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Abstract: 
The existing solutions of Navier-Stokes and energy equations in the literature regarding the three-
dimensional problem of stagnation-point flow either on a flat plate or on a cylinder with or without 
transpiration are only for the case of axisymmetric formulation.  In this study the non-axisymmetric 
three-dimensional steady viscous stagnation-point flow and heat transfer in the vicinity of a flat 
plate are investigated when suction and blowing are also considered in the model.  A similarity 
solution of the Navier-Stokes equations and energy equation is presented in this problem.  A 
reduction of these equations is obtained by use of appropriate similarity transformations.  Velocity 
profiles and surface stress-tensors and temperature profiles along with pressure profile are presented 
for different values of velocity ratios, and Prandtl number for sample cases of transpiration. 
 

1- Introduction 
There are many exact solutions for Navier-Stocks and energy equations regarding the problem of 
stagnation-point flow and heat transfer in the vicinity of a flat plate or a cylinder but in all the three-
dimensional cases, only axisymmetric formulation of the problem has been considered.  
Fundamental studies are including by: Stokes [1851], Hiemenz [1911], Karman [1921], Griffith and 
Meredith [1936], Homann [1936], Wang [1974], Howarth [1951], Stuart [1956], Glauert [1956], 
Stuart [1959], Kelly [1965], Gorla [1976], Wang [1973], Cunning  et al. [1998], Jung et al. [1992], 
Wang [1989], Weidman et al. [1997], Saleh and Rahimi [2004], Rahimi and Saleh [2007], Rahimi 
and Saleh [2008].  
In this study the nonaxisymmetric three-dimensional steady viscous stagnation-point flow and heat 
transfer in the vicinity of a flat plate are investigated in the presence of suction and blowing.  The 
external fluid, along z -direction, with strain rate a impinges on this flat plate and produces a two-
dimensional flow with different components of velocity on the plate. A similarity solution of the 
Navier-Stokes equations and energy equation is derived in this problem.  A reduction of these 
equations is obtained by use of these appropriate similarity transformations.  The obtained coupled 
ordinary differential equations are solved using numerical techniques.  Velocity profiles and surface 
stress-tensors along with temperature profiles are presented for different values of impinging fluid 
strain rate, different forms of jet arrangements, Prandtl number, and sample values of suction and 
blowing parameter. 
 

2- Problem Formulation 
Flow is considered in Cartesian coordinates ),,( zyx with corresponding velocity 
components ),,( wvu .  We consider the laminar steady incompressible flow and heat transfer of a 
viscous fluid in the neighborhood of stagnation-point on a flat plate located in the plane 0=z .  An 
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external fluid, along z -direction, with strain rate a  impinges on this flat plate and produces a two-
dimensional flow with different components of velocity on the plate.  The governing equations are 
the steady Navier-Stokes and energy equations in Cartesian coordinates. 
 
3- Self-Similar Solution 
     3-1 Fluid Flow Solution 
An inviscid solution of the governing equations, valid far above the plane, is given by: 
                                xaU λ=  ,     10 ≤< λ                                                                                       (1) 
                                ayV =                                                                                                                (2) 
                               0)1( Wzaw −+−= λ                                                                                            (3) 
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where ρ  is density, 0p  is stagnation pressure and λ  is the coefficient which indicates the 
difference between the velocity components in x and y directions.   The velocity components in 
these directions are the same if 1=λ , indicating that the each two adjacent single jets are far enough 
from each other and therefore there is no interactions between them.  oW  is suction or blowing rate 
in z  direction. 
 
A reduction of the Navier-Stokes equations is sought by the following coordinate separation in 
which the solution of the viscous problem inside the boundary layer is obtained by composing the 
inviscid and viscous parts of the velocity components as the following: 
 
                )(ηλ fxau ′=  ,     10 ≤< λ   ,    )]()([ ηη gfayv ′+′=   
               0)]()1()([ Wfgaw −++−= ηλην  ,          za νη /=     
                                                                               
in which the terms involving )(ηf and )(ηg comprise the Cartesian similarity form for steady 
stagnation-point flow and prime denotes differentiation with respect to η .  Note, boundary layer is 
defined here as the edge of the points where their velocity is 99% of their corresponding potential 
velocity.  These transformations satisfy continuity automatically and their insertion into momentum 
equations yields a coupled system of ordinary differential equations in terms of )(ηf and )(ηg and 
an expression for the pressure: 
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in which ( ) .lim Constg ==
∞→η
ηγ , and :   

υa
W

S 0= ,  S>0: Suction &     S<0: Blowing. 

The boundary conditions are: 
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Fig. 3. Typical u and v velocity components for  
                  01.0=λ . 

 

 
Fig. 4. typical u and v velocity components for  
          1.0=λ . 

 
Fig. 5. Typical u and v velocity components for 
            50.0=λ . 

 
Fig. 6. Typical u and v velocity components for   
            95.0=λ . 
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            Fig. 7. Typical w- component of velocity for 
                         01.0=λ . 

 

 
            Fig. 8. Typical w-component of velocity for  
                        10.0=λ . 

 

             
          Fig. 9. Typical w-component of velocity for 
                    50.0=λ .  

 

 
             Fig. 10. Typical w-component of velocity for 
                           95.0=λ . 

 
 
 
 

 
:0=η 0=f , 0=′f  , 0=g  , 0=′g                                                                                          (8) 

:∞→η .0,1 =′=′ gf                                                                                                                   (9) 
Note that, when 1=λ the case of axisymmetric three-dimensional results are obtained, Homman 
[5].  When 0=λ , the results are the same as two-dimensional problem. 
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3.2 Heat Transfer Solution: 
To transform the energy equation into a non-dimensional form for the case of defined wall 
temperature, we introduce: 
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Making use of similarity transformations, the energy equation may be written as: 
 
                                            0))1((.Pr =−++′+′′ Sfg λθθ                                                          (11)       
with the boundary conditions as: 
            :0=η                   1=θ   ,           :∞→η               0=θ                                                    (12) 
Where αν /Pr = , is Prandtl number and prime indicates differentiation with respect to η . The 
Equations (5), (6), and (11) are solved numerically using a shooting method trial and error and 
based on the Runge-Kutta algorithm and the results are presented for selected values of λ  and Pr in 
following sections.   
   
4- Shear-Stress 
The shear-stress at the wall surface is calculated from: 
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where µ  is the fluid viscosity.  Using the similarity transformations, the shear-stress at the flat plate 
surface becomes: 
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This quantity is presented for different values of λ  in later sections. 
                       
5- Presentation of Results 
The solution of the self-similar Equations (5), (6), (7) and (11) along with the surface shear-stresses 
for different values of velocity ratios and Prandtl numbers are presented. 
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