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a b s t r a c t

Propagation of nonlinear waves in dusty plasmas with variable dust charge and two tem-
perature ions is analyzed. The Kadomtsev–Petviashivili (KP) equation is derived by using
the reductive perturbation theory. A Sagdeev potential for this system has been proposed.
This potential is used to study the stability conditions and existence of solitonic solutions.
Also, it is shown that a rarefactive soliton can be propagates in most of the cases. The sol-
iton energy has been calculated and a linear dispersion relation has been obtained using
the standard normal-modes analysis. The effects of variable dust charge on the amplitude,
width and energy of the soliton and its effects on the angular frequency of linear wave are
discussed too. It is shown that the amplitude of solitary waves of KP equation diverges at
critical values of plasma parameters. Solitonic solutions of modified KP equation with finite
amplitude in this situation are derived.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Solitary waves and solitons represent one of the interesting and famous aspects of nonlinear phenomena in spatially
extended systems. They appear as specific types of localized solutions of various nonlinear partial differential equations
and possess several important properties.

Dusty plasmas are ideal medium for creating solitary waves and solitons. Such these environments have been observed in
the earth’s magnetosphere, cometary tail, planetary rings and so on [1–3]. Moreover study of dusty plasmas is very attractive
because of theoretical features and also their applications.

The low frequency oscillations in dusty plasmas have been studied in [4,5]. The effects of dust temperature have been
investigated in [6] and the normal-modes of plasmas because of the existence of heavy dust particles have been modified
in [7]. In most investigations reductive perturbation method has been used for deriving the KdV or modified-KdV equations
in one-dimensional case [8–10] and also for KP equation in higher dimensions [11]. Lin and Duan have investigated dusty
plasmas with two-ions in [12]. They have shown that solitary solutions of the KP, modified KP and also coupled KP equations
can be propagated in these type of plasmas. The effects of nonthermal distributed ions on the behaviour of dust acoustic
solitary waves have been studied by Lin and Duan too [13]. Hot dust plasmas have been investigated by Duan in [14]. He
has also derived the KP equation in a two-ion-temperature plasma containing isothermal ions and warm adiabatic dusty
plasmas [15]. Dusty plasmas containing electrons and ions with space dependent densities have been studied by Zhang
and Xue. They have shown that both shock waves and solitary waves can be propagated in such this medium [16]. In all
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above cases the charge of the dust particles is constant. Modified KdV equation for propagation of nonlinear dust acoustic
waves has been derived in inhomogeneous dusty plasmas consisting of electrons, ions, and charged dust particles [17].
The charging process of dust particles is an important effect which has been investigated in [8,9,18,19]. This phenomenon
was also studied by using semi-inverse method, applied to ion-acoustic plasma waves in [10]. Properties of small amplitude
dust-ion-acoustic (DIA) solitary waves in warm plasmas containing two temperature electrons with external oblique mag-
netic field are studied by Shalaby et.al [20].

In the presented paper, the dusty plasma with variable dust charge and two temperature ions has been considered. One
can obtain the KP equation using the reductive perturbation method (RPM) on two dimensional unmagnetized case of this
system. Balancing between nonlinear and dispersion effects cause to formation of symmetrically solitary waves. The KP
equation has been obtained for dust acoustic waves in hot dusty plasmas and also in dust-ion-acoustic dusty plasmas
[21,22]. In Section 2, the basic set of equations is introduced and in Section 3, the KP equation has been derived. Section
4 contains discussion on solitonic solution and its stability conditions. The energy of the soliton will be calculated in Section
5. The linear dispersion relation and effects of variable dust charge on this relation has been discussed in this section too. In
Section 6 the modified KP equation is derived at the critical values of the plasma parameters. Conclusions are given in Section
7.

2. Basic equations

We consider the propagation of dust acoustic waves in collisionless, unmagnetized dusty plasma consisting of electrons,
two temperature ions and high negatively charged dust grains. Total charge neutrality at equilibrium requires that

n0e þ n0dZ0d ¼ n0il þ n0ih ð1Þ

where n0e, n0d, n0il and n0ihare the equilibrium values of electrons, dust, lower temperature ions and higher temperature ions
number densities respectively. Z0d is the unperturbed number of charges on the dust particles. The following set of normal-
ized two dimensional equations of continuity, motion for the dust and Poisson, describe dynamics of dust acoustic wave

@nd

@t
þ @

@x
ðndudÞ þ

@

@y
ðndmdÞ ¼ 0 ð2Þ

@ud

@t
þ ud

@ud

@x
þ md

@ud

@y
¼ Zd

@/
@x

ð3Þ

@vd

@t
þ ud

@md

@x
þ md

@md

@y
¼ Zd

@/
@y

ð4Þ

@2/
@x2 þ

@2/
@y2 ¼ Zdnd þ ne � nil � nih ð5Þ

where ud and md are velocity components of the dust particles in x and y-directions. nd, / and Zd are dust number density,
electrostatic potential and variable charge number of dust grains, respectively. Note that all of the above variables have been
normalized by n�d. Teff is effective temperature and it is given by:

1
Teff
¼ Z�dn�d

n0e
Te
þ n0il

Til
þ n0ih

Tih

� � ð6Þ

Also dust acoustic speed, Debye length and inverse of dust plasma frequency are defined by Cd ¼
Z0dTeff

md

� �1
2
, kd ¼

Teff

4pZ2
0dn0de2

� �1
2

and x�1
pd ¼

md
4pn0dZ0de2

� �1
2

respectively.

Electrons and ions are assumed to be distributed with Maxwell–Boltzmann distribution functions. So related dimension-
less number densities for electrons (ne), low temperature ions (nil) and high temperature ions (nih) are:

ne ¼
n0e

n0dZd
expðb1s/Þ ð7Þ

nil ¼
n0il

n0dZd
expð�s/Þ ð8Þ

nih ¼
n0ih

n0dZd
expð�bs/Þ ð9Þ

where

b1 ¼
Til

Te
; b2 ¼

Tih

Te
; b ¼ b1

b2
¼ Til

Tih
; s ¼ Teff

Til
; d1 ¼

n0il

n0e
; d2 ¼

n0ih

n0e
ð10Þ

And from (1) it follows

d1 þ d2 � 1 P 0 ð11Þ
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The dust charge variable Qd is obtained from the charge-current balance equation [23]

@

@t
þ ~V :~r

� �
Q d ¼ Ie þ Iil þ Iih ð12Þ

where and Ie, Iil and Iih are the electron and ions (low and high temperature) currents. We further suppose that the streaming
velocities of electrons and ions are much smaller than the thermal velocities. Thus dQd

dt � Ie; Iil; Iih and charge-current balance
Eq. (12) reads Ie + Iil + Iih � 0. The electron and ions currents are [24]

Ie ¼ �epr2 8Te

pme

� �1
2

ne exp
eU
Te

� �
ð13Þ

Iil ¼ epr2 8Til

pmi

� �1
2

nil 1� eU
Til

� �
ð14Þ

Iih ¼ epr2 8Tih

pmi

� �1
2

nih 1� eU
Tih

� �
ð15Þ

Where U denotes the dust grain surface potential relative to the plasma potential / [25].
The normalized dust charge, Zd is obtained from

Zd ¼
w
w0

where w ¼ eU
Teff

and w0 = w (/ = 0). By expanding Zd with respect to / we have [11]

Zd ¼ 1þ c1/þ c2/
2 þ c3/

3 þ � � � ð16Þ

where c1 ¼ 1
w0

dwð/Þ
d/

���
/¼0

and c2 ¼ 1
2w0

d2wð/Þ
d/2

���
/¼0

, c3 ¼ 1
6w0

d3wð/Þ
d/3

���
/¼0

.

3. The derivation of KP equation

According to the general method of reductive perturbation theory, we choose the independent variables as

n ¼ eðx� m�tÞ; s ¼ e3t; g ¼ e2y ð17Þ

where e is a small dimensionless expansion parameter which characterizes the strength of nonlinearity in the system and m0

is the phase velocity of the wave along the x direction. We can expand physical quantities which have been appeared in (2)–
(5) in term of the expansion parameter e as

nd ¼ 1þ e2n1d þ e4n2d þ � � � ð18Þ
ud ¼ e2u1d þ e4u2d þ � � � ð19Þ
md ¼ e3m1d þ e5m2d þ � � � ð20Þ
/ ¼ e2/1 þ e4/2 þ � � � ð21Þ
Zd ¼ 1þ e2Z1d þ e4Z2d ð22Þ

Also with using (10) one can find

s ¼ Teff

Til
¼ d1 þ d2 � 1

d1 þ d2bþ b1
ð23Þ

Substituting (17)–(22) into Eqs. 2,3,5 and collecting terms with same powers ofe, from the coefficients of lowest order we
have:

n1d ¼ �
/1

m2
0

; u1d ¼ �
/1

m0
; m0 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c1

p ð24Þ

@m1d

@n
¼ � 1

m0

@/1

@g
ð25Þ

And for the higher orders of e

� m�
@n2d

@n
þ @n1d

@s
þ @ðu2d þ n1du1dÞ

@n
þ @m1d

@g
¼ 0 ð26Þ

� m�
@u2d

@n
þ @u1d

@s
þ u1d

@u1d

@n
¼ Z1d

@/1

@n
þ @/2

@n
ð27Þ

@2/1

@n2 ¼ Z2d þ Z1dn1d þ n2d þ /2 �
1
2
ðd1 þ d2b

2 � b2
1Þ

s2

ðd1 þ d2 � 1Þ/
2
1 ð28Þ
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The KP equation is derived from the above equations

@

@n
@/1

@s
þ a/1

@/1

@n
þ b

@3/1

@n3

" #
þ c

@2/1

@g2 ¼ 0 ð29Þ

where

a ¼ m3
�

2
ðd1 þ d2b

2 � b2
1Þ
ðd1 þ d2 � 1Þ
ðd1 þ d2bþ b1Þ

2 � 2c2

" #
þ 3

2
c1v0 �

3
2v0

; b ¼ m3
�

2
; c ¼ m�

2
ð30Þ

Eq. (30) with c1 = c2 = 0, reduces to the results of [14] for warm plasmas with one ion. The effects of dust charge variation and
nonthermal ions on dust acoustic solitary wave structure in magnetized dusty plasmas has been studied using the KdV equa-
tion in [19]. Notice that the derived parameter ‘‘a” is different from what has been reported in [11]. Our calculation shows
that what has been appeared in [11] can not be correct.

From (10) one can find that b1,b < 1. Now let us examine sign of ‘‘a” which has been defined in (30). Parameter ‘‘a” reaches
its maximum where the first term becomes maxima and the second term attains its minimum value. The first term is max-
imum whenc2 = 0. Thus for c2 = 0 and c1 – 0 ‘‘a” is maximal. We choose c1 = c2 = 0 and in this case ‘‘a” is

a ¼ 1
2
ðd1 þ d2b

2 � b2
1Þ
ðd1 þ d2 � 1Þ
ðd1 þ d2bþ b1Þ

2 � 3

" #

Obviously ðd1 þ d2b
2 � b2

1Þ is always less than (d1 + d2b + b1), but for term ðd1þd2�1Þ
ðd1þd2bþb1Þ

we have

ðd1 þ d2 � 1Þ
ðd1 þ d2bþ b1Þ

¼ ðd1 þ d2 � 1Þ
ðd1 þ d2 � 1Þ þ 1þ b1 � ð1� bÞd2

It is clear that above term is less than 1 if d2 <
1þb1
1�b and in this case ‘‘a” is always negative and rarefactive solitons always

exist. Also above mentioned term is more than 1 if d2 >
1þb1
1�b and in this case ‘‘a” can get positive or negative values and

in these cases both compressive and rarefactive solitary waves can be propagated. Figs. (4)1–3 show the variation of ‘‘a” with
respect to different values of b, b1, d1 and d2.

In Fig. 1 ‘‘a” is plotted as a function of b andb1 whend1 = 1, d2 = 4 and v0 = 1.
Fig. 2 presents ‘‘a” as a function of b and d2 whend1 = 1.1, b1 = 0.01 andv0 = 1. Fig. 3 demonstrates ‘‘a” respect to b1 and d1

when d2 = 1.1 and b=0.01 withv0 = 1.
We can see that with a fixed value for d1 and d2, ‘‘a” reaches its maximum when b and b1 have their minimum values.

Fig. 4 presents ‘‘a” as a function of d1 and d2, with b = 0.01, b1 = 0.5 and v0 = 1.
All of the figures show that ‘‘a” is negative for most of the acceptable values of the parameters and it is positive only in

small region of parameters. Exact solutions of the KP equation have been derived in [26]. The existence and stability of one-
soliton solution of (29) is discussed in the next section.

4. Discussion

We introduce the variable

v ¼ lnþmg� us ð31Þ

Fig. 1. The parameter ‘‘a” as a function of b and b1 with d1 = 1, d2 = 4 and v0 = 1. Fig. 1b is the contour plot of Fig. 1a.
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Fig. 2. The parameter ‘‘a” as a function of b and d2 with d1 = 1.1, b1 = 0.01 and v0 = 1.

Fig. 3. ‘‘a” as a function of b1 and d1 with d2 = 1.1, b = 0.01 and v0 = 1.

Fig. 4. The parameter ‘‘a” as a function of d1 and d2 when b = 0.01, b1 = 0.5 and v0 = 1.
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where v is the transformed coordinate relative to a frame which moves with the velocity u. ‘‘l” and ‘‘m” are the directional
cosines of the wave vector ‘‘k” along the n and g respectively, in the way that l2 + m2 = 1.

By integrating (29) respect to the variable v and using the vanishing boundary condition for /1 and its derivatives up to
the second-order for jvj?1, we have

d2/1

dv2 ¼
h

l4b
/1 �

a

2l2b
/2

1 ð32Þ

where

h ¼ ul�m2c ð33Þ

Eq. (32) has solitonic solutions and one-soliton solution for this equation is given by

/1 ¼ /� sec h2 v
W

h i
ð34Þ

where /� ¼ 3h
l2a

is the amplitude while W ¼ 2
ffiffiffiffiffi
l4b
h

q
is the width of the soliton.

For investigating the stability conditions of this solution, we use a method based on the energy considerations [27]. Thus
we are going to find the Sagdeev potential for this situation. Eq. (32) can be written as

d2/1

dv2 ¼
h

l4b
/1 �

a

2l2b
/2

1 ¼ �
dVð/1Þ

d/1
ð35Þ

In order to obtain the Sagdeev potential, Eq. (35) is integrated to yield the nonlinear equation of motion as

1
2

d/1

dv

� 	2

þ Vð/1Þ ¼ 0 ð36Þ

where

Vð/1Þ ¼
a

6l2b
/3

1 �
h

2l4b
/2

1 ð37Þ

It is clear that V(/1) = 0 and dVð/1Þ
d/1
¼ 0 at /1 = 0. A stable solitonic solution must satisfy the following conditions [28,29]

(I) d2V
d/2

1

h i
/1¼0

< 0

(II) There must exists a nonzero crossing point /1 = /� that V(/1 = /0) = 0.
(III) There must exists a /1 between /1 = 0 and /1 = /� to make V(/1) < 0.

Thus, from (36) and (37) we have

d2Vð/1Þ
d/1

�����
/1¼0

¼ � h

l4b
< 0 ð38Þ

The parameters, l and b are positive, Therefore h > 0 or

ul�m2c > 0 ð39Þ

It is clear that the width (W) of a stable solitary wave is real.
We found that h > 0 and also for most of the cases the parameter ‘‘a” is negative. By these conditions the term /� ¼ 3h

l2a
is

negative. Therefore the solution is a rarefactive soliton in most of the cases.
Now let us find the stability conditions for the above solution. From the (39) we have

u >
m2

l
c

or

u >
1� l2

l

 !
c ð40Þ

If 1�l2

l > 1 then u > c and when 1�l2

l < 1 we have u < c. Thus the soliton is stable if

u P c when 0 < l 6 0:62
0 < u < c when 0:62 < l < 1



ð41Þ

Fig. 5 shows the soliton amplitude (/�) as a function of velocity ‘‘u” and Fig. 6 presents the soliton width respect to the veloc-
ity ‘‘u”.
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We can see that the amplitude of the soliton (/�) increases when ‘‘u” is increased, while its width decreases with an
increasing velocity ‘‘u”. On the other hand, from the definition of the soliton amplitude and its width, one can find that
the amplitude (width) decreases (increases) with an increasing value for the parameter ‘‘l”. This means that the parameters
‘‘u” and ‘‘l” have important roles in the stability of soliton. Thus a soliton is stable when the effects of these two phenomena
cancel out each other.

Finally for the case m2

l ¼ 1 and u > c, we have

W ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
l3b

u� c

s
; /� ¼

3ðu� cÞ
la

; /1 ¼ /� sec h2 v
W

� �
ð42Þ

And the potential is

Vð/1Þ ¼
a

6l2b
/3

1 �
ðu� cÞ

2l3b
/2

1 ð43Þ

5. Energy of soliton and linear dispersion relation

The soliton energy can be obtained using the following equation [30]

E ¼
Z þ1

�1
u2

1ddv ð44Þ

After the integration, we have [30]

E ¼ 4
3

u2
mW ¼ 24ðu� cÞ2

a2 ð1þ c1Þ
ffiffiffiffiffiffiffiffiffiffiffi

b
u� c

r
ð45Þ

Fig. 5. Soliton amplitude as a function of ‘‘u”. The figure was plotted with b = 0.01, m� = 1 and l = 0.6.

Fig. 6. Soliton width as a function of velocity ‘‘u” with b = 0.01, m� = 1 and l = 0.6.
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Fig. 7 indicates that the energy of soliton increases with an increasing. This figure also shows that, the soliton energy de-
creases when the temperature of cold ion approaches the temperature of warm ion.

The above calculated energy comes from the motion of the dust particles so this is a kinetic energy. We can add the elec-
trostatic potential energy into this quantity. The electrostatic potential energy is

Ep ¼
1
2

Z þ1

�1
� d/1

dv

� �2

dv ð46Þ

where � d/1
dv

� �
is the electrostatic filed. Using (42) we have

Ep ¼
48
5
ðu� cÞ2

l2a2

ffiffiffiffiffiffiffiffiffiffiffi
u� c

bl3

r
ð47Þ

Linear dispersion relation can be obtained as follows. According to the standard normal-mode analysis, by linearization of
dependent variables nd, / and Zd in terms of their equilibrium and perturbed parts [31,32], we have

nd ¼ 1þ n1d; / ¼ /1; ud ¼ u1d; Zd ¼ 1þ Z1d ¼ 1þ c1/1 ð48Þ

We assume that all the perturbed quantities are proportional to ei(kx�xt) where ‘K’ is the wave propagation constant in the
direction of x-axis. Therefore we have @

@t ¼ �ix, @
@x ¼ ik. Substituting (48) into (10)–(12), (14) and (15) and using their linear

terms one obtains linear dispersion relation as

x2 ¼ k2

k2 þ 1þ c1

ð49Þ

Fig. 8 shows the angular frequency (x) as a function of k for c1 = 0 and c1 = 0.2.
Fig. 8 indicates that increasing k (c1) leads to increasing (decreasing) values for thex. For real values of x, all perturbation

variables oscillate harmonically and if any or all of the x’s have positive imaginary parts, then the system is unstable since
those normal-modes will grow in time [32,33].

Fig. 7. Energy of the soliton as a function of c1 for c2 = 0, d1 = 2, d2 = 3, b1 = 0.1, and u=1.1.

Fig. 8. The angular frequency respect to k for c1 = 0 and c1 = 0.2.
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6. Modified KP equation

The strength of the nonlinear term in KP equation depends on the value of the parameter ‘‘a” which is a function of b1,b,
d1,d2, ri, c1 and c2. The dependency of ‘‘a” was studied by plotting this quantity as a function of other parameters. We saw
that the parameter ‘‘a” can be positive or negative, so by taking a specific value for the plasma parameters (which is called
the critical parameters) it is possible that ‘‘a” becomes zero and thus /m increases to infinity. For example with the c1 = c2 = 0
‘a’ becomes zero if

ðd1 þ d2b
2 � b2

1Þ
ðd1 þ d2 � 1Þ
ðd1 þ d2bþ b1Þ

2 ¼ 3 ð50Þ

In this case the stretching coordinate transformation is not valid. But we can save the equations by using a new set of param-
eters as follows

nd ¼ 1þ en1d þ e2n2d þ e3n3d þ � � �
ud ¼ eu1d þ e2u2d þ e3u3d þ � � �
vd ¼ e2v1d þ e3v2d þ e4v3d þ � � �
/ ¼ e/1 þ e2/2 þ e3/3 þ � � �
Zd ¼ 1þ e1c1/1 þ e2ðc1/2 þ c2/1Þ þ e3ðc1/3 þ 2c2/1/2 þ c3/

3
1Þ

ð51Þ

Again by using (51) in the main Eqs. (2)–(5) and collecting terms with the same powers of expanding parameter e we have
(24) and (25) again, for the lowest order. But for higher orders of e we will find

n2d ¼
1

2v2
�

3
v2
�
� c1

� �
/2

1; u2d ¼
1

2v�
ð 1
v2
�
� c1Þ/

2
1 �

/2

v�
; m0 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c1

p
@n1d

@s
� v�

@n3d

@n
þ @

@n
ðn1du2d þ n2du1d þ u3dÞ þ

@v1d

@g
¼ 0 ð52Þ

@u1d

@s
þ @

@n
ðu1du2dÞ � v�

@u3d

@n
¼ @/3

@n
þ Z1

@/2

@n
þ Z2

@/1

@n

@2/1

@n2 ¼ n1Z2 þ n2Z1 þ n3 þ Z3 þ /3 þ
1
6

d1 þ d2 � 1
d1 þ d2bþ b1

� �3

1þ b3
1 þ b3� �

/3
1 þ

d1 þ d2 � 1
d1 þ d2bþ b1

� �2

1þ b2 þ b2
1

� �
ð/1/2Þ

and �v� @v1d
@n ¼

@/1
@g

Finally we have the following equation

@

@n
@/1

@s
þ A/2

1
@/1

@n
þ E

@

@n
ð/1/2Þ þ B

@3/1

@n3

" #
þ C

@2/1

@g2 ¼ 0 ð53Þ

Where A, E, B and C are

A¼ m3
�

4
4
3
c2þ

c2
1

2

� �
ðd1þd2b

2�b2
1Þ
ðd1þd2�1Þ
ðd1þd2bþb1Þ

2�2c2þc3

" #
þ15

4
3
2
c1v0þðd1þd2b

2�b2
1Þ

d1þd2�1
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It is clear that a = E, so for critical parameters ‘‘E” becomes zero and in this situation (53) reduces into the modified KP equation

@

@n
@/1

@s
þ A/2

1
@/1

@n
þ B

@3/1

@n3

" #
þ C

@2/1

@g2 ¼ 0 ð55Þ

This equation has solitonic solutions. One-soliton solution for this equation is [34,35]

/1 ¼ �/m sec h½ðnþ g� usÞ=W� ð56Þ

where u, /m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðu� CÞ=A

p
and W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=ðu� CÞ

p
are velocity, amplitude and width of the solitary wave respectively. The

above results for one-dimensional propagation withc1 = c2 = c3 = 0 can be compared with results of [36]. It is clear that
‘‘A” is always positive.

7. Conclusion

The KP equation was obtained in unmagnetized dusty plasma with variable dust charge and two temperature ions. For
the KP equation (29), parameters ‘‘b” and ‘‘c” are always positive. But parameter ‘‘a” can be positive or negative; however
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it is negative for most of the cases. This means that generally a rarefactive soliton is appeared in the medium. Consequently
amplitude of the solitary waves is smaller as compared to the one-dimensional case [25].

The Sagdeev potential was derived and stability conditions were investigated. One can find that for a stable soliton the
velocity ‘‘u” has some limitations (see (4)). This means that the solitons are stable only if the effects of dust and ions motion
cancel out each other. Analytically, the coefficients of the dispersive terms, ‘‘b” and ‘‘c” depend on the parameter c1. Indeed
dispersion decreases when c1 is increased. The parameter ‘‘a” is coefficient of nonlinear term. It is function of relative den-
sities, relative temperatures, c1 and c2. Therefore, it is possible that the competition between the nonlinear term and disper-
sion terms, lead to the formation of a soliton. The energy of soliton and linear dispersion relation have been derived and
discussed too.

Since the parameter ‘‘a” can be positive or negative it can be zero too. But a solitonic solution can not be established when
‘‘a’ is zero. This means that ‘‘a” has critical values. In this situation we have derived modified KP equation and solitonic solu-
tion of this equation which has finite amplitude.
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