 
proposed symptoms. Several faults in nonlinear parameters were detected which have more 
significant effect on overall accuracy of plant. Furthermore, RBF networks provide a suitable 
mechanism for estimating fault size. The fuzzy specialists for localization of faults have a flexible 
architecture and therefore its adaptation or development is simplified because adaptation of a 
fuzzy specialist does not influence others greatly. The proposed FDI structure covers the 
challenging problem in all FDI systems, namely it provides high system sensitivity against 
occurrence of known faults as well as robustness with respect to noise and disturbance. To utilize 
the proposed FDI structure, the designer can use either linear, highly nonlinear model of plant or a 
set of input-output signals of plant; namely this system has abilities of FDI systems based on both 
qualitative and quantitative models. The minimal detectable fault values in this application (CNC 
X-axis drive system) are 0.5 percent. Due to system noise, the system was unable to correctly 
classify faults with less than 0.5% error. The results obtained by this approach indicate that 
suitable fusion of computationally intelligent techniques and their uses for residual generation as 
well as residual evaluation is useful for industrial applications such as the CNC drive. 
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