Synthesis and Spectroscopic Study of Some New Phosphoramidates, Crystal Structures of \mathbf{N}-Benzoyl- $\mathbf{N}^{\prime}, \mathbf{N}^{\prime \prime}$-bis(azetidinyl)phosphoric Triamide and \mathbf{N}-Benzoyl- $\mathbf{N}^{\prime}, \mathbf{N}^{\prime \prime}$-bis(hexamethylenyl)phosphoric Triamide

Khodayar Gholivand*, Zahra Hosseini, Mehrdad Pourayoubi, and Zahra Shariatinia
Tehran/Iran, Department of Chemistry, Tarbiat Modarres University

Received May 9th, 2005.

Abstract

Some new N-carbonyl, phosphoramidates with formula $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O}) \mathrm{R}_{2} \quad\left(\mathrm{R}=\mathrm{NC}_{3} \mathrm{H}_{6} \quad\right.$ (1), $\quad \mathrm{NC}_{6} \mathrm{H}_{12} \quad$ (2), $\left.\mathrm{NHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}(3), \mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2}(4)\right)$ and $\mathrm{CCl}_{3} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O}) \mathrm{R}^{\prime}{ }_{2}$ $\left(\mathrm{R}^{\prime}=\mathrm{NC}_{3} \mathrm{H}_{6}(5), \mathrm{NHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$ (6)) were synthesized and characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ NMR and IR spectroscopy and elemental analysis. The structures were determined for compounds $\mathbf{1}$ and 2. Compound $\mathbf{1}$ exists as two crystallographically independent molecules in crystal lattice. Both compounds $\mathbf{1}$ and 2 produced dimeric aggregates via intermolecular - $\mathrm{P}=\mathrm{O} \ldots \mathrm{H}-\mathrm{N}$ - hydrogen

Abstract

bonds, which in compound $\mathbf{2}$ is a centrosymmetric dimer. In compounds with four-membered ring amine groups, ${ }^{3} \mathrm{~J}(\mathrm{P}, \mathrm{C})>^{2} \mathrm{~J}(\mathrm{P}, \mathrm{C})$, in agreement with our previous studies about five-membered ring amine groups. Also, ${ }^{3} \mathrm{~J}(\mathrm{P}, \mathrm{C})$ values in compounds $\mathbf{1}$ and $\mathbf{5}$ are greater than in compounds with five-, six- and seven-membered ring amine groups.

Keywords: Phosphoric triamide; NMR spectroscopy; Crystal structure

Introduction

Research on compounds with $\mathrm{RC}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})$ moiety are of interest based on their complexation reactions [1-3] and the inhibition of urease enzyme [4]. In previous studies, we considered the conformational forms of phosphoramidates in solution, solid state and calculation of the stabilization energies [5-8]. Also, we discussed on the disordered forms and on the presence of independent molecules (in crystal lattice) of phosphorus compounds containing five- and sixmembered ring amine groups, pyrrolidinyl, piperidinyl, 4methyl piperidinyl rings, and cyclohexyl-tert-butyl amine [7-10]. The effect of various substituents on the structural parameters $[11,12]$ and on near-range $\mathrm{P}-\mathrm{C}$ spin-spin couplings in phosphoramidates and phosphoramidic acid esters were considered [13-15]. Furthermore, we compared two and three bond distances P-C coupling constants in compounds containing acyclic and cyclic amine groups (with five- and six-membered rings) [13]. In this work, we synthesized some new compounds of these series (containing $\mathrm{RC}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})$ moiety with four and seven-membered ring amine groups and other aliphatic amines) and discuss on ${ }^{2,3} \mathrm{~J}(\mathrm{P}, \mathrm{C})$ coupling constants. Besides, we consider the crystal structures of N -benzoyl, $\mathrm{N}^{\prime}, \mathrm{N}^{\prime \prime}$-bis(azetidinyl) phosphoric triamide (containing two crystallographically independent molecules due to the conformational forms of fourmembered ring amine group) and N -benzoyl, $\mathrm{N}^{\prime}, \mathrm{N}^{\prime \prime}$-bis (hexamethylenyl) phosphoric triamide.

[^0]
Results and Discussion

Syntheses of phosphoramidates 1-6 were performed by the reaction of N-benzoyl [16] and N-trichloroacetyl [17] phosphoramidic dichloride with the corresponding amines.

NMR Study

Phosphorus chemical shifts in compounds $\mathbf{1 - 6}$ were observed in the range of 4.65 ppm (in 5) to 14.79 ppm (in 4). ${ }^{2} \mathbf{J}(\mathrm{PNH})$ amide coupling constant appears in compounds $\mathbf{1}$, $(5.4 \mathrm{~Hz}), \mathbf{2}(3.8 \mathrm{~Hz}), \mathbf{3}(6.1 \mathrm{~Hz})$ and $\mathbf{6}(4.8 \mathrm{~Hz})$. This coupling constant did not appear in previously studied compounds with formula $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O}) \mathrm{R}_{2}(\mathrm{R}=$ fiveand six-membered ring amine groups) [13]. Compounds 1 6 indicate ${ }^{3} \mathrm{~J}(\mathrm{PNCH})$ coupling constant, too.

Compounds 1, $\mathbf{3}$ and $\mathbf{6}$ do not show two bond distances P-C coupling constant, whereas compounds $\mathbf{1}$ and $\mathbf{5}$ with fourmembered ring amine groups have high value ${ }^{3} \mathrm{~J}\left(\mathrm{P}, \mathrm{C}_{\text {aliphatic }}\right)$ coupling constants $(18.0 \mathrm{~Hz})$ that are greater than in compounds with five-, six- and seven-membered ring amine groups (Table 1). Also, in these compounds ${ }^{3} \mathrm{~J}\left(\mathrm{P}, \mathrm{C}_{\text {aliphatic }}\right)>$ ${ }^{2} \mathrm{~J}\left(\mathrm{P}, \mathrm{C}_{\text {aliphatic }}\right)$ is in agreement with our previous study about five-membered ring amine groups [13]. In opposite to compounds with four- and five-membered ring amine groups, compounds 2 (seven-membered ring amine) and 4 (acyclic aliphatic amine $)$, show ${ }^{2} \mathrm{~J}\left(\mathrm{P}, \mathrm{C}_{\text {aliphatic }}\right)>^{3} \mathrm{~J}\left(\mathrm{P}, \mathrm{C}_{\text {aliphatic }}\right)$, which is similar to previously reported acyclic aliphatic amine groups. It seems that the ring strain (in four- and five-membered rings) cause high value ${ }^{3} \mathrm{~J}\left(\mathrm{P}, \mathrm{C}_{\text {aliphatic }}\right)$ coupling constant (see also compounds 7 and $\mathbf{1 3}$ in Table 1). Carbon-13 chemical shifts of $\mathrm{C}=\mathrm{O}$ groups in compounds 5 and $\mathbf{6}$ (with $\mathrm{CCl}_{3} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})$ moiety) appear in upfield (162.21 and 162.99 ppm , respectively) relative to the values in compounds 1-4 (containing $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})$ moiety) that

Table $1 \mathrm{~J}(\mathrm{P}, \mathrm{C})$ coupling constants in compounds 1-13.

No.	Compound	${ }^{2} \mathrm{~J}\left(\mathrm{P}, \mathrm{C}_{\text {aliphatic }}\right)$	${ }^{3} \mathrm{~J}\left(\mathrm{P}, \mathrm{C}_{\text {aliphatic }}\right)$	${ }^{3} \mathbf{J}\left(\mathrm{P}, \mathrm{C}_{\text {aromatic }}\right)$
1	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O}) \mathrm{R}^{1}{ }_{2}$	$0.0\left(\mathrm{CH}_{2}\right)$	$18.0\left(\mathrm{CH}_{2}\right)$	8.7 (benzamide)
2	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O}) \mathrm{R}^{4}{ }_{2}$	$4.7\left(\mathrm{CH}_{2}\right)$	$4.2\left(\mathrm{CH}_{2}\right)$	8.7 (benzamide)
3	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})\left[\mathrm{NHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right]_{2}$	$0.0\left(\mathrm{CH}_{2}\right)$	--	8.0 (benzamide)
4	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})\left[\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2}\right]_{2}$	$4.7\left(\mathrm{CH}_{2}\right)$	$2.5\left(\mathrm{CH}_{2}\right)$	8.7 (benzamide)
5	$\mathrm{CCl}_{3} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O}) \mathrm{R}^{1}{ }_{2}$	$1.5\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 18.0\left(\mathrm{CH}_{2}\right) \\ & 9.2\left(\mathrm{CCl}_{3}\right) \end{aligned}$	--
6	$\mathrm{CCl}_{3} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})\left[\mathrm{NHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right]_{2}$	$0.0\left(\mathrm{CH}_{2}\right)$	$9.6\left(\mathrm{CCl}_{3}\right)$	--
${ }^{\text {a }} 7$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O}) \mathrm{R}^{2}{ }_{2}$	$5.5\left(\mathrm{CH}_{2}\right)$	$8.6\left(\mathrm{CH}_{2}\right)$	8.7 (benzamide)
${ }^{\text {a }} 8$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})\left[\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]_{2}$	$5.3\left(\mathrm{CH}_{2}\right)$	$2.6\left(\mathrm{CH}_{3}\right)$	8.6 (benzamide)
${ }^{\text {b }} 9$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O}) \mathrm{R}^{3} 2$	$2.7\left(\mathrm{CH}_{2}\right)$	$4.7\left(\mathrm{CH}_{2}\right)$	8.5 (benzamide)
${ }^{\text {a }} 10$	$4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NHP}(\mathrm{O})\left[\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]_{2}$	$4.5\left(\mathrm{CH}_{2}\right)$	$2.0\left(\mathrm{CH}_{3}\right)$	
${ }^{\text {a }} 11$	$4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NHP}(\mathrm{O}) \mathrm{R}^{4}{ }_{2}$	$3.9\left(\mathrm{CH}_{2}\right)$	$3.9\left(\mathrm{CH}_{2}\right)$	6.8 (Cortho)
${ }^{\text {a }} 12$	$\left(4-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$	$4.3\left(\mathrm{CH}_{2}\right)$	$1.6\left(\mathrm{CH}_{3}\right)$	6.7 ($\mathrm{C}_{\text {ortho }}$)
${ }^{\text {a }} 13$	$\left(4-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{R}^{2}$	$4.8\left(\mathrm{CH}_{2}\right)$	$9.6\left(\mathrm{CH}_{2}\right)$	6.5 (Cortho $)$

${ }^{\mathrm{a}, \mathrm{b}}$ The data of these compounds are given in Refs. [13] and [8], respectively.
are in the range of $167.87-169.62 \mathrm{ppm}$. This effect is due to the more electronegativity of CCl_{3} than the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O})$ group that cause the strengthen of $\mathrm{C}=\mathrm{O}$ bond and shielding of carbon atoms in 5 and $\mathbf{6}$ relative to compounds $\mathbf{1 - 4}$. This phenomenon is confirmed by IR spectra which will discussed in IR section.

IR spectroscopy

The $\mathrm{C}=\mathrm{O}$ vibrational bands of compounds $\mathbf{1 - 4}$ (with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})$ moiety) appear in the range of 1640$1667 \mathrm{~cm}^{-1}$ and those of compounds 5 and 6 (containing $\mathrm{CCl}_{3} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})$ moiety) are at 1710 and $1697 \mathrm{~cm}^{-1}$,

Table 2 Crystallographic data for compounds 1 and 2.

	1	2
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$	$\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$
Formula weight	279.27	363.43
Temperature (K)	120(2)	120(2)
Wavelength	0.71073 A	0.71073 A
Crystal system, space group	triclinic, P 1	monoclinic, $\mathrm{C} 2 / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=10.7685(16) \mathrm{A}^{\circ}$	$\mathrm{a}=22.270(8){ }_{\mathrm{A}} \mathrm{A}$
	$\mathrm{b}=10.9779$ (16) A	$\mathrm{b}=9.274(3) \mathrm{A}^{\text {o }}$
	$\mathrm{c}=13.0476$ (19) A	$\mathrm{c}=20.525(8) \mathrm{A}$
	$\alpha=106.356(3)^{\circ}$	
	$\beta=95.505(3)^{\circ}$	$\beta=114.531(13)^{\circ}$
	$\gamma=104.420^{\circ}$	
$\mathrm{V}\left(\AA^{3}\right)$	1410.3(4)	3857(2)
Z, Calculated density	$4,1.315 \mathrm{Mg} . \mathrm{m}^{-3}$	8, 1.252 Mg.m ${ }^{-3}$
Absorption coefficient	$0.197 \mathrm{~mm}^{-1}$	$0.160 \mathrm{~mm}^{-1}$
F(000)	592	1568
Crystal size	$0.29 \times 0.23 \times 0.21 \mathrm{~mm}^{3}$	$0.35 \times 0.20 \times 0.20 \mathrm{~mm}^{3}$
θ range for data collection	1.98 to 29.00°	2.18 to 28.00°
Limiting indices	$-14 \leq \mathrm{h} \leq 14$	$-28 \leq \mathrm{h} \leq 26$
	$-14 \leq \mathrm{k} \leq 14$	$-10 \leq k \leq 12$
	$-17 \leq 1 \leq 17$	$-27 \leq 1 \leq 27$
Reflections collected / unique	15919 / $7455[\mathrm{R}($ int $)=0.0351]$	$12771 / 4552[\mathrm{R}(\mathrm{int})=0.0244]$
Completeness to theta	99.5 \%	97.9 \%
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Data/restraints/parameters	7455/0/351	4552/0/230
Goodness-of-fit on F^{2}	1.008	1.072
Final R indices	$\mathrm{R} 1=0.0510, \mathrm{wR} 2=0.0942$	$\mathrm{R} 1=0.0498, \mathrm{wR} 2=0.1204$
R indices (all data)	$\mathrm{R} 1=0.0820, \mathrm{wR} 2=0.1020$	$\mathrm{R} 1=0.0620, \mathrm{wR} 2=0.1279$
Largest diff. peak and hole	0.850 and -0.398 e. A^{-3}	0.547 and -0.255 e. A^{-3}

respectively (due to more electronegativity of CCl_{3} than $\mathrm{C}_{6} \mathrm{H}_{5}$).

X-ray crystallography

Single crystals of both compounds $\mathbf{1}$ and $\mathbf{2}$ were obtained from a mixture of chloroform-heptane after a slow evaporation at room temperature. The crystal data and the details of X-ray analysis are given in Table 2. Selected bond lengths and angles are listed in Tables 3 and 4. Molecular structures of these compounds are shown in Figures 1 and 2.

Compound 1 exists as two crystallographically independent molecules in crystalline lattice. The difference is described by comparison of corresponding torsion angles in two molecules. Torsion angles $\mathrm{N}(3)-\mathrm{P}(1)-\mathrm{N}(2)-\mathrm{C}(11)$ and $\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(2)-\mathrm{C}(11)$ are $-173.0(2)^{\circ}$ and $-55.5(2)^{\circ}$ whereas $\mathrm{N}\left(3^{\prime}\right)-\mathrm{P}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)-\left(\mathrm{C} 11^{\prime}\right)$ and $\mathrm{O}\left(1^{\prime}\right)-\mathrm{P}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$ $\mathrm{C}\left(11^{\prime}\right)$ are $-78.5(2)^{\circ}$ and $160.8(2)^{\circ}$, respectively. Both compounds $\mathbf{1}$ and 2 contain one amidic hydrogen atom and form dimeric aggregates via intermolecular $-\mathrm{P}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}-$ hydrogen bonds, which in compound $\mathbf{2}$ is a centrosymmetric dimer. The dimeric aggregate in compound $\mathbf{1}$ is formed between two symmetrically different molecules via two various intermolecular $-\mathrm{P}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ - hydrogen bonds. The bond distances between donor and acceptor in compound 1 are $2.817(1) \AA$ and $2.815(1) \AA$ for $\mathrm{N} 3 \cdots \mathrm{O}^{\prime}$ and $\mathrm{N}^{\prime} \cdots \mathrm{O} 1$ distances, respectively, and in compound 2 is $2.816(3) \AA$ for $\mathrm{N} 1 \cdots \mathrm{O} 1$ bond distance. $\mathrm{P}(1)-\mathrm{N}(1), \mathrm{P}(1)-\mathrm{N}(2), \mathrm{P}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$ and $\mathrm{P}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$ bond lengths, in compound 1 , and $\mathrm{P}(1)-$ $\mathrm{N}(2)$ and $\mathrm{P}(1)-\mathrm{N}(3)$ in compound 2 , are lower than the P -

Table 3 Selected bond lengths $/ \AA$ and angles $/{ }^{\circ}$ for compound 1.

$\mathrm{P}(1)-\mathrm{O}(1)$	$1.484(2)$	$\mathrm{P}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$	$1.484(1)$
$\mathrm{P}(1)-\mathrm{N}(3)$	$1.681(2)$	$\mathrm{P}\left(1^{\prime}\right)-\mathrm{N}\left(3^{\prime}\right)$	$1.682(2)$
$\mathrm{P}(1)-\mathrm{N}(2)$	$1.634(2)$	$\mathrm{P}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	$1.614(2)$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.624(2)$	$\mathrm{P}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	$1.639(2)$
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.484(3)$	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	$1.488(3)$
$\mathrm{N}(1)-\mathrm{C}(10)$	$1.497(3)$	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	$1.487(3)$
$\mathrm{C}(1)-\mathrm{O}(2)$	$1.215(2)$	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)$	$1.221(2)$
$\mathrm{C}(1)-\mathrm{N}(3)$	$1.380(3)$	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}\left(3^{\prime}\right)$	$1.370(3)$
$\mathrm{N}(2)-\mathrm{C}(11)$	$1.483(3)$	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	$1.483(3)$
$\mathrm{N}(2)-\mathrm{C}(13)$	$1.483(3)$	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	$1.482(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.505(3)$	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$1.498(3)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.540(3)$	$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	$1.541(3)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	$109.29(9)$	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{P}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	$118.66(9)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(2)$	$119.44(9)$	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{P}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	$111.41(9)$
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{N}(2)$	$103.49(9)$	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{P}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	$102.63(9)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(3)$	$107.05(9)$	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{P}\left(1^{\prime}\right)-\mathrm{N}\left(3^{\prime}\right)$	$105.99(9)$
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{N}(3)$	$116.10(9)$	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{P}\left(1^{\prime}\right)-\mathrm{N}\left(3^{\prime}\right)$	$103.09(9)$
$\mathrm{N}(2)-\mathrm{P}(1)-\mathrm{N}(3)$	$101.79(9)$	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{P}\left(1^{\prime}\right)-\mathrm{N}\left(3^{\prime}\right)$	$115.19(9)$
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(10)$	$91.9(2)$	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(0^{\prime}\right)$	$92.1(2)$
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{P}(1)$	$125.3(2)$	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{P}\left(1^{\prime}\right)$	$124.3(2)$
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{P}(1)$	$130.7(2)$	$\mathrm{C}\left(10^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{P}\left(1^{\prime}\right)$	$124.1(4)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{N}(3)$	$123.4(2)$	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}\left(3^{\prime}\right)$	$123.0(2)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$120.7(2)$	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$120.9(2)$
$\mathrm{N}(3)-\mathrm{C}(1)-\mathrm{C}(2)$	$115.9(2)$	$\mathrm{N}\left(3^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$116.1(2)$
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(13)$	$91.8(2)$	$\mathrm{C}\left(11^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	$92.2(2)$
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{P}(1)$	$126.1(1)$	$\mathrm{C}\left(11^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{P}\left(1^{\prime}\right)$	$133.8(1)$
$\mathrm{C}(13)-\mathrm{N}(2)-\mathrm{P}(1)$	$125.3(2)$	$\mathrm{C}\left(13^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{P}\left(1^{\prime}\right)$	$131.9(1)$
$\mathrm{C}(1)-\mathrm{N}(3)-\mathrm{P}(1)$	$127.4(2)$	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}\left(3^{\prime}\right)-\mathrm{P}\left(1^{\prime}\right)$	$127.3(2)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$88.9(2)$	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	$89.0(2)$
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$88.1(2)$	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	$89.2(2)$
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$89.3(2)$	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	$88.0(2)$
$\mathrm{N}(2)-\mathrm{C}(13)-\mathrm{C}(12)$	$89.1(2)$	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	$88.0(2)$

N bonds of $\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})$ moieties, Tables 3 and 4. All of these bonds are shorter than the $\mathrm{P}-\mathrm{N}$ single bond $(1.77 \AA)$ [18]. The sum of the surrounding angles around $N(2)$ and $\mathrm{N}(3)$ atoms in compound 2 are 360.01° and 359.28°, corresponding to the sp^{2} angles. In compound $\mathbf{1}$, the environment of the nitrogen atoms show some deviations from planarity. The angles $\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{C}(10), \mathrm{C}(8)-\mathrm{N}(1)-\mathrm{P}(1)$ and $\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(8)$ are $130.7(2)^{\circ}, 125.31(5)^{\circ}$ and $91.9(2)^{\circ}$ with the average 116.97°. For $\mathrm{N}\left(1^{\prime}\right), \mathrm{N}(2)$ and $\mathrm{N}\left(2^{\prime}\right)$ the average are $113.5^{\circ}, 114.43^{\circ}$ and 119.32°, respectively. The $\mathrm{P}(1)-\mathrm{O}(1)$ and $\mathrm{P}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$ bond lengths in compound $\mathbf{1}$ (1.484(2) and $1.484(1) \AA$) and $\mathrm{P}(1)-\mathrm{O}(1)$ bond length in compound 2 (1.488(1) A) are slightly longer than the PO double bond length $(1.45 \AA)$ [18]. The phosphorus atoms of $\mathbf{1}$ and $\mathbf{2}$ are slightly distorted from tetrahedral configuration. The bond angles around $\mathrm{P}(1)$ and $\mathrm{P}\left(1^{\prime}\right)$ in compound $\mathbf{1}$ and $\mathrm{P}(1)$ in compound 2 are in the range of $119.44^{\circ}-101.79^{\circ}, 118.66^{\circ}$ 102.63° and $113.88^{\circ}-106.83^{\circ}$, respectively.

Experimental Section

X-ray measurements

X-ray data were collected on a Bruker SMART 1000 CCD single crystal diffractometer with graphite monochromated Mo-K α radiation ($\lambda=0.71073 \AA$). The structures were refined with SHELXL-97 [19] by a full-matrix least-squares procedure on F^{2}. The positions of hydrogen atoms were obtained from the difference Fourier map. Routine Lorentz and polarization corrections were applied and an absorption correction was performed for compounds $\mathbf{1}$ and $\mathbf{2}$ using the SADABS program [20]. Crystallographic data for the structures in this paper have been deposited with Cambridge Crystallographic Data Center as supplementary publication nos. CCDC 259340 $\left(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}_{1}\right)$ and $259341\left(\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}_{1}\right)$. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44 1223336033 or e-mail: deposit@ccdc.cam.ac.uk).

Spectroscopic measurements

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Bruker Avance DRS 500 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts were determined relative to internal TMS, ${ }^{31} \mathrm{P}$ chemical shifts relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard. Infrared (IR) spectra were recorded on a Shi-

Table 4 Selected bond lengths $/ \AA$ and angles $/{ }^{\circ}$ for compound 2.

$\mathrm{P}(1)-\mathrm{O}(1)$	$1.488(1)$	$\mathrm{N}(2)-\mathrm{C}(8)$	$1.472(2)$
$\mathrm{P}(1)-\mathrm{N}(3)$	$1.635(2)$	$\mathrm{N}(2)-\mathrm{C}(13)$	$1.473(2)$
$\mathrm{P}(1)-\mathrm{N}(2)$	$1.637(2)$	$\mathrm{N}(3)-\mathrm{C}(14)$	$1.467(2)$
$\mathrm{P}(1) \mathrm{N}(1)$	$1.62(2)$	$\mathrm{N}(3)-\mathrm{C}(19)$	$1.474(2)$
$\mathrm{O}(2)-\mathrm{C}(1)$	$1.227(2)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.511(2)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.377(2)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.506(3)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(3)$	$111.62(8)$	$\mathrm{C}(14)-\mathrm{N}(3)-\mathrm{C}(19)$	$115.7(1)$
$\mathrm{O}(1) \mathrm{P}(1)-\mathrm{N}(2)$	$113.88(8)$	$\mathrm{C}(44) \mathrm{N}(3)-\mathrm{P}(1)$	$125.7(1)$
$\mathrm{N}(3)-\mathrm{P}(1)-\mathrm{N}(2)$	$108.34(8)$	$\mathrm{C}(19)-\mathrm{N}(3)-\mathrm{P}(1)$	$117.8(1)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	$107.33(8)$	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	$121.9(2)$
$\mathrm{N}(3)-\mathrm{P}(1)-\mathrm{N}(1)$	$108.61(8)$	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$120.5(2)$
$\mathrm{N}(2)-\mathrm{P}(1)-\mathrm{N}(1)$	$106.83(8)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$117.6(2)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{P}(1)$	$126.6(1)$	$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$113.5(2)$
$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(13)$	$116.0(2)$	$\mathrm{N}(2)-\mathrm{C}(13)-\mathrm{C}(12)$	$114.7(2)$
$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{P}(1)$	$119.1(1)$	$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(15)$	$113.7(2)$
$\mathrm{C}(13)-\mathrm{N}(2)-\mathrm{P}(1)$	$124.9(1)$	$\mathrm{N}(3)-\mathrm{C}(19)-\mathrm{C}(18)$	$113.7(2)$

Figure 1 Molecular structure of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})\left(\mathrm{NC}_{3} \mathrm{H}_{6}\right)_{2}$ (containing two independent molecules) showing the atom-labeling scheme and 50% probability level displacement ellipsoids.
madzu model IR-60 spectrometer. Elemental analysis was performed using a Heraeus CHN-O-RAPID apparatus.

Syntheses

\mathbf{N}-Benzoyl- $\mathbf{N}^{\prime}, \mathbf{N}^{\prime \prime}$-bis(azetidinyl) phosphoric triamide (1): Azetidine ($0.228 \mathrm{~g}, 4 \mathrm{mmol}$) was added to a solution of N -benzoyl

Figure 2 Molecular structure of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})\left(\mathrm{NC}_{6} \mathrm{H}_{12}\right)_{2}$ showing the atom-labeling scheme and 50% probability level displacement ellipsoids.
phosphoramidic dichloride $(0.238 \mathrm{~g}, 1 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(40 \mathrm{~mL})$ and stirred at $-5^{\circ} \mathrm{C}$. After 6 hours, the precipitate was filtered and washed with $\mathrm{H}_{2} \mathrm{O}$. The product recrystallized from chloroform/nheptane. Elemental analysis (\%) calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$: C 55.91, H 6.50, N 15.05; found: C 55.87, H 6.49, N 15.03.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}$): $2.26(\mathrm{~m}, 4 \mathrm{H}), 3.91(\mathrm{~m}, 4 \mathrm{H})$, $4.06(\mathrm{~m}, 4 \mathrm{H}), 7.46\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 7.55\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), $7.62\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{PNH})=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}_{\text {amide }}\right), 7.93(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$,

Figure 3 A view of the unit cell packing for compound 1.

Figure 4 A view of the unit cell packing for compound 2.

TMS): $17.79\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{P}, \mathrm{C})=18.0 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 48.44\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 127.79$ (s), $128.72(\mathrm{~s}), 132.53(\mathrm{~s}), 133.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{P}, \mathrm{C})=8.7 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}_{\mathrm{ipso}}\right), 168.02(\mathrm{~s}$, $1 \mathrm{C}, \mathrm{C}=\mathrm{O}) .{ }^{31} \mathbf{P}$ NMR ($202.46 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{H}_{3} \mathrm{PO}_{4}$ external): 6.95 (m). IR (KBr): $\tilde{v}=3430(\mathrm{~m}, \mathrm{NH}), 3065(\mathrm{~m}), 2945(\mathrm{~s}), 1667(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1449$ (s), 1266 (s), 1211 (s), 1172 (s), 1144 (m), 1099 (m), 1051 (m), 1025 (m), 953 (m), 864 (m), 837 (m), 709 (s), 629 (m), 552 (w), 491 (w).
\mathbf{N}-Benzoyl- $\mathbf{N}^{\prime}, \mathbf{N}^{\prime \prime}$-bis(hexamethylenyl) phosphoric triamide (2): Hexamethyleneimine $(0.396 \mathrm{~g}, 4 \mathrm{mmol})$ was added to a solution of N-benzoyl phosphoramidic dichloride $(0.238 \mathrm{~g}, 1 \mathrm{mmol})$ in chloroform $(30 \mathrm{~mL})$ and stirred at $-5^{\circ} \mathrm{C}$. After 8 hours, the solvent was removed and the residue that formed was stirred in $\mathrm{H}_{2} \mathrm{O}$. Product was filtered and recrystallized from chloroform/n-hexane. Elemental analysis (\%) calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}: \mathrm{C} 62.79$, H 8.32, N 11.56; found: C 62.75, H 8.31, N 11.58.
${ }^{1} \mathbf{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS): $1.61(\mathrm{~m}, 8 \mathrm{H}), 1.70(\mathrm{~m}, 8 \mathrm{H})$, $3.22(\mathrm{~m}, 8 \mathrm{H}), 7.43\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 7.52\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.73\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{PNH})=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}_{\text {amide }}\right), 7.90(\mathrm{~d}$, $\left.{ }^{3} \mathbf{J}(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right) .{ }^{1} \mathbf{H}\left\{{ }^{31} \mathbf{P}\right\} \mathbf{N M R}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right.$, TMS): $1.61(\mathrm{~m}, 8 \mathrm{H}), 1.70(\mathrm{~m}, 8 \mathrm{H}), 3.22(\mathrm{~m}, 8 \mathrm{H}), 7.43\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}\right.$, 2 H, Ar-H), $7.52\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.73\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{\text {amide }}\right)$, $7.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR $\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $25^{\circ} \mathrm{C}$, TMS): $26.91\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 30.24\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{P}, \mathrm{C})=4.2 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{CH}_{2}\right)$, $47.86\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{P}, \mathrm{C})=4.7 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 127.73$ (s$), 128.69$ (s), 132.39 (s), $133.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{P}, \mathrm{C})=8.7 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}_{\mathrm{ipso}}\right), 167.87(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}=\mathrm{O}) .{ }^{31} \mathbf{P}$ NMR (202.46 MHz, $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{H}_{3} \mathrm{PO}_{4}$ external): 14.70 (m). IR (KBr): $\tilde{v}=3415$ (w, NH), 3060 (m), 2905 (s), 1660 (s, C=O), 1447 (s), 1425 (s), 1257 (m), 1218 (m), 1182 (s), 1096 (m), 1047 (s), 991 (w), 957 (w), 931 (m), 887 (w), 852 (w), 820 (m), 696 (s), 548 (w).
\mathbf{N}-Benzoyl- $\mathbf{N}^{\prime}, \mathbf{N}^{\prime \prime}$-diallyl phosphoric triamide (3): To a solution of N-benzoyl phosphoramidic dichloride $(0.238 \mathrm{~g}, 1 \mathrm{mmol})$ in chloroform (35 mL), allylamine $(0.228 \mathrm{~g}, 1 \mathrm{mmol})$ was added and stirred at $-5^{\circ} \mathrm{C}$. After 5 hours, the solvent was removed and the product was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and recrystallized from chloroform/ n-hexane. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$: C 55.91, H 6.50, N 15.05 ; found: C 55.94, H 6.49, N 15.04%.
${ }^{1} \mathbf{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}$): 3.51 (m, $2 \mathrm{H}, \mathrm{NH}$), 3.61 (m, $\left.4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=10.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=17.0 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 5.81(\mathrm{~m}, 2 \mathrm{H}), 7.41\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 7.52(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 8.07\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, Ar-H), 9.58 $\left(\mathrm{d},{ }^{2} \mathrm{~J}(\mathrm{PNH})=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}_{\text {amide }}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $25^{\circ} \mathrm{C}$, TMS): $43.20\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 115.42$ (s), 128.31 (s), 128.50 (s), 132.54 (s), $133.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{P}, \mathrm{C})=8.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}_{\mathrm{ipso}}\right), 136.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{P}, \mathrm{C})=6.4 \mathrm{~Hz}, 2 \mathrm{C}\right.$, $\mathrm{CH}), 169.62(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}=\mathrm{O}) .{ }^{31} \mathbf{P}$ NMR ($202.46 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{H}_{3} \mathrm{PO}_{4}$ external): 10.82 (m). IR (KBr): $\tilde{v}=3255(\mathrm{~s}, \mathrm{NH}), 3080$ (w), 2850 (w), 1640 (s, C=O), 1448 (s), 1419 (s), 1271 (m), 1201 (s), 1165 (m), 1116 (w), 1092 (m), 1029 (w), 986 (w), 917 (m), 883 (m), 788 (w), 704 (m), 530 (w).
\mathbf{N}-Benzoyl, $\mathbf{N}^{\prime}, \mathbf{N}^{\prime}, \mathbf{N}^{\prime \prime}, \mathbf{N}^{\prime \prime}$-tetrapropyl, phosphorictriamide (4): To a solution of N -benzoyl phosphoramidic dichloride $(0.238 \mathrm{~g}$, 1 mmol) in chloroform (35 mL), dipropylamine ($0.404 \mathrm{~g}, 4 \mathrm{mmol}$) was added and stirred at $-5^{\circ} \mathrm{C}$. After 7 hours, the solvent was removed and the precipitate was washed with $\mathrm{H}_{2} \mathrm{O}$ and recrys-
tallized from acetone/chloroform. Elemental analysis (\%) calcd. $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$: C 62.10, H 9.33, N 11.43; found: C 62.07, H 9.32, N 11.44.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS): $0.82\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}\right.$, $\left.12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.55\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 3.05\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 7.38(\mathrm{t}, 2 \mathrm{H}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}\right), 7.51\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}\right), 8.02\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.$ $7.2 \mathrm{~Hz}), 8.60\left(\mathrm{~b}, 1 \mathrm{H}, \mathrm{NH}_{\text {amide }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$, TMS): $11.47\left(\mathrm{~s}, 4 \mathrm{CH}_{3}\right), 21.83\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{P}, \mathrm{C})=2.5 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 47.83(\mathrm{~d}$, $\left.{ }^{2} \mathrm{~J}(\mathrm{P}, \mathrm{C})=4.7 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 128.23(\mathrm{~s}), 128.47(\mathrm{~s}), 132.10(\mathrm{~s}), 134.09(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{P}, \mathrm{C})=8.7 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}_{\mathrm{ipso}}\right), 168.17(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}=\mathrm{O}) .{ }^{31} \mathbf{P}$ NMR (202.46 MHz, $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{H}_{3} \mathrm{PO}_{4}$ external): 14.79 (m). IR (KBr): $\tilde{v}=3440(\mathrm{w}), 3310$ (w), 3055 (m), 2870 (s), 2725 (w), 1657 (s, C=O), 1493 (w), 1446 (s), 1376 (w), 1260 (m), 1187 (s), 1173 (s), 1040 (w), 1007 (m), 865 (m), 799 (m), 705 (m), 526 (w).
\mathbf{N}-Trichloroacetyl- $\mathbf{N}^{\prime}, \mathrm{N}^{\prime \prime}$-bis(trimethylenyl) phosphoric triamide (5): To a solution of N -trichloroacetyl phosphoramidic dichloride $(0.279 \mathrm{~g}, 1 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(30 \mathrm{~mL})$, trimethyleneimine $(0.228 \mathrm{~g}$, 4 mmol) was added dropwise and stirred at $-5^{\circ} \mathrm{C}$. After 4 hours, the solvent was removed and the precipitate was washed with $\mathrm{H}_{2} \mathrm{O}$ and recrystallized from acetonitrile/chloroform. Elemental analysis (\%) calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}: \mathrm{C} 29.98$, H 1.27, N 13.11; found: C 29.96, H 1.26, N 13.12.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS): 2.33 (m, 4 H), $3.93(\mathrm{~m}, 4 \mathrm{H})$, $4.06(\mathrm{~m}, 4 \mathrm{H}), 7.46\left(\mathrm{~b}, 1 \mathrm{H}, \mathrm{NH}_{\text {amide }}\right) .{ }^{1} \mathbf{H}\left\{{ }^{31} \mathbf{P}\right\} \mathbf{N M R}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $25^{\circ} \mathrm{C}$, TMS): $2.33(\mathrm{~m}, 4 \mathrm{H}), 3.93\left(\mathrm{dd},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=15.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}\right.$, $4 \mathrm{H}), 4.06\left(\mathrm{dd},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=15.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.46(\mathrm{~b}, 1 \mathrm{H}$, $\left.\mathrm{NH}_{\text {amide }}\right) .{ }^{13} \mathbf{C}$ NMR ($\left.125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}\right): 17.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{P}, \mathrm{C})=\right.$ $\left.18.0 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 48.59\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{P}, \mathrm{C})=1.5 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 91.94(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{P}, \mathrm{C})=9.2 \mathrm{~Hz}, \mathrm{CCl}_{3}\right), 162.21(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}=\mathrm{O}) .{ }^{31} \mathbf{P}$ NMR (202.46 MHz , $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{H}_{3} \mathrm{PO}_{4}$ external): $4.65(\mathrm{~m})$. IR (KBr): $\tilde{v}=3415(\mathrm{w}, \mathrm{NH}), 3090$ (m), 2960 (m), 1710 (s, C=O), 1424 (s), 1231 (s), 1190 (s), 1140 (m), 1104 (m), 1030 (m), 953 (m), 864 (m), $820(\mathrm{~m}), 797(\mathrm{~m}), 667(\mathrm{~s}), 537(\mathrm{w}), 476(\mathrm{~m})$.
\mathbf{N}-Trichloroacetyl- $\mathbf{N}^{\prime}, \mathbf{N}^{\prime \prime}$-diallyl phosphoric triamide (6): allylamine ($0.228 \mathrm{~g}, 4 \mathrm{mmol}$) was added to a solution of N -trichloroacetyl phosphoramidic dichloride ($0.279 \mathrm{~g}, 1 \mathrm{mmol}$) in chloroform $(35 \mathrm{~mL})$ and stirred at $-5^{\circ} \mathrm{C}$. After 6 hours, the solvent was removed and the precipitate was washed with $\mathrm{H}_{2} \mathrm{O}$ and recrystallized from acetonitrile/n-heptane. Elemental analysis (\%) calcd. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}: \mathrm{C} 55.91$, H 6.50, N 15.05 ; found: C 55.92, H 6.49, N 15.03.
${ }^{1} \mathbf{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}$): 3.62 (b, $2 \mathrm{H}, \mathrm{NH}$), 3.61 (dd, $\left.{ }^{3} \mathrm{~J}(\mathrm{P}, \mathrm{H})=5.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=11.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.08\left(\mathrm{~d}, 9.58\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.\right.$ $10.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 5.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=17.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right), 5.81(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}), 8.91\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{PNH})=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}_{\text {amide }}\right) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $(125.77 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}\right): 43.12\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 92.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{P}, \mathrm{C})=9.6 \mathrm{~Hz}, \mathrm{CCl}_{3}\right)$, $115.96(\mathrm{~s}), 135.83\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{P}, \mathrm{C})=5.8 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{CH}\right), 162.99(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}=\mathrm{O}) .{ }^{31} \mathbf{P}$ NMR ($202.46 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{H}_{3} \mathrm{PO}_{4}$ external): 8.28 (m). IR (KBr): $\tilde{v}=3385(\mathrm{~m}, \mathrm{NH}), 3265(\mathrm{w}), 3020(\mathrm{~m}), 2910(\mathrm{w}), 2655(\mathrm{w}), 1697$ (s, C=O), 1418 (s), 1224 (s), 1199 (s), 1137 (w), 1089 (m), 913 (m), 877 (m), 827 (m), 670 (m), 561 (w).

References

[1] V. M. Amirkhanov, V. A. Ovchinnikov, A. V. Turov, V. V. Skopenko, Russian J. Coord. Chem. 1997, 23 (2), 126.
[2] K. E. Gubina, V. A. Ovchynnikov, V. M. Amirkhanov, H. Fischer, R. Stumpf, V. V. Skopenko, Z. Naturforsch. 2000, $55 b, 576$.
[3] V. A. Trush, K. V. Domasevitch, V. M. Amirkhanov, J. Sieler, Z. Naturforsch. 1999, 54b, 451.
[4] A. V. Bayless, O. S. Millner, U.S. Pt., 4.182.881, 1980.
[5] K. Gholivand, M. Pourayoubi, Z. Anorg. Allg. Chem. 2004, 630, 1330.
[6] K. Gholivand, Z. Shariatinia, M. Pourayoubi, Z. Naturforsch. 2005, 60b, 67.
[7] K. Gholivand, C. O. Vedova, A. Anaraki Firooz, A. Madani Alizadegan, M. C. Michelini, R. Pis Diez, J. Mol. Struct. 2005, 750, 64.
[8] K. Gholivand, M. Pourayoubi, H. Mostaanzadeh, Anal. Sci. 2004, 20, x-51.
[9] K. Gholivand, M. D. Alavi, M. Pourayoubi, Z. Kristallogr. NCS 2004, 219, 124.
[10] K. Gholivand, M. Pourayoubi, Z. Kristallogr. NCS 2004, 219, 314.
[11] K. Gholivand, M. Pourayoubi, Z. Shariatinia, H. Mostaanzadeh, Polyhedron 2005, 24, 655.
[12] K. E. Gubina, V. A. Ovchynnikov, V. M. Amirkhanov, V. V. Skopenko, O. V. Shishkin, Z. Naturforsch. 2000, 55b, 495.
[13] K. Gholivand, Z. Shariatinia, M. Pourayoubi, Z. Anorg. Allg. Chem. 2005, 631, 961.
[14] F. Lopez-Ortiz, E. Pelaez-Arango, F. Palacios, J. Barluenga, J. Org. Chem. 1994, 59, 1984.
[15] J. M. A. Al-Rawi, G. Q. Behnam, N. Ayed, R. Kraemer, Magn. Reson. Chem. 1985, 23, 728.
[16] A. V. Kirsanov, R. Makitra, J. Gen. Chem. 1956, 26, 907.
[17] A. V. Kirsanov, G. I. Derkach, Zh. Obsh. Khim. 1956, 26, 2082.
[18] D. E. C. Corbridge, Phosphorus, an outline of its Chemistry, Biochemistry and Technology, Fifth Edition, Elsevier, The Netherlands, 1995.
[19] G. M. Sheldrick, SHELEX v. 5.10, Structure Determination Software Suit, Bruker AXS, Madison, WI, USA, 1998.
[20] G. M. Sheldrick, in: SADABS v. 2.01, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, WI, USA, 1998.

[^0]: * Dr. Khodayar Gholivand

 Department of Chemistry-Tarbiat Modarres University-P. O. Box: 14115-175-Tehran-Iran
 Tel.: (+98) 21-8011001-Int.: 3443
 Fax: (+98) 21-8006544
 E-mail: gholi kh@modares.ac.ir

