Synthesis and Spectroscopic Study of Some New Phosphoramidates, Crystal Structures of N-Benzoyl-N',N"-bis(azetidinyl)phosphoric Triamide and N-Benzoyl-N',N"-bis(hexamethylenyl)phosphoric Triamide

Khodayar Gholivand*, Zahra Hosseini, Mehrdad Pourayoubi, and Zahra Shariatinia

Tehran/Iran, Department of Chemistry, Tarbiat Modarres University

Received May 9th, 2005.

Abstract. Some new N-carbonyl, phosphoramidates with formula $C_6H_5C(O)N(H)P(O)R_2$ (R = NC_3H_6 (1), NC_6H_{12} (2), $NHCH_2CH=CH_2$ (3), $N(C_3H_7)_2$ (4)) and $CCl_3C(O)N(H)P(O)R'_2$ (R' = NC_3H_6 (5), $NHCH_2CH=CH_2$ (6)) were synthesized and characterized by ¹H, ¹³C, ³¹P NMR and IR spectroscopy and elemental analysis. The structures were determined for compounds 1 and 2. Compound 1 exists as two crystallographically independent molecules in crystal lattice. Both compounds 1 and 2 produced dimeric aggregates via intermolecular -P=O...H-N- hydrogen

Introduction

Research on compounds with RC(O)N(H)P(O) moiety are of interest based on their complexation reactions [1-3] and the inhibition of urease enzyme [4]. In previous studies, we considered the conformational forms of phosphoramidates in solution, solid state and calculation of the stabilization energies [5-8]. Also, we discussed on the disordered forms and on the presence of independent molecules (in crystal lattice) of phosphorus compounds containing five- and sixmembered ring amine groups, pyrrolidinyl, piperidinyl, 4methyl piperidinyl rings, and cyclohexyl-tert-butyl amine [7-10]. The effect of various substituents on the structural parameters [11, 12] and on near-range P-C spin-spin couplings in phosphoramidates and phosphoramidic acid esters were considered [13-15]. Furthermore, we compared two and three bond distances P-C coupling constants in compounds containing acvelic and cyclic amine groups (with five- and six-membered rings) [13]. In this work, we synthesized some new compounds of these series (containing RC(O)N(H)P(O) moiety with four and seven-membered ring amine groups and other aliphatic amines) and discuss on ^{2,3}J(P,C) coupling constants. Besides, we consider the crystal structures of N-benzoyl, N',N"-bis(azetidinyl) phosphoric triamide (containing two crystallographically independent molecules due to the conformational forms of fourmembered ring amine group) and N-benzoyl, N',N"-bis(hexamethylenyl) phosphoric triamide.

bonds, which in compound **2** is a centrosymmetric dimer. In compounds with four-membered ring amine groups, ${}^{3}J(P,C) > {}^{2}J(P,C)$, in agreement with our previous studies about five-membered ring amine groups. Also, ${}^{3}J(P,C)$ values in compounds **1** and **5** are greater than in compounds with five-, six- and seven-membered ring amine groups.

Keywords: Phosphoric triamide; NMR spectroscopy; Crystal structure

Results and Discussion

Syntheses of phosphoramidates **1-6** were performed by the reaction of N-benzoyl [16] and N-trichloroacetyl [17] phosphoramidic dichloride with the corresponding amines.

NMR Study

Phosphorus chemical shifts in compounds **1** - **6** were observed in the range of 4.65 ppm (in **5**) to 14.79 ppm (in **4**). ²J(PNH)_{amide} coupling constant appears in compounds **1**, (5.4 Hz), **2** (3.8 Hz), **3** (6.1 Hz) and **6** (4.8 Hz). This coupling constant did not appear in previously studied compounds with formula $C_6H_5C(O)N(H)P(O)R_2$ (R = five-and six-membered ring amine groups) [13]. Compounds **1** - **6** indicate ³J(PNCH) coupling constant, too.

Compounds 1, 3 and 6 do not show two bond distances P-C coupling constant, whereas compounds 1 and 5 with fourmembered ring amine groups have high value ${}^{3}J(P,C_{aliphatic})$ coupling constants (18.0 Hz) that are greater than in compounds with five-, six- and seven-membered ring amine groups (Table 1). Also, in these compounds ${}^{3}J(P,C_{aliphatic}) >$ 2 J(P,C_{aliphatic}) is in agreement with our previous study about five-membered ring amine groups [13]. In opposite to compounds with four- and five-membered ring amine groups, compounds 2 (seven-membered ring amine) and 4 (acyclic aliphatic amine), show ²J(P,C_{aliphatic})>³J(P,C_{aliphatic}), which is similar to previously reported acyclic aliphatic amine groups. It seems that the ring strain (in four- and five-membered rings) cause high value ³J(P,C_{aliphatic}) coupling constant (see also compounds 7 and 13 in Table 1). Carbon-13 chemical shifts of C=O groups in compounds 5 and 6 (with CCl₃C(O)N(H)P(O) moiety) appear in upfield (162.21 and 162.99 ppm, respectively) relative to the values in compounds 1 - 4 (containing $C_6H_5C(O)N(H)P(O)$ moiety) that

^{*} Dr. Khodayar Gholivand

Department of Chemistry-Tarbiat Modarres University-P. O. Box: 14115-175-Tehran-Iran Tel.: (+98) 21-8011001-Int.: 3443 Fax: (+98) 21-8006544 E-mail: gholi kh@modares.ac.ir

No.	Compound	² J(P,C _{aliphatic})	³ J(P,C _{aliphatic})	$^{3}J(P,C_{aromatic})$
1	$C_6H_5C(O)N(H)P(O)R_2^1$	0.0 (CH ₂)	18.0 (CH ₂)	8.7 (benzamide)
2	$C_6H_5C(O)N(H)P(O)R_2^4$	4.7 (CH ₂)	4.2 (CH ₂)	8.7 (benzamide)
3	$C_6H_5C(O)N(H)P(O)[NHCH_2CH=CH_2]_2$	$0.0 (CH_2)$		8.0 (benzamide)
4	$C_6H_5C(O)N(H)P(O)[N(C_3H_7)_2]_2$	4.7 (CH ₂)	2.5 (CH ₂)	8.7 (benzamide)
5	$CCl_3C(O)N(H)P(O)R_2^{1}$	1.5 (CH ₂)	$18.0 (CH_2)$	
			$9.2 (CCl_3)$	
6	$CCI_3C(O)N(H)P(O)[NHCH_2CH=CH_2]_2$	$0.0 (CH_2)$	$9.6 (CCI_3)$	
^a 7	$C_6H_5C(O)N(H)P(O)R_2^2$	5.5 (CH ₂)	8.6 (CH ₂)	8.7 (benzamide)
^a 8	$C_6H_5C(O)N(H)P(O)[N(C_2H_5)_2]_2$	5.3 (CH ₂)	2.6 (CH ₃)	8.6 (benzamide)
^b 9	$C_6H_5C(O)N(H)P(O)R_2^3$	2.7 (CH ₂)	4.7 (CH ₂)	8.5 (benzamide)
^a 10	$4-NO_2-C_6H_4NHP(O)[N(C_2H_5)_2]_2$	4.5 (CH ₂)	2.0 (CH ₃)	6.7 (C _{ortho})
^a 11	$4-NO_2-C_6H_4NHP(O)R_2^4$	3.9 (CH ₂)	3.9 (CH ₂)	$6.8 (C_{ortho})$
^a 12	$(4-CH_3-C_6H_4O)_2P(O)N(C_2H_5)_2$	4.3 (CH ₂)	1.6 (CH ₃)	6.7 (C _{ortho})
^a 13	$(4-CH_3-C_6H_4O)_2P(O)R^2$	4.8 (CH ₂)	9.6 (CH ₂)	6.5 (C _{ortho})

Table 1 J(P,C) coupling constants in compounds 1-13.

^{a,b} The data of these compounds are given in Refs. [13] and [8], respectively.

are in the range of 167.87-169.62 ppm. This effect is due to the more electronegativity of CCl₃ than the $C_6H_5C(O)$ group that cause the strengthen of C=O bond and shielding of carbon atoms in **5** and **6** relative to compounds **1 - 4**. This phenomenon is confirmed by IR spectra which will discussed in IR section.

IR spectroscopy

The C=O vibrational bands of compounds **1** - **4** (with $C_6H_5C(O)N(H)P(O)$ moiety) appear in the range of 1640-1667 cm⁻¹ and those of compounds **5** and **6** (containing CCl₃C(O)N(H)P(O) moiety) are at 1710 and 1697 cm⁻¹,

Table 2 Crystallographic data for compounds 1 and 2.

	1	2
Empirical formula	$C_{13}H_{18}N_3O_2P$	$C_{19}H_{30}N_3O_2P$
Formula weight	279.27	363.43
Temperature (K)	120(2)	120(2)
Wavelength	0.71073 A	0.71073 A
Crystal system, space group	triclinic, P 1	monoclinic, C2/c
Unit cell dimensions	a = 10.7685(16) A	a = 22.270(8) A
	b = 10.9779(16) Å	$b = 9.274(3) A_{o}$
	c = 13.0476(19) A	c = 20.525(8) A
	$\alpha = 106.356(3)^{\circ}$	
	$\beta = 95.505(3)^{\circ}$	$\beta = 114.531(13)^{\circ}$
° -	$\gamma = 104.420^{\circ}$	
$V(A^3)$	1410.3(4)	3857(2)
Z, Calculated density	4, 1.315 Mg.m ⁻³	8, 1.252 Mg.m ⁻³
Absorption coefficient	0.197 mm^{-1}	0.160 mm^{-1}
F(000)	592	1568
Crystal size	$0.29 \times 0.23 \times 0.21 \text{ mm}^3$	$0.35 \times 0.20 \times 0.20 \text{ mm}^3$
θ range for data collection	1.98 to 29.00°	2.18 to 28.00°
Limiting indices	$-14 \le h \le 14$	$-28 \le h \le 26$
	$-14 \le k \le 14$	$-10 \le k \le 12$
	$-17 \le l \le 17$	$-27 \le 1 \le 27$
Reflections collected / unique	15919 / 7455 [R(int) = 0.0351]	12771 / 4552 [R(int) = 0.0244]
Completeness to theta	99.5 %	97.9 %
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data/restraints/parameters	7455/0/351	4552/0/230
Goodness-of-fit on F ²	1.008	1.072
Final R indices	R1 = 0.0510, wR2 = 0.0942	R1 = 0.0498, wR2 = 0.1204
R indices (all data)	R1 = 0.0820, wR2 = 0.1020	R1 = 0.0620, wR2 = 0.1279
Largest diff. peak and hole	0.850 and $-0.398 \text{ e.\AA}^{-3}$	0.547 and $-0.255 \text{ e.}\text{\AA}^{-3}$

respectively (due to more electronegativity of CCl_3 than C_6H_5).

X-ray crystallography

Single crystals of both compounds 1 and 2 were obtained from a mixture of chloroform-heptane after a slow evaporation at room temperature. The crystal data and the details of X-ray analysis are given in Table 2. Selected bond lengths and angles are listed in Tables 3 and 4. Molecular structures of these compounds are shown in Figures 1 and 2.

Compound 1 exists as two crystallographically independent molecules in crystalline lattice. The difference is described by comparison of corresponding torsion angles in two molecules. Torsion angles N(3)-P(1)-N(2)-C(11) and O(1)-P(1)-N(2)-C(11) are $-173.0(2)^{\circ}$ and $-55.5(2)^{\circ}$ whereas N(3')-P(1')-N(2')-(C11') and O(1')-P(1')-N(2')-C(11') are $-78.5(2)^{\circ}$ and $160.8(2)^{\circ}$, respectively. Both compounds 1 and 2 contain one amidic hydrogen atom and form dimeric aggregates via intermolecular -P=O…H-Nhydrogen bonds, which in compound 2 is a centrosymmetric dimer. The dimeric aggregate in compound 1 is formed between two symmetrically different molecules via two various intermolecular -P=O…H-N- hydrogen bonds. The bond distances between donor and acceptor in compound 1 are 2.817(1) Å and 2.815(1) Å for N3…O1' and N3'…O1 distances, respectively, and in compound 2 is 2.816(3) Å for N1...O1 bond distance. P(1)-N(1), P(1)-N(2), P(1')-N(1') and P(1')-N(2') bond lengths, in compound 1, and P(1)-N(2) and P(1)-N(3) in compound 2, are lower than the P-

			0					
Table 3	Selected	bond	lengths/A	and	angles/°	for	compound	11

P(1)-O(1)	1.484(2)	P(1')-O(1')	1.484(1)
P(1)-N(3)	1.681(2)	P(1')-N(3')	1.682(2)
P(1)-N(2)	1.634(2)	P(1')-N(2')	1.614(2)
P(1)-N(1)	1.624(2)	P(1')-N(1')	1.639(2)
N(1)-C(8)	1.484(3)	N(1')-C(8')	1.488(3)
N(1)-C(10)	1.497(3)	N(1')-C(10')	1.487(3)
C(1)-O(2)	1.215(2)	C(1')-O(2')	1.221(2)
C(1)-N(3)	1.380(3)	C(1')-N(3')	1.370(3)
N(2)-C(11)	1.483(3)	N(2')-C(11')	1.483(3)
N(2)-C(13)	1.483(3)	N(2')-C(13')	1.482(3)
C(1)-C(2)	1.505(3)	C(1')-C(2')	1.498(3)
C(12)-C(13)	1.540(3)	C(12')-C(13')	1.541(3)
O(1)-P(1)-N(1)	109.29(9)	O(1')-P(1')-N(1')	118.66(9)
O(1)-P(1)-N(2)	119.44(9)	O(1')-P(1')-N(2')	111.41(9)
N(1)-P(1)-N(2)	103.49(9)	N(1')-P(1')-N(2')	102.63(9)
O(1)-P(1)-N(3)	107.05(9)	O(1')-P(1')-N(3')	105.99(9)
N(1)-P(1)-N(3)	116.10(9)	N(1')-P(1')-N(3')	103.09(9)
N(2)-P(1)-N(3)	101.79(9)	N(2')-P(1')-N(3')	115.19(9)
C(8)-N(1)-C(10)	91.9(2)	C(8')-N(1')-C(10')	92.1(2)
C(8)-N(1)-P(1)	125.3(2)	C(8')-N(1')-P(1')	124.3(2)
C(10)-N(1)-P(1)	130.7(2)	C(10')-N(1')-P(1')	124.1(4)
O(2)-C(1)-N(3)	123.4(2)	O(2')-C(1')-N(3')	123.0(2)
O(2)-C(1)-C(2)	120.7(2)	O(2')-C(1')-C(2')	120.9(2)
N(3)-C(1)-C(2)	115.9(2)	N(3')-C(1')-C(2')	116.1(2)
C(11)-N(2)-C(13)	91.8(2)	C(11')-N(2')-C(13')	92.2(2)
C(11)-N(2)-P(1)	126.1(1)	C(11')-N(2')-P(1')	133.8(1)
C(13)-N(2)-P(1)	125.3(2)	C(13')-N(2')-P(1')	131.9(1)
C(1)-N(3)-P(1)	127.4(2)	C(1')-N(3')-P(1')	127.3(2)
N(1)-C(8)-C(9)	88.9(2)	N(1')-C(8')-C(9')	89.0(2)
N(1)-C(10)-C(9)	88.1(2)	N(1')-C(10')-C(9')	89.2(2)
N(2)-C(11)-C(12)	89.3(2)	N(2')-C(11')-C(12')	88.0(2)
N(2)-C(13)-C(12)	89.1(2)	N(2')-C(13')-C(12')	88.0(2)

N bonds of C(O)N(H)P(O) moieties, Tables 3 and 4. All of these bonds are shorter than the P-N single bond (1.77 \AA) [18]. The sum of the surrounding angles around N(2) and N(3) atoms in compound 2 are 360.01° and 359.28°, corresponding to the sp² angles. In compound 1, the environment of the nitrogen atoms show some deviations from planarity. The angles P(1)-N(1)-C(10), C(8)-N(1)-P(1) and C(10)-N(1)-C(8) are 130.7(2)°, 125.31(5)° and 91.9(2)° with the average 116.97°. For N(1'), N(2) and N(2') the average are 113.5°, 114.43° and 119.32°, respectively. The P(1)-O(1) and P(1')-O(1') bond lengths in compound 1 (1.484(2) and 1.484(1) Å) and P(1)-O(1) bond length in compound 2 (1.488(1) Å) are slightly longer than the PO double bond length (1.45 Å) [18]. The phosphorus atoms of 1 and 2 are slightly distorted from tetrahedral configuration. The bond angles around P(1) and P(1') in compound 1 and P(1) in compound 2 are in the range of 119.44°-101.79°, 118.66°-102.63° and 113.88°-106.83°, respectively.

Experimental Section

X-ray measurements

X-ray data were collected on a Bruker SMART 1000 CCD single crystal diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). The structures were refined with SHELXL-97 [19] by a full-matrix least-squares procedure on F². The positions of hydrogen atoms were obtained from the difference Fourier map. Routine Lorentz and polarization corrections were applied and an absorption correction was performed for compounds **1** and **2** using the SADABS program [20]. Crystallographic data for the structures in this paper have been deposited with Cambridge Crystallographic Data Center as supplementary publication nos. CCDC 259340 (C₁₃H₁₈N₃O₂P₁) and 259341 (C₁₉H₃₀N₃O₂P₁). Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk).

Spectroscopic measurements

¹H, ¹³C and ³¹P NMR spectra were recorded on a Bruker Avance DRS 500 spectrometer. ¹H and ¹³C chemical shifts were determined relative to internal TMS, ³¹P chemical shifts relative to 85 % H₃PO₄ as external standard. Infrared (IR) spectra were recorded on a Shi-

Table 4 Selected bond lengths/Å and angles/° for compound 2.

P(1)-O(1)	1.488(1)	N(2)-C(8)	1.472(2)
P(1)-N(3)	1.635(2)	N(2)-C(13)	1.473(2)
P(1)-N(2)	1.637(2)	N(3)-C(14)	1.467(2)
P(1)-N(1)	1.692(2)	N(3)-C(19)	1.474(2)
O(2)-C(1)	1.227(2)	C(1)-C(2)	1.511(2)
N(1)-C(1)	1.377(2)	C(18)-C(19)	1.506(3)
O(1)-P(1)-N(3)	111.62(8)	C(14)-N(3)-C(19)	115.7(1)
O(1)-P(1)-N(2)	113.88(8)	C(14)-N(3)-P(1)	125.7(1)
N(3)-P(1)-N(2)	108.34(8)	C(19)-N(3)-P(1)	117.8(1)
O(1)-P(1)-N(1)	107.33(8)	O(2)-C(1)-N(1)	121.9(2)
N(3)-P(1)-N(1)	108.61(8)	O(2)-C(1)-C(2)	120.5(2)
N(2)-P(1)-N(1)	106.83(8)	N(1)-C(1)-C(2)	117.6(2)
C(1)-N(1)-P(1)	126.6(1)	N(2)-C(8)-C(9)	113.5(2)
C(8)-N(2)-C(13)	116.0(2)	N(2)-C(13)-C(12)	114.7(2)
C(8)-N(2)-P(1)	119.1(1)	N(3)-C(14)-C(15)	113.7(2)
C(13)-N(2)-P(1)	124.9(1)	N(3)-C(19)-C(18)	113.7(2)

Figure 1 Molecular structure of $C_6H_5C(O)N(H)P(O)(NC_3H_6)_2$ (containing two independent molecules) showing the atom-labeling scheme and 50 % probability level displacement ellipsoids.

madzu model IR-60 spectrometer. Elemental analysis was performed using a Heraeus CHN-O-RAPID apparatus.

Syntheses

N-Benzoyl-N', N"-bis(azetidinyl) phosphoric triamide (1): Azetidine (0.228 g, 4 mmol) was added to a solution of N-benzoyl

Figure 2 Molecular structure of $C_6H_5C(O)N(H)P(O)(NC_6H_{12})_2$ showing the atom-labeling scheme and 50 % probability level displacement ellipsoids.

phosphoramidic dichloride (0.238 g, 1 mmol) in CCl₄ (40 mL) and stirred at -5 °C. After 6 hours, the precipitate was filtered and washed with H₂O. The product recrystallized from chloroform/n-heptane. Elemental analysis (%) calcd. for C₁₃H₁₈N₃O₂P: C 55.91, H 6.50, N 15.05; found: C 55.87, H 6.49, N 15.03.

¹H NMR (500.13 MHz, CDCl₃, 25 °C, TMS): 2.26 (m, 4 H), 3.91 (m, 4 H), 4.06 (m, 4 H), 7.46 (t, ³J(H,H) = 7.6 Hz, 2 H, Ar-H), 7.55 (t, ³J(H,H) = 7.3 Hz, 1 H, Ar-H), 7.62 (d, ²J(PNH) = 5.4 Hz, 1 H, NH_{amide}), 7.93 (d, ³J(H,H) = 7.6 Hz, 2 H, Ar-H). ¹³C NMR (125.77 MHz, CDCl₃, 25 °C,

Figure 3 A view of the unit cell packing for compound 1.

Figure 4 A view of the unit cell packing for compound 2.

TMS): 17.79 (d, ${}^{3}J(P,C) = 18.0$ Hz, 2 C, CH₂), 48.44 (s, 4 C, CH₂), 127.79 (s), 128.72 (s), 132.53 (s), 133.28 (d, ${}^{3}J(P,C) = 8.7$ Hz, 1 C, C_{ipso}), 168.02 (s, 1 C, C=O). ${}^{31}P$ NMR (202.46 MHz, CDCl₃, 25 °C, H₃PO₄ external): 6.95 (m). IR (KBr): $\tilde{\nu} = 3430$ (m, NH), 3065 (m), 2945 (s), 1667 (s, C=O), 1449 (s), 1266 (s), 1211 (s), 1172 (s), 1144 (m), 1099 (m), 1051 (m), 1025 (m), 953 (m), 864 (m), 837 (m), 709 (s), 629 (m), 552 (w), 491 (w).

N-Benzoyl-N',N"-bis(hexamethylenyl) phosphoric triamide (2): Hexamethyleneimine (0.396 g, 4 mmol) was added to a solution of N-benzoyl phosphoramidic dichloride (0.238 g, 1 mmol) in chloroform (30 mL) and stirred at -5 °C. After 8 hours, the solvent was removed and the residue that formed was stirred in H₂O. Product was filtered and recrystallized from chloroform/n-hexane. Elemental analysis (%) calcd. for C₁₉H₃₀N₃O₂P: C 62.79, H 8.32, N 11.56; found: C 62.75, H 8.31, N 11.58.

¹**H NMR** (500.13 MHz, CDCl₃, 25 °C, TMS): 1.61 (m, 8 H), 1.70 (m, 8 H), 3.22 (m, 8 H), 7.43 (t, ³J(H,H) = 7.6 Hz, 2 H, Ar-H), 7.52 (t, ³J(H,H) = 7.4 Hz, 1 H, Ar-H), 7.73 (d, ²J(PNH) = 3.8 Hz, 1 H, NH_{amide}), 7.90 (d, ³J(H,H) = 7.3 Hz, 2 H, Ar-H). ¹**H**{³P} **NMR** (500.13 MHz, CDCl₃, 25 °C, TMS): 1.61 (m, 8 H), 1.70 (m, 8 H), 3.22 (m, 8 H), 7.43 (t, ³J(H,H) = 7.6 Hz, 2 H, Ar-H), 1 **H**{³P} **NMR** (125.77 MHz, CDCl₃, 25 °C, TMS): 26.91 (s, 4 C, CH₂), 30.24 (d, ³J(P,C) = 4.2 Hz, 4 C, CH₂), 30.24 (d, ³J(P,C) = 4.2 Hz, 4 C, CH₂), 47.86 (d, ²J(P,C) = 4.7 Hz, 4 C, CH₂), 127.73 (s), 128.69 (s), 132.39 (s), 133.70 (d, ³J(P,C) = 8.7 Hz, 1 C, C_{ipso}), 167.87 (s, 1 C, C=O). ³¹P **NMR** (202.46 MHz, CDCl₃, 25 °C, TM₃) (s) (60 (s, C=O), 1447 (s), 1425 (s), 1257 (m), 1218 (m), 1182 (s), 1096 (m), 1047 (s), 991 (w), 957 (w), 931 (m), 887 (w), 852 (w), 820 (m), 696 (s), 548 (w).

N-Benzoyl-N',N"-diallyl phosphoric triamide (3): To a solution of N-benzoyl phosphoramidic dichloride (0.238 g, 1 mmol) in chloroform (35 mL), allylamine (0.228 g, 1 mmol) was added and stirred at -5 °C. After 5 hours, the solvent was removed and the product was filtered, washed with H₂O and recrystallized from chloroform/ n-hexane. C₁₃H₁₈N₃O₂P: C 55.91, H 6.50, N 15.05; found: C 55.94, H 6.49, N 15.04 %.

¹**H** NMR (500.13 MHz, CDCl₃, 25 °C, TMS): 3.51 (m, 2 H, NH), 3.61 (m, 4 H, 2 CH₂), 5.02 (d, ³J(H,H) = 10.4 Hz, 2 H), 5.20 (d, ³J(H,H) = 17.0 Hz, 2 H), 5.81 (m, 2 H), 7.41 (t, ³J(H,H) = 7.6 Hz, 2 H, Ar-H), 7.52 (t, ³J(H,H) = 7.4 Hz, 1 H, Ar-H), 8.07 (d, ³J(H,H) = 7.7 Hz, 2 H, Ar-H), 9.58 (d, ²J(PNH) = 6.1 Hz, 1 H, NH_{amide}). ¹³C NMR (125.77 MHz, CDCl₃, 25 °C, TMS): 43.20 (s, 2 C, CH₂), 115.42 (s), 128.31 (s), 128.50 (s), 132.54 (s), 133.02 (d, ³J(P,C) = 8.0 Hz, 1 C, C_{ipso}), 136.36 (d, ³J(P,C) = 6.4 Hz, 2 C, CH, 169.62 (s, 1 C, C=O). ³¹P NMR (202.46 MHz, CDCl₃, 25 °C, H₃PO₄ external): 10.82 (m). **IR** (KBr): $\tilde{\nu}$ = 3255 (s, NH, 3080 (w), 2850 (w), 1640 (s, C=O), 1448 (s), 1419 (s), 1271 (m), 1201 (s), 1165 (m), 1116 (w), 1092 (m), 1029 (w), 986 (w), 917 (m), 883 (m), 788 (w), 704 (m), 530 (w).

N-Benzoyl, N',N'',N'',N'',N''tetrapropyl, phosphorictriamide (4): To a solution of N-benzoyl phosphoramidic dichloride (0.238 g, 1 mmol) in chloroform (35 mL), dipropylamine (0.404 g, 4 mmol) was added and stirred at -5 °C. After 7 hours, the solvent was removed and the precipitate was washed with H₂O and recrys-

tallized from acetone/chloroform. Elemental analysis (%) calcd. $C_{19}H_{34}N_3O_2P$: C 62.10, H 9.33, N 11.43; found: C 62.07, H 9.32, N 11.44.

¹**H** NMR (500.13 MHz, CDCl₃, 25 °C, TMS): 0.82 (t, ³J(H,H) = 7.3 Hz, 12 H, 4 CH₃), 1.55 (m, 8 H, 4 CH₂), 3.05 (m, 8 H, 4 CH₂), 7.38 (t, 2 H, ³J(H,H) = 7.6 Hz), 7.51 (t, 1 H, ³J(H,H) = 7.3 Hz), 8.02 (d, 2 H, ³J(H,H) = 7.2 Hz), 8.60 (b, 1 H, NH_{amide}). ¹³**C** NMR (125.77 MHz, CDCl₃, 25 °C, TMS): 11.47 (s, 4 CH₃), 21.83 (d, ³J(P,C) = 2.5 Hz, 4 C, CH₂), 47.83 (d, ³J(P,C) = 4.7 Hz, 4 C, CH₂), 128.23 (s), 128.47 (s), 132.10 (s), 134.09 (d, ³J(P,C) = 8.7 Hz, 1 C, C_{ipso}), 168.17 (s, 1 C, C=O). ³¹**P** NMR (202.46 MHz, CDCl₃, 25 °C, H₃PO₄ external): 14.79 (m). **IR** (KBr): \tilde{v} = 3440 (w), 3310 (w), 3055 (m), 2870 (s), 2725 (w), 1657 (s, C=O), 1493 (w), 1446 (s), 1376 (w), 1260 (m), 1187 (s), 1173 (s), 1040 (w), 1007 (m), 865 (m), 799 (m), 705 (m), 526 (w).

N-Trichloroacetyl-N',N"-bis(trimethylenyl) phosphoric triamide (5): To a solution of N-trichloroacetyl phosphoramidic dichloride (0.279 g, 1 mmol) in CCl₄ (30 mL), trimethyleneimine (0.228 g, 4 mmol) was added dropwise and stirred at -5 °C. After 4 hours, the solvent was removed and the precipitate was washed with H₂O and recrystallized from acetonitrile/chloroform. Elemental analysis (%) calcd. for C₈H₁₃Cl₃N₃O₂P: C 29.98, H 1.27, N 13.11; found: C 29.96, H 1.26, N 13.12.

¹H NMR (500.13 MHz, CDCl₃, 25 °C, TMS): 2.33 (m, 4 H), 3.93 (m, 4 H), 4.06 (m, 4 H), 7.46 (b, 1 H, NH_{amide}). ¹H{³¹P} NMR (500.13 MHz, CDCl₃, 25 °C, TMS): 2.33 (m, 4 H), 3.93 (dd, ²J(H,H) = 15.2 Hz, ³J(H,H) = 7.6 Hz, 4 H), 4.06 (dd, ²J(H,H) = 15.2 Hz, ³J(H,H) = 7.5 Hz, 4 H), 7.46 (b, 1 H, NH_{amide}). ¹³C NMR (125.77 MHz, CDCl₃, 25 °C, TMS): 17.86 (d, ³J(P,C) = 18.0 Hz, 2 C, CH₂), 48.59 (d, ²J(P,C) = 1.5 Hz, 4 C, CH₂), 91.94 (d, ³J(P,C) = 9.2 Hz, CCl₃), 162.21 (s, 1 C, C=O). ³¹P NMR (202.46 MHz, CDCl₃, 25 °C, H₃PO₄ external): 4.65 (m). **IR** (KBr): $\tilde{\nu}$ = 3415 (w, NH), 3090 (m), 2960 (m), 1710 (s, C=O), 1424 (s), 1231 (s), 1190 (s), 1140 (m), 1104 (m), 1030 (m), 953 (m), 864 (m), 820 (m), 797 (m), 667 (s), 537 (w), 476 (m).

N-Trichloroacetyl-N',N"-diallyl phosphoric triamide (6): allylamine (0.228 g, 4 mmol) was added to a solution of N-trichloroacetyl phosphoramidic dichloride (0.279 g, 1 mmol) in chloroform (35 mL) and stirred at -5 °C. After 6 hours, the solvent was removed and the precipitate was washed with H₂O and recrystallized from acetonitrile/n-heptane. Elemental analysis (%) calcd. C₁₃H₁₈N₃O₂P: C 55.91, H 6.50, N 15.05; found: C 55.92, H 6.49, N 15.03.

¹**H** NMR (500.13 MHz, CDCl₃, 25 °C, TMS): 3.62 (b, 2 H, NH), 3.61 (dd, ${}^{3}J(P,H) = 5.0$ Hz, ${}^{3}J(H,H) = 11.4$ Hz, 2 H, CH₂), 5.08 (d, 9.58 (d, ${}^{3}J(H,H) = 10.3$ Hz, 2 H, CH), 5.22 (d, ${}^{3}J(H,H) = 17.1$ Hz, 2 H, CH), 5.81 (m, 2 H, CH), 8.91 (d, ${}^{2}J(PNH) = 4.8$ Hz, 1 H, NH_{amide}). ¹³C NMR (125.77 MHz, CDCl₃, 25 °C, TMS): 43.12 (s, 2 C, CH₂), 92.53 (d, ${}^{3}J(P,C) = 9.6$ Hz, CCl₃), 115.96 (s), 135.83 (d, ${}^{3}J(P,C) = 5.8$ Hz, 2 C, CH), 162.99 (s, 1 C, C=O). ³¹P NMR (202.46 MHz, CDCl₃, 25 °C, H₃PO₄ external): 8.28 (m). **IR** (KBr): $\tilde{\nu} = 3385$ (m, NH), 3265 (w), 3020 (m), 2910 (w), 2655 (w), 1697 (s, C=O), 1418 (s), 1224 (s), 1199 (s), 1137 (w), 1089 (m), 913 (m), 877 (m), 827 (m), 670 (m), 561 (w).

References

- V. M. Amirkhanov, V. A. Ovchinnikov, A. V. Turov, V. V. Skopenko, *Russian J. Coord. Chem.* 1997, 23 (2), 126.
- [2] K. E. Gubina, V. A. Ovchynnikov, V. M. Amirkhanov, H. Fischer, R. Stumpf, V. V. Skopenko, Z. Naturforsch. 2000, 55b, 576.
- [3] V. A. Trush, K. V. Domasevitch, V. M. Amirkhanov, J. Sieler, Z. Naturforsch. 1999, 54b, 451.
- [4] A. V. Bayless, O. S. Millner, U.S. Pt., 4.182.881, 1980.
- [5] K. Gholivand, M. Pourayoubi, Z. Anorg. Allg. Chem. 2004, 630, 1330.
- [6] K. Gholivand, Z. Shariatinia, M. Pourayoubi, Z. Naturforsch. 2005, 60b, 67.

zaac.wiley-vch.de Z. Anorg. Allg. Chem. 2005, 631, 3074–3079

- [7] K. Gholivand, C. O. Vedova, A. Anaraki Firooz, A. Madani Alizadegan, M. C. Michelini, R. Pis Diez, J. Mol. Struct. 2005, 750, 64.
- [8] K. Gholivand, M. Pourayoubi, H. Mostaanzadeh, *Anal. Sci.* 2004, 20, x-51.
- [9] K. Gholivand, M. D. Alavi, M. Pourayoubi, Z. Kristallogr. NCS 2004, 219, 124.
- [10] K. Gholivand, M. Pourayoubi, Z. Kristallogr. NCS 2004, 219, 314.
- [11] K. Gholivand, M. Pourayoubi, Z. Shariatinia, H. Mostaanzadeh, *Polyhedron* 2005, 24, 655.
- [12] K. E. Gubina, V. A. Ovchynnikov, V. M. Amirkhanov, V. V. Skopenko, O. V. Shishkin, Z. Naturforsch. 2000, 55b, 495.
- [13] K. Gholivand, Z. Shariatinia, M. Pourayoubi, Z. Anorg. Allg. Chem. 2005, 631, 961.

- [14] F. Lopez-Ortiz, E. Pelaez-Arango, F. Palacios, J. Barluenga, J. Org. Chem. 1994, 59, 1984.
- [15] J. M. A. Al-Rawi, G. Q. Behnam, N. Ayed, R. Kraemer, *Magn. Reson. Chem.* 1985, 23, 728.
- [16] A. V. Kirsanov, R. Makitra, J. Gen. Chem. 1956, 26, 907.
- [17] A. V. Kirsanov, G. I. Derkach, Zh. Obsh. Khim. 1956, 26, 2082.
- [18] D. E. C. Corbridge, Phosphorus, an outline of its Chemistry, Biochemistry and Technology, Fifth Edition, Elsevier, The Netherlands, 1995.
- [19] G. M. Sheldrick, SHELEX v. 5.10, Structure Determination Software Suit, Bruker AXS, Madison, WI, USA, 1998.
- [20] G. M. Sheldrick, in: SADABS v. 2.01, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, WI, USA, 1998.