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proposed method is applied to two benchmark problems, controlling an inverted pendulum as well as
modeling a nonlinear function. In the case of the inverted pendulum simulation results demonstrate
significant improvement. In the case of nonlinear function modeling we demonstrated sufficient
accuracy with only 9 training data, which represents 98% reduction in the number of training data
compare to other method. Additionally, the proposed method offers extremely low computation time
allowing it to be used with adaptive type systems.

Keywords:

T-S system

Design of experiments
Factorial design

Data reduction
Simple design
Benchmark problems

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Takagi-Sugeno (T-S) fuzzy systems [1] are a well-known
landmark in the history of fuzzy theory and control. During the
past years they have become a powerful practical engineering tool
for modeling and control of uncertain nonlinear and complex
systems [2-5]. It has also been applied to a variety of industrial
applications [6-8] as well as complex robotics applications such as
biped [9,10], snake [11] and fish robots [12]. The underlying T-S
fuzzy system is an interpolation method which partitions the input
space into fuzzy areas. Each area is approximated by a simple local
model (often a linear model). The global model is obtained by
interpolation between the different local models. This model
permits the approximation of a strongly nonlinear function by a
simple structure and a limited number of rules. The consequents of
the fuzzy rules are expressed as analytic functions. The choice of
the function depends on its practical applications.

Despite the many advantages of T-S system, its design
significantly hinders its application [13,14]. Carrying out design
of T-S system is difficult because the explicit structure of T-S
system is generally unknown, and also due to their inherent
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nonlinear nature. Many efforts have been made to enhance
systematic and simple design of T-S systems. In [15] the premise
and consequent identification are separately performed using
fuzzy c-means and the orthogonal least squares method, respec-
tively. Jang [16] considers the T-S models as fuzzy-neural
networks and neural-type algorithms are used for model learning.
Yenetal. [17] developed several approaches that attempt to reduce
the number of fuzzy rules by assessing their degrees of importance
using singular value decomposition (SVD). They start with an
oversized rule base and then remove redundant or less important
fuzzy rules. Jin [18] proposed similarity-based approaches by
merging a pair of similar fuzzy sets and fuzzy rules, respectively, at
a time. Recently, considerable number of methods use genetic
algorithms to build fuzzy Sugeno models. For instance Du and
Zhang [2] proposed a new encoding scheme for learning the T-S
fuzzy model from data by using genetic algorithms.

An important step in designing the T-S system is creating the
training data. Most of the methods mentioned above require a large
number of training data for designing the T-S system. However, data
generation is not always an easy task. It can require excessive time,
resources and it can be costly. It is clear that a method which requires
fewer numbers of data and less computation time as well as being
simpler to apply is more desirable. With respect to the author’s
knowledge only a few works have dealt with reducing the number of
training data. Most researchers are focused on simplifying the T-S
system by reducing the number of rules with similarity measure
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[18-20]. They assume that sufficient data is available and attempt to
simplify the system after design is completed.

The primary objective of this research is to develop an efficient
and simple method for designing T-S system requiring reduced
number of training data and less computation time. To do this,
factorial design commonly used in design of experiments (DOE)
[21] is used for modeling the output space. Factorial design is one
of the most powerful methods used in design of experiments. It is
used for modeling the behavior of an unknown system with a
reduced number of data and experiment. Factorial designs study
the effects of two or more variables and are widely used in
modeling and analysis of various complex processes [22-24]. In
general, factorial designs are very efficient type of experiments
[21]. In a factorial design, all possible combinations of the levels of
the factors are investigated in each experimental trial. In this
paper, factorial design is used to minimize the training data
required for design of the T-S system. Next, the overall structure of
the T-S system is defined with respect to the framework of the
factorial design. This provides a simple and efficient method for
designing the T-S system. The newly designed T-S system is
applied to modeling of a nonlinear function as well as controlling a
complex system namely an inverted pendulum.

The rest of this paper is organized as follows. Section 2 provides
the necessary background information on the Takagi-Sugeno fuzzy
system as well as factorial design. The main contribution of the
paper is presented in Section 3. It describes the proposed
systematic design of the T-S system. Section 4 provides two
examples which demonstrate the applicability of the method.
Finally, concluding remarks relating the overall study is drawn in
the last section.

2. Preliminaries
2.1. Takagi-Sugeno fuzzy system

A static T-S fuzzy model as well as T-S fuzzy controller are
described by a set of fuzzy “IF ... THEN” rules. A generic T-S rule
can be written as follows:

R; : IF x4 iSA“ AND x, iSAQ ... ANDx, iSA,‘,«7

THENY; = fi(X1, %0, %), i=1,2,... M. 1)

where Ajq, Ap,. . ., Air are fuzzy sets in the antecedent, while y; is a
crisp function in the consequent. y; is usually a polynomial function
of input variables. However, it can be any function as long as it can
appropriately describe the output of the model within the fuzzy
region specified by the antecedent of the rule. When y; is a first-
order polynomial, as in this paper, the resulting fuzzy inference
system is called a first-order Sugeno fuzzy model [1].

Vi=auX, +ApXy + - + QX+ by, i=1,2,... ng. (2)

where a;;, @j,..., a; and b; are parameters which should be
identified. The consequents of the T-S system are hyperplanes (r-
dimensional linear subspaces) in ®*!, whereas the if-part of the
rule partitions the input space and determines the validity of the ng
locally linear model for different regions of the antecedent space.
Since each rule has a crisp output, the overall output of the T-S
system could be obtained via weighted average formula (Eq. (3)).

Z?ﬁl yi-Wi )
Z?ﬁ] wi ' !

.
= H];LAI (x;), ng is equal to the number of rules (3)
1=

y=

What remains to complete the description of T-S system is a
method to estimate parameters d;, dp,. . ., @;r and b; of the model
shown in Eq. (2). In the next section design of experiment

methodology, specifically factorial design, is utilized to provide a
systematic and an efficient way to obtain input-output data as
well as to provide estimates for the model parameters.

2.2. Statistical design of experiment—factorial design

2.2.1. Experimental design—obtaining data

Experimental design is a critically important tool in the
engineering world for improving the performance of products
and manufacturing processes. Statistical design of experiments
refers to the process of planning the experiment so that appropriate
data that can be analyzed by statistical methods is collected,
resulting in valid and objective conclusions. There are many
different design types available. Among these designs, factorial
design is perhaps the most widely used in experiments involving
several variables (factors) where it is necessary to study the joint
effect of the factors on one or more output responses. Factorial
designs have two great advantages, they provide information that is
not readily available from other methods and they use experimental
material very efficiently. Factorial experiments identify the numbers
of factors and the number of levels of each factor. For example if
there are a levels of factor A and b levels of factor B, each experiment
run contains all ab treatment combinations. The effect of a factor is
defined to be the change in output response produced by the change
in the level of the factor. This is frequently called the main effect
because it refers to the primary factors of the interest in the
experiments. Least square method can be used to model output
response. The steps required to obtain the input-output as well as to
provide estimates for the model parameters are as follows:

Step 1: Identify the critical output response variables.

Step 2: Identify the critical input variables (factors) affecting
output response.

Step 3: Identify the strategy of experimentation. Factorial
design is selected.

Step 4: Determine where to set the levels (low-intermediate-
high) of the critical input variables so that the desired output
response is obtained.

Step 5: Randomize the order of experiments. This will balance
out the effect of any nuisance variable, noise, which may
influence the observed output response.

Step 6: Conduct the required experiments outlined in previous
step to get input-output data.

Step 7: Develop mathematical model for the output response
surface.

In this study, 3k factorial design is used; that is, a factorial
arrangement with k factors each at three levels. Therefore, we need
to determine where to set the levels (low-intermediate-high) of
the critical input variables (factors) so that the desired output
response is obtained. A usual notation for the three levels, called
coded values, is —1, 0, +1. This notation facilitates fitting a
regression model relating the response to the factor levels. For
example, the coded design matrix for a factorial design with two
factors, 32, is shown in Table 1.

The levels for each factor are chosen in a way to produce a
balance design, every columns has equal number of +1, —1 and 0.
For a system with two input variables these levels partition the
input space into four orthogonal partitions as shown in Fig. 1.

Choosing the input variables to produce orthogonal partitions
has few advantages. It simplifies the design and minimizes the
variance of the coefficients of the first-order model.

2.2.2. Model development
Once input-output data are obtained, regression analysis may
be used to fit the model. The relationship between the dependent y
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Table 1

Treatment combinations in a 32 design.

Run Input variable 1 Input variable 2 Output
1 -1 -1 Y1
2 -1 0 Y2
3 -1 +1 V3
4 0 -1 Ya
5 0 0 Vs
6 0 +1 Y6
7 +1 -1 Vs
8 +1 0 Vs
9 +1 +1 Yo

(output response) and input variables (x1, X2, X3, . . .) may be known
exactly of the form

V= f(X1,X2,X3,...) +¢& (4)

where ¢ represents the model error, measurement error and other
variations. f is a first- or second-order polynomial which is the
empirical response surface model. The successful application of
regression relies on the identification of a suitable approximation
for f. This will generally be a first-order model of the form

f=Bo+B1x1+ - + Bix (5)

The B terms in Eq. (5) are called the regression coefficients.
These terms comprise the unknown parameter set which can be
estimated by collecting experimental data. The seven experi-
mental design steps outlined in Section 2.2.1 may be used to obtain
these data. The method of least squares is typically used to
estimate, f's, the regression coefficients. Using least squares
method, we can write the model equation (Eq. (5)) in terms of the
obtained experimental data.

Vi = PBo+ BiXi1 + BaXia + ... + BeXik + &
k
:/30+Z,Bjx,-j+s,-; i=1,2,...,n (6)
j=1
where x;; denotes the ith level of variable x; and y; is a observed

response. The method of least squares chooses the 8’s in Eq. (6) so
that the sum of the squares of the errors, ¢;, is minimized. The least

»

h

Input Variable 2

+1 Input Variable 1

*____________
*
"

Fig. 1. Input space in the three-level (32) factorial design.
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squares function is
2
n ) n k
L=37 =3 (o YA )
i—1 i=1 =
The function L is to be minimized with respect to B, 81, - - -» Bk

The gradian minimization method is used to produce k + 1 least
squares normal equations for each unknown regression coefficient.
It is simpler to represent the model in matrix form.

y=XB+¢ (8)
where
Y 1 x11 X2 X1k
Y2 1 X1 X2 Xok
y= , X=
1 x X, X
Yn n1 n2 nk 9)
Bo &o
Bi &1
ﬂ: 5 €=
Br én

We wish to find the vector of least squares estimators, B that
minimizes

n
L=) & =¢e=(y-XB/(y-XB) (10)
i1
The least squares estimators must satisfy
oL P
= =-2Xy+2XXB=0 1
9B y+2X'XB (11)

Eq. (11) is the matrix form of the least squares normal equations.
Thus, the least squares estimator of f's can be shown in the
following equation [21]:

B=xx)"Xy (12)
Therefore, the fitted regression model is expressed as,

y=XB (13)

where ¥ is the predicted response of the model.

2.2.3. Orthogonal design

Itis very important for a linear model that the effect of regression
coefficients to be independent of each other. The implication is that
the roles of the variables can be assessed independent of each other.
The covariance (Cov) is a measure of the linear association between
two terms. Therefore, if the Cov(B; B;)=0 then the regression
coefficients are independent. So, we should choose a design which
admits statistically independent estimates of effects. Orthogonal
design is a design with this interesting property [25]. A design is
orthogonal if the inner product of the columns of X are equal to zero
(3" xipXig = 0). This implies that the off-diagonal elements of the
coded (X’ X) matrix are all zero as well as the levels of the two
corresponding variables are linearly independent.

The goal of orthogonal design is to perform a minimum number
of tests but acquire the most valuable information of the
considered problem [26]. As a result, well-balanced subsets of
level combinations will be chosen. Therefore, the orthogonal
design provides an economic method for studying the effect of
process variables on process response. The factorial design
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discussed in previous section insures orthogonality for obtaining
data. As shown in Table 1, the design columns are all balanced
vertically, i.e., there are an equal number of +1 and —1 values in
each column. That is the sum of all the numbers in each column is
zero. Furthermore, these columns are also horizontally balanced
for each level of each column. These balancing properties result in
design orthogonality which allows us to estimate the effects of
each factor independently of the others.

3. Proposed method

This section investigates the general procedure for nonlinear
modeling as well as controlling systems using the proposed
method. In order to better describe the method, first a simple
model having two inputs and one output is selected. It is worth
noting that the proposed method can be generalized to higher
dimensional systems. The general steps are defined as following.

3.1. Establish the upper and lower margins for the inputs

The assignment process to define the upper and lower margins
can be intuitive or it can be based on some algorithmic or logical
operation. It is however, usually derived through understanding
and prior knowledge about the system. For example, if tempera-
ture is used as an input variable to define the range of human
comfort we get one range, and if temperature is used to define the
range of safe operating temperature for a steam turbine we get
another range. If prior knowledge about the system is not available
the designer may need to conduct a series of baseline experiments
to help establish these margins [21]. This may be viewed as an
algorithmic or logical approach.

3.2. Defining fuzzy membership functions

The choice of membership functions will help define output
surface which itself is made of combining multiple surfaces. In
order to insure smooth transition among these surfaces, the
number of membership function must be even, same type and
input domain must be equally divided (Fig. 2). It must be noted that
the method is not sensitive to the number of membership
functions. These requirements will be more discussed in following
sections.

3.3. Training data

Having an appropriate set of input-output training data is one
of the most important factors in designing T-S systems. This data
should explain the behavior of the unknown system. However,
creating data is not an easy task and requires spending excessive
time and resources. The main goal of the proposed method is to
design a suitable system which uses the least number of training
data. A three-level factorial design is used to obtain the input-
output data. If n indicates the number of inputs, the total number of
required data is computed by Eq. (14).

Total number of data = 3" (14)

min max

Fig. 2. Membership functions.

VVB

VB

RSM, RSM,

RSM; RSM,

VS

VVS

Small

Very Very Small _
’ ’ Very Small

. Very Very Big
Very Big

Fig. 3. Relationship between inputs and output.

Each input has three levels (low, medium and high). For a
system with two inputs, the input space is divided as shown in
Fig. 1. The star points in Fig. 1, indicate the location in input space
where experiments should be conducted in order to collect the
output response values.

3.4. Consequents part of the fuzzy rules

Least square is used to construct the consequents part of the
fuzzy rules in T-S fuzzy system. The input domain is divided
into four sections. Each section is represented by a first-order
surface (RSM;-RSMy). Using least square method, each surface
is formed with the four output data obtained by performing the
physical experiments. Alternatively, the values for the output
may be obtained from previous history or some expert knowl-
edge about the system. If x; and x, are first and second input
variables and a; are constant parameters, then the four response
surfaces model (RSM) are defined by Eq. (15).

RSM; =y = anixy + appX + a3
RSM; =y, = az1X1 + a22X3 + d23 (15)
RSM3 = y3 = a31X; + d32X2 + ds3
RSMy = y4 = G41X1 + Gg2X2 + 43

Fig. 3 will clearly illustrate the relationship between inputs and
output.

3.5. Fuzzy rules and deffuzification

Assuming six membership functions for each input, as in Fig. 3,
the fuzzy rules for this system are given in Table 2.

Finally, the weighted average method is employed to deffuzzify
the output variable (Eq. (3)).

4. Illustrative examples

In this section, we demonstrate the effectiveness of our approach
by showing results of two simulations, controlling the inverted
pendulum around its unstable equilibrium point as well as modeling
a nonlinear function. These two experiments have been performed
using a PC with 2.67-GHz CPU and 512-MB RAM memory.

4.1. Inverted pendulum

The inverted pendulum is a highly nonlinear and unstable
system. It is therefore often used as a benchmark for verifying the
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Table 2
Fuzzy rules.
X1 X2

VVS VS S B VB VVB
VVS RSM3 RSM3 RSM3 RSM, RSM, RSM,
'S RSM; RSM; RSM; RSM, RSM, RSM,
S RSM3 RSM; RSM3 RSM, RSM, RSM,
B RSM4 RSM, RSM, RSM;4 RSM; RSM;
VB RSM, RSM4 RSM4 RSM; RSM; RSM;
VVB RSM, RSM, RSM, RSM; RSM; RSM;

performance and effectiveness of new control methods. The
system consists of an inverted pole hinged on a cart which is free to
move in the horizontal direction. The inverted pendulum
inherently has two equilibria, one of which is stable while the
other is unstable. The stable equilibrium corresponds to a state in
which the pendulum is pointing downwards. In the absence of any
control force, the system will naturally return to this state. The
unstable equilibrium corresponds to a state in which the
pendulum points strictly upwards and, thus, requires a control
force to maintain this position. The basic control objective of the
inverted pendulum problem is to maintain the unstable equili-
brium position when the pendulum initially starts with some
nonzero angle from the vertical position. An inverted pendulum is
shown in Fig. 4. The nonlinear dynamic equations are given by
Eq. (16) [27].

(M+m)k+mlécos§—ml@25in9:F (16)
mlx cos 6 + 4/3(ml*6) — mglsin6 = 0

where 6 (deg) and 6 (deg/s) are the angular displacement and
angular velocity of the pole, g (acceleration due to the gravity) is
9.8 m/s%, M (mass of the cart)is 1 kg, m (mass of the pole)is 0.1 kg, I
(half length of the pole) is 0.5m and F is the application force in
Newton which is the required force to bring the pole into
equilibrium position. The seven experimental design steps out-
lined in Section 2.2.1 may be used to obtain input-output data.

Step 1: Force is the critical output of the controller.

Step 2: @ and 6 are the critical input variables (factors) affecting
the required force.

Step 3: Factorial design is selected as the experiment strategy.
Step 4: The low-intermediate-high levels can be chosen by the
designer according to feasible domains of input variables or
from some prior knowledge [28]. In this example, the levels of 6
and 6 are varied within (—20, 0, 20) and (-70, 0, 70)
respectively.

Step 5 & 6: If no prior knowledge about system performance is
available, then this step requires performing the actual
experiment to obtain output data. The order in which the

A

Fig. 4. Inverted pendulum.

experiments are conducted must be randomized. However, in
this example, the governing equations of motion are available
therefore the outputs are obtained by conducting simulations.
Results are shown in Table 3.

Step 7: Four linear surfaces defined in Eq. (15) can now be
formed through the use of least square method. Results are
shown in Eq. (17). The order of numbering is inspired by Fig. 3.

RSm1 =17.18870 + 4‘91116:’ +15
RSm2 =34.37750 + 491110 + 1.5 (17)
RSm3 =17.188760 +4.91116 — 1.5
RSm4 = 34.37750 + 491116 — 1.5

The seven steps completed thus far, allowed us to derive the
consequence part of the fuzzy rules. Next, membership functions
and fuzzy rules must be defined in order to design the fuzzy
controller. 0 (deg) and & (deg/s) are the controller inputs and are
varied within [-20, 20] and [-70, 70] respectively. For each input
variable, six membership functions are assumed and are divided
equally between the two limits (Fig. 5).

The fuzzy rules are listed in Table 2. The overall response of the
system is shown in Fig. 6.

Performance of the controller under various initial conditions is
evaluated. The output responses are plotted in Fig. 7.

Fig. 7 indicates that the controller performs well even with a
large deviation (—71.4° <0 < 67.9°) from the equilibrium point.
Next, we compare our proposed controller with other recent fuzzy
controllers. Roopaei et al. [29] proposed a novel adaptive fuzzy
sliding mode control (AFSMC) methodology based on the
integration of sliding mode control (SMC) and adaptive fuzzy
control (AFC). They evaluate the performance of the proposed
AFSMC for the inverted pendulum problem with the same
parameters as used in our study. The comparison between AFSMC
[29], classical SMC [29] and our proposed controller are performed
in Fig. 8.

As shown in Fig. 8, our proposed controller returns more rapidly
to the equilibrium point.

The other comparison is performed with Chen et al. [30]. They
proposed a GA-based adaptive fuzzy sliding mode controller (GA-
based AFSMC) and use it for the problem of balancing an inverted
pendulum on a cart. The comparison between our controller and
GA-based AFSMC with the same initial condition of 6=60° is
shown in Fig. 9.

Response of our controller is slightly slower than GA-based
AFSMC. However, our control force is significantly smaller than
GA-based AFSMC. It may be concluded that the overall behavior of
our proposed controller is better than GA-based AFSMC.

Finally, a comparison is performed with the fuzzy controller
proposed by Sun and Er [31]. Results indicate that our proposed
controller significantly out performs controller proposed by [31]
(Fig. 10).

The controller proposed by [31] becomes unstable after 41.83°.
Our proposed controller not only can stabilize the system faster

Table 3
Input-output training data.

Inputs Output

6 (deg) 0 (deg/s) Force
1 -20 -70 -12
2 -20 0 -9
3 -20 70 -6
4 0 -70 -9
5 0 0 0
6 0 70 9
7 20 -70 6
8 20 0 9
9 20 70 12
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Fig. 5. Membership functions for inverted pendulum problem.
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« Training Data

Force (N)
o

.20

Fig. 6. Control surface.

than the [31] controller, but also as shown in Fig. 7, it remains
stable for a significantly larger deviations from vertical, up to 67.9.
Based on the three comparisons made, we conclude that our
proposed controller is suitable for nonlinear control of a system
such as inverted pendulum. It should be noted that all the
controllers used for comparison each used a different initial
condition. This is why the comparison is not presented in a one
chart.

4.2. Nonlinear system modeling

Due to their nonlinear properties, T-S fuzzy systems are well
known to be capable of modeling nonlinear functions. The
modeling methods can be categorized into nonincremental or
incremental, depending on how data is presented to the model. For

(a) 80

Pole angle (deg)

(b)

Force (N)

—_
[
f=

Pole angle (rad)

(b)

Force (N)

- |=-=-=Unstable
— 67.9°
Stable T )
[ 150
Oﬂ

._150
m———— 400
w71 4%
--=== Unstable

601

Time (Sec)

15 2 25 3
Time (Sec)

Fig. 7. The response of the system.

——Proposed controller
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------- Classical SMC [29] ||
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T Classical SMC [29]
20 @ V
\
15§ |
1
1
10 fif i
[}
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5114,
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Fig. 8. Comparison with AFSMC and classical SMC.
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Fig. 9. Comparison with GA-based AFSMC.

nonincremental methods, similar to our proposed methods, the
entire data set is considered all at once. On the other hand, the
incremental modeling methods, consider training data one at a
time [20].

To show the ability of the proposed method to model a
nonlinear function, a nonlinear function given by the following
formula [32] is used.
y=2XpsinX; +X1€0sx;, 0<xy<m 0<x;<m (18)
This function has no special meaning. It is meant to only provide a
test-bed function for testing the proposed method. It should be
noted that our objective in this example is not to improve the
results obtained by other methods, but to investigate if the
modeling performance of our proposed method with nine training
data is satisfactory.

To obtain training data, the seven steps outlined in Section 2.2.1
is once again performed. The critical inputs and outputs may be

40

Proposed controller
===-Y.L.Sun & M.J.Er [31]|

30

20

10

Pole angle (deg)

v

0 1 2 3 4 5
Time (Sec)

Fig. 10. Comparison between two controller.

Table 4
Input-output training data.
Inputs Output
X1 X2 y
1 0 0 0
2 0 /2 0
3 0 T 0
4 /2 0 /2
5 /2 7[2 /2
6 /2 T /2
7 b4 0 b4
8 T /2 0
9 4 T -7

obtained by physical examination of the nonlinear function that
needs to be estimated. The 32 factorial is used. Each input is divided
into three levels. The output values (Table 4) are then obtained by
placing the input values into the original function (Eq. (18)).

Six membership functions are assumed for each input variable
and are divided equally within their limits. See Fig. 11.

The output surfaces are produced by least square method.

RSM; — —2x; — X, + 7.0686
RSMZ = X1

RSM; — x;

RSMy = —X; + 2.3562

(19)

Fuzzy rules are generated according to Table 2. The overall
behaviors of the modeled and actual system are shown in Fig. 12.

To show the validity of the predicted function, testing data has
been taken by sampling x; and x, with a sampling period of (57/20)
in the range of [7r/40, 3977/40] for each input. The testing dataset
will therefore contain 400 data points. Next, normalized root-
mean-square-error (NRMSE) is used to measure the adequacy of
the model. The model with the smallest value for NRMSE will be the

—
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x1
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Fig. 11. Membership functions for nonlinear function.
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Fig. 12. (a) Output of the original function and (b) output of the T-S model
(predicted).

superior model. The NRMSE is defined as follows [33]:

NRMSE = (20)

Using nine data points for training, the NRMSE values obtained for
training and testing data is 0.25 and 0.3549, respectively. For
comparison, the NRMSE values of other neurofuzzy modeling
methods, MFC [20], ACA [34], SCRG [35], SM [36] and Rezaee’s
method [37] are presented. These methods use different technique
to extract fuzzy rules from training data. Additionally, they all use
441 training data points. Ouyang et al. [20] developed an
incrementally merge-based fuzzy clustering (MFC) method, Juang
[34] used an aligned clustering-based algorithm (ACA), Lee and
Ouyang [35] used a self-constructing rule generation algorithm
(SCRG), Setnes et al. [36] proposed a merge based method for fuzzy
rule simplification (SM), and Rezaee and Fazel Zarandi [37] used an
initial rule base and update it by a module to reduce the system
error. The results of the first four methods for modeling the
nonlinear function (Eq. (18)) are reported in [20]. They arranged
the 441 training data points in increasing, decreasing, interleaving
and random order patterns. In each arrangement, they obtained a
different value for NRMSE. Rezaee and Fazel Zarandi [37] varied

(a)o 34| —8—16 Fuzzy Rules |
’ —6— 36 Fuzzy Rules
% 0.32! —©&—64 Fuzzy Rules ||
[m]
2 03t
=
= 0.28)
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w 0.26}
2
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022} . .
92549 81 121 169 225 286 361 441
Number of Training Data
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Fig. 13. NRMSE for training and testing data.

number of fuzzy rules and obtained different values of NRMSE.
These values are reported as range in Table 5.

NRMSE value of our method for training is larger than the
minimum but smaller than the maximum range value among the
five methods. As expected, NRMSE value of our method for testing
is not as impressive and is higher than all other methods. However,
it should be noted that our method used significantly fewer
number of training data, 9 versus 441, in comparison with the
other methods. Therefore, the increase in NRMSE is rather logical.
Moreover, the value of the NRMSE for MFC, ACA, SCRG and SM are
significantly varied for different sequences of training data. The
value of the NRMSE for Rezaee is also significantly varied for
different number of fuzzy rules. However, our method is not
sensitive to the order of the training data as well as the number of
fuzzy rules. In summary, although in some cases, other methods
may be more precise, but they seem to sacrifice the simplicity of
the implementations.

Table 5
NRMSE values for different modeling methods.

Training Testing

Number of data NRMSE Number of data NRMSE
MEFC [20] 441 0.184-0.225 400 0.176-0.222
ACA [34] 441 0.161-0.291 400 0.147-0.287
SCRG [35] 441 0.144-0.273 400 0.121-0.259
SM [36] 441 0.155-0.291 - 0.150-0.289
Rezaee and Fazel Zarandi [37] 441 0.026-0.389 400 Not reported
Proposed method 9 0.25 400 0.355
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Fig. 14. Required training time.

Our proposed method is also not sensitive to the number of
membership functions and consequently fuzzy rules. As shown in
Fig. 13, with nine data points, the numbers of fuzzy rules were
varied from sixteen to sixty-four while NRMSE values remained
practically unchanged. Furthermore, if a large number of training
data is available, we can still apply the proposed method. In this
case, more accurate surfaces for consequences part of fuzzy rules
could be obtained. To show the validity of these two advantages,
NRMSE values for different number of rules as well as different
number of training data is calculated. Results are shown in Fig. 13.

As shown in Fig. 13, as the number of the training data increases
NRMSE values for both testing and training data decreases. Clearly
obtaining a lower value of NRMSE for testing data is more
important than that obtained for training data. Our best case
NRMSE is 0.2066 which is in the mid-range (0.121-0.289) of all
method compared in Table 5.

In addition to reduction in the number of training data, our
proposed method has a low learning time. If training data is
changed, it will only need to compute the four surfaces for the
consequence part of the fuzzy rules. Input membership functions
and fuzzy rules will not change. Fig. 14 illustrates the required time
for training a new fuzzy model as the number of training data is
increased.

Fast learning is especially valuable in real time processes. As an
example a biped robot is a non-smooth nonlinear mechanical
system [38] which requires a fast method for its modeling and
control in different environmental conditions.

5. Conclusions

We proposed a simple and systematic procedure for design of
T-S fuzzy systems, based on design of experiments methodology.
The significant contribution of the study is the reduction of
training data required for the T-S fuzzy systems while
obtaining good system performance. The systematic approach
facilitates conducting the T-S design in comparison with other
methods. Membership functions and fuzzy rules were defined
in a straightforward manner. Additionally, the method offers an
extremely low learning time.

To demonstrate the effectiveness, the proposed method was
applied to control of an inverted pendulum as well as modeling
of a nonlinear function. In the case of inverted pendulum, we
demonstrated a significant performance improvement. In the case
of the nonlinear function modeling, we showed low approximation
errors while significantly reducing the training data.
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