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Abstract - This paper presents a new approach to
clustering fuzzy data, called Extensional Tree (ET)
clustering algorithm by defining a dendrogram over fuzzy
data and using a new metric between fuzzy numbers based
on α-cuts.  All the similar previous methods extended FCM
to support fuzzy data. The present work is based on
hierarchical clustering algorithm to cluster fuzzy data. In
this novel approach a dendrogram is drawn over fuzzy or
crisp data and then the desired clusters are extracted.
Finally we compare this approach with some of the newly
presented methods in the literature. The major advantage of
ET is its fault tolerance against noisy samples. The overall
experiments show prominence of our proposed method in
comparison with other presented works.
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1 Introduction
Clustering methods are widely used in many scientific

fields such as:- image processing, pattern recognition, data
mining, machine learning, geology etc. Although there are
many clustering algorithms, only few of them can cluster
fuzzy data beside crisp data. For example the proposed
algorithms [5,7,8,13] just work on crisp data. Fuzzy data is
another type of data that is imprecise or with a source of
uncertainty. This data type has been extensively used in
natural language, social science, knowledge representation
etc., due to its closeness with our way of life. Therefore we
need clustering algorithms that can support this kind of
data. Recently some methods have been presented in this
field. Most of these algorithms extended FCM (that is the
one of the widely used fuzzy clustering models [3, 9]) to
cluster fuzzy data [4, 12, 14]. Hathaway et al. proposed
FCM for fuzzy data. They defined a dissimilarity measure
for two symmetric Trapezoidal Fuzzy Numbers (TFNs) and
used it for FCM clustering [12]. In another example Miin-
Shen Yang et al. presented Fuzzy clustering algorithms for
mixed feature variables [4]. As an important deficiency, all
of these algorithms cannot tolerate noise on samples. The
proposed algorithm (ET) can resolve this defect by
discovering noisy samples and clustering them into separate
clusters.

Due to the usage of hierarchical method, the proposed
algorithm has inherited all the benefits of this method, since
it is very illustrative and clear that we can guesstimate
dispersion of clusters in a glance at the dendrogram as well
as its fault tolerance against noisy data.

This paper is organized as follows. In the next section
we review hierarchical clustering method. The proposed
distance and the new clustering algorithm (ET) are
explained in section 3 & 4. In section 5 we focused on
noisy samples. In the last section we evaluate the
performance of ET and compare it to other similar proposed
algorithms.

2 Review of hierarchical clustering
method
Hierarchical clustering procedures are the most

commonly used method of summarizing data structure. A
hierarchical tree is a nested set of partitions represented by
a tree diagram or dendrogram (see Fig. 1). Sectioning a tree
at a particular level produces a partition into g disjoint
groups. If two groups are chosen from different partitions
(the results of partitioning at different levels) then either the
groups are disjoint or one group wholly contains the other
[1].

Fig. 1. Dendrogram is drawn over six samples.
The hierarchical algorithm contained the following

procedure, where c is the desired number of final clusters. If
c=1 then the dendrogram could be created [2].
Algorithm (Agglomerative hierarchical clustering)
v Begin

v        Initialize },{,, ii xDncc ¬¬
Ù

 i = 1,…, n

v       Do 1-¬
ÙÙ

cc
v       Find nearest clusters, say, Di and Dj
v       Merge Di and Dj

v       Until
Ù

= cc
v       Return c clusters
v  End

Here c=1. By this technique we will draw cluster’s
dendrogram and use it to specify clusters. So at first,
dissimilarity matrix is created. This matrix shows distances
between each pair of samples. Suppose that at the
beginning, every sample is a cluster with one sample. Then
in each step two clusters that are closer to each other get
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selected and joined as a new cluster. At the end, we have a
nested set of clusters that can be analyzed.

In the hierarchical method we use several mechanisms
to obtain the distance of two clusters. One of which is
single-link method. In this method the distance between
two clusters is defined as the distance between their closest
members of two clusters. In other words the distance
between two groups, A and B, is defined as:

Another mechanism is complete-link. In this method the
distance of two clusters is defined as the distance between
their furthest members of two clusters, i.e., the distance
between two groups, A and B, is

In this method, we make sure that other samples of two
clusters are closer than the distance between them.

3 The proposed dissimilarity measure
based on α-cuts
In this section, we consider the fuzzy data definition and

explain the new method to obtain the distance between two
fuzzy numbers. We define fuzzy data based on Hathaway’s
parametric model. We can extend symmetric trapezoidal
fuzzy numbers (TFNs) to all TFNs by defining its
parameterization as shown in Fig. 2. Parameterization of a
trapezoidal fuzzy number A  is denoted by

),,,( 4321 aaaamA =  where 4321 ,,, aaaa  are called
center, inner diameter, left outer radius and right outer
radius respectively [4] [15].

The benefit of this representation is that we can easily
show four kinds of fuzzy data (see Fig.  3). According to
the representation above, A = [a1,  0, 0, 0], B = [b1,  b2,  b3,
b4], C = [c1, c2, 0, 0], D= [d1, 0, d3, d4].

Let ),,,( 4321 aaaamA= and ),,,( 4321 bbbbmB = be any
two fuzzy data. Hathaway et al. [12] defined dissimilarity
for two TFNs A  and B  as follows:
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However, they did not consider the left or right shapes
of numbers (i.e. LR- type TFN). Yang et al. [4] gave a
distance for two symmetric TFNs A  and B  based on yang
and Ko's distance definition [15] as follows:
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Here, we present a new method to obtain the distance
between two trapezoidal fuzzy numbers that is based on α-
cuts.
Definition 3.1:  A fuzzy number (or interval) u is completely
determined by any pair ),( uuu =  of functions

Ruu ®]1,0[:, , defining the end-points of the a -cuts,
satisfying the three conditions [10]:

v )(au  is a bounded monotonic increasing (non-
decreasing) left-continuous function for all ( ]1,0Îa
and right-continuous for 0=a .

v )(au  is a bounded monotonic decreasing (non-
increasing) left-continuous function for all ( ]1,0Îa
and right-continuous for 0=a .

v For all ( ]1,0Îa  we have: )()( aa uu £  The notation

)](),([)( aaa uuu = ]1,0[, Îa
explicitly denoted the a -cuts of u. We refer to u  and
u as the lower and upper branches on u, respectively.

Definition 3.2:    Let  L  (and  R)  be  decreasing,  shape
functions from R+ to [0, 1] with L(0)=1, L(x)<1 for all x>0,
L(x)>0 for all x < 1, L(1)=0 or (L(x)>0 for all x and
L(+∞)=0). A fuzzy number X with its membership function
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is called an LR-type TFN where ,0>a 0>b are called
the left and right spreads respectively. Symbolically, X is
denoted by LRmm ),,,(=X 21 ba . A fuzzy number of LR-
type, LRmmu ),,,( 21 bg= , has a -cuts as follows:

)].(),([)( 1
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1
1 abaga -- +-= RmLmu (1)

Definition 3.3:  On the other hand the distance between two
arbitrary fuzzy numbers ),( uuu =  and ),( vvv =  is
defined as follows [6]:
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Definition 3.4:   The  notation  for  the  parameterization  of  a
TFN A is ),,,( 4321 aaaamA =  where we refer to 1a  as
the center, 2a  as  the  inner  diameter, 3a  as the left outer
radius and 4a  as the right outer radius.
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Fig. 2. Parameterization of trapezoidal fuzzy data.

Fig. 3. Four kinds of trapezoidal fuzzy data.
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Thus, according to LR-type TFN representation, A  is
denoted by

,),,
2
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And also since L and R are linear )1)()(( xxRxL -==
from Eq. (1) and Eq. (3) we obtain,
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Thus,  for  any  given  two  TFNs ),,,( 4321 aaaamA=  and
),,,( 4321 bbbbmB =  we have the following distance

),(2 BAfd , by Eq. (2) and Eq. (4) as follows:
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4 The proposed extensional tree (ET)
clustering algorithm

Now, we explain our proposed algorithm for clustering
fuzzy data. This algorithm has five steps that will be
explained in this section.

The Proposed Clustering Algorithm (ET)

v Begin

v       Initialize

ú
ú
ú
ú
ú
ú

û

ù
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(n=number of samples, each row of x identifies

a fuzzy data).

v      Compute the distance between each pair of

fuzzy data (see section 3).

v      Create dissimilarity matrix.

v      Create Fuzzy dendrogram.

v      Extract clusters from fuzzy dendrogram (with

inconsistency coefficient or max number of

clusters).

v End

Step1: For each fuzzy data, we need four crisp numbers to
show  it.  So  with  x  (is  an  n-by-4  matrix)  we  can
present n fuzzy data samples.

Here we explain the ET algorithm to cluster fuzzy
data by a simple example. Suppose that we have
six fuzzy data (see Fig. 4).
A = [2.5; 2; 0.5; 1], B = [2.5; 0; 1; 1],
C = [7; 1; 0.5; 1], D = [8; 0; 1; 1],
E = [8.5; 0; 0.5; 0.5], F = [4.5; 0; 1; 1].

Fig. 4. Six fuzzy data A, B, C, D and E.
So, x matrix is shown as below.
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Step2: In this stage, we use our new formula to reach the
distance between each two fuzzy data samples
(For example ),( BAd f =1.26, ),( CAd f =6.40, …).

Step3: Now, we can easily create dissimilarity matrix. In
this matrix each item shows the distance between
two fuzzy data. This matrix is used for creating
fuzzy dendrogram.

Table 1: Dissimilarity matrix for the samples in Fig. 4.

 A  B C D E F
A 0 1.26 6.40 7.70 8.46 2.93
B 0 6.56 7.78 8.49 2.83
C 0 1.35 2.14 3.75
D 0 0.82 4.95
E 0 5.67
F 0

Step4: Here, we should choose a method such as single-
link, complete-link, median, etc. to create fuzzy
dendrogram and form our clusters. We discussed
two methods of them (single-link and complete-
link) in section 2. Each method has its priority and
can be useful in some cases.
v 'single-link '   --- nearest distance
v 'complete-link '   --- furthest distance
v 'average' --- unweighted average distance

(UPGMA) (also known as group average)
v 'weighted' --- weighted average distance

(WPGMA)
v 'centroid'   --- unweighted center of mass distance

(UPGMC)
v 'median'  --- weighted center of mass distance

(WPGMC)
v 'ward'  --- inner squared distance (minimum

variance algorithm)
If we run single-link method on the dissimilarity
matrix that is shown in Table 1, we reach these results.
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Table 2: The stages (a, b, c, d) of executing
single-link method on Table 1.

Table 2.a
A B C {D,E} F

A 0 1.26 6.40 7.70 2.93
B 0 6.56 7.78 2.83
C 0 1.35 3.75

{D,E} 0 4.95
F 0

Table 2.b
{A, B} C {D,E} F

{A,B} 0 6.40 7.70 2.83
C 0 1.35 3.75

{D,E} 0 4.95
F 0

Table 2.c
{A, B} {C,D,E} F

{A, B} 0 6.40 2.83
{C,D,E} 0 3.75

F 0
Table 2.d

You can see the produced dendrogram in this case, in
Fig. 5.

Fig. 5. Fuzzy dendrogram for the example.

Step5: This is the most important stage in our algorithm.
Here we should extract the clusters from the fuzzy
dendrogram. For this purpose there are two
solutions. The first solution is based on the max
number of clusters. For example if we want to
have two clusters, it is enough to aggregate
samples  that  are  in  each  sub  tree  of  dendrogram
root, in a new cluster. In other words, we can
divide dendrogram from the highest level into two
clusters. This result is deducible from Fig. 4.

The other solution is based on the inconsistency
coefficient [16]. In this way we define a label for
each link in our dendrogram. This label shows how
much two clusters are similar. With this measure,

we can join clusters if the inconsistency value is
less than specific threshold. The inconsistency
coefficient characterizes each link in a cluster tree
by comparing its length with the average length of
other links at the same level of the dendrogram.
The higher the value of this coefficient, the less
similar the clusters connected by the link. To
calculate inconsistency coefficient we should
define two matrixes.

Linkage matrix is an (n-1)-by-3 matrix containing
cluster tree information. The value of Linkage matrix
for Fig. 4 is shown below.

Table 3: Linkage matrix for the samples in Fig. 4.

The other matrix is Inconsistency matrix that is an (n-1)-
by-4, formatted as follows.

Table 4: Inconsistency matrix properties

Column Description

1 Mean of the lengths of all the
links included in the calculation.

2 Standard deviation of all the links
included in the calculation.

3 Number of links included in the
calculation.

4 Inconsistency coefficient.

We used the distance between two clusters, as length of
the link that connects them to each other. If we name
Linkage matrix, Z and Inconsistency matrix, W then the
inconsistency coefficient for each link,   is calculated by
the following formula:

W( k , 4) = ( Z( k , 3 ) - W( k , 1) ) / W( k, 2) (5)
For leaf nodes, nodes that have no further nodes under
them, the inconsistency coefficient is set to zero.

Table 5: Inconsistency matrix for our example.

0.82 0 1 0
1.26 0 1 0
1.08 0.38 2 0.71
2.04 1.11 2 0.71
2.00 1.24 5 1.41

To understand this matrix, pay attention to the last row of
inconsistency matrix. The calculation consists of five links,
so the value of third column is five. Also the mean of used
links is:

00.2
5

75.383.235.126.182.0
=

++++
=m

And calculated Standard deviation is 1.24. For computing
inconsistency coefficient we used formula (5).

W(5 ,4) = ( Z( 5 , 3 ) - W( 5 , 1) ) / W( 5, 2)
= (3.75-2.00) / 1.24 = 1.41

In the following figure, you can see the inconsistency
coefficient related to each link.

{A,B,F} {C,D,E}
{A,B,F} 0 3.75
{C,D,E} 0

D E 0.82
A B 1.26
C {D,E} 1.35

{A,B} F 2.83
{A,B,F} {C,D,E} 3.75
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Fig. 6. Inconsistency coefficient related to each link.
Now, we can use inconsistency coefficient to form

clusters. If we define threshold=1, then we have two
clusters C1={A, B, F} and C2={C, D, E}.

According to Fig. 4 this result is perfectly acceptable.
Therefore, in this method the number of clusters is defined
via inconsistency coefficient and we don’t have to define it.

5 Experimental results
In this section, we present an example that is shown the

performance of the ET algorithm in comparison with the
similar algorithms. An important benefit of this algorithm is
its fault tolerance against noisy samples. We have tree
structure of clusters and by analyzing that exactly, we can
discover the noisy samples in two cases, low SNR1 and
medium SNR.
Case I: Low SNR

Indisputably, noisy samples are far from other samples,
so the inconsistency coefficient between noisy samples and
normal samples is larger. Thus, we can find noisy samples
when the inconsistency coefficient grows up suddenly. In
other words, this algorithm, noisy samples are classified in
separated clusters. Usually, noisy samples appear in highest
level of dendrogram.
Case II: Medium Level of SNR

ET algorithm can tolerate the medium domain of noise
on some samples. For example if we have a little noise on a
sample, it shouldn’t have any effect on our clustering. In the
other words, medium level of noise must not effect over
clusters or clustering procedure must be robust against
medium level of noise.
We consider a data set with six triangular fuzzy data (Fig.
7).  We cluster  them and then  put  a  bit  noise  on  a  sample.
Afterwards we cluster them again and compare the obtained
results in two stages (Low level of noise on some samples).
After clustering these samples, we obtained a dendrogram
that is shown in Fig. 8.

1 Signal to Noise Ratio

Fig. 8. Fuzzy dendrogram for the samples in Fig. 7.
As  it  can  be  seen,  we  have  two  clusters  by  applying  the
inconsistency coefficient and supposing threshold between
1.1547 and 1.7319 for example mean of them
(threshold=1.4433)

First, suppose that we only have noise on center of a
sample. For example we received D = [ a±9 ; 0; 2; 2]
instead of D = [9; 0; 2; 2]. We want to find the maximum
value of α that doesn’t alter our clustering. After executing
this experiment, α =2.09.
For  example  if  D = [6.91;  0;  2;  2],  we have  the  following
dendrogram. This dendrogram shows the maximum noise
on the center of sample D that can be supported. If the noise
is bigger than 2.09 then we have different clusters.

Fig. 9. Fuzzy dendrogram for Example 3.
(After adding noise to center of D)

So, if we suppose threshold=1.4433 and run ET algorithm
on our samples, it can tolerate %23.2 noise on center of D.
Table 6 shows the rest of the results.

Table 6: Percent of noise tolerance for Fig. 7
when we have noise on center of samples.

Samples A B C D E F

The value of α 1.85 1.76 1.02 2.09 3.16 1.61

The percent of
noise tolerance

for center of
fuzzy samples

46 44 12.7 23.2 31.6 14.6104 5 6 8

B
A

C D E
1

2 3 7 9 11 12 13

F

Fig. 7. Representation of six fuzzy data.
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We  can  do  this  experiment  on  right,  left  and  length  of  a
fuzzy sample instead of its center.
As it  can be seen, we presented a fuzzy data by four crisp
data, and that is possible to have noise on any of them.

Fig. 10. Representation of Fig. 7 samples
with noise on center, length, left and right of D

Now, suppose that we have noise on center, length, left
and right of a sample simultaneously (see Fig. 10). For
example we received D = [ a±9 ; b±0 ; l±2 ; g±2 ]
instead of D = [9; 0; 2; 2]. We can’t find the maximum
value of α, β, λ and γ that do not alter our clustering,
because they are mutually depend on each other. But we
can consider results in a special state when we suppose that
α=β=λ=γ .  In this way we can find out the minimum noise
that can be tolerated by this algorithm. For example, if
according to Fig. 10, we received D= [7.5; 1; 2.5; 2]
instead of D= [9; 0; 2; 2] we have the following results.

Fig. 11. Fuzzy dendrogram after adding noise on
center, length, left and right of D.

So,  we have  the  same two previous  clusters  (C1= {A,  B},
C2={C, D, E, F}) and our clustering remained without any
change. In Table 7, you can see the minimum noise on
fuzzy data (used in Example 3) that can be tolerated. These
noises can be added to each part of a fuzzy sample (center,
length, left and right) without change of clustering.

Table 7: The minimum noise that can be tolerated
for each samples in Fig. 7.

Samples A B C D E F

The value of
noise (α) 1.20 1.06 0.65 1.34 1.40 0.91

The percent
of noise
tolerance

for center of
fuzzy samples

30 26.5 8.1 14.9 14 8.3

In Table 7 we suppose that a fuzzy data is shown as
[ a±1a ; a±2a ; a±3a ; a±4a ], that α is the minimum
noise which can be tolerated by ET algorithm. In this table,
we just compute the percent of noise tolerance for center of
fuzzy samples, because center of fuzzy samples are very
important to cluster data. We can compute the percent of
noise tolerance for other part of fuzzy samples (length, left
and right) similarly.
According  to  Table  7,  we  can  tolerate  noise  on  inner
samples of clusters more than boundary samples. Finally
consider that the value of noise tolerated is different in any
example and based on the distance of clusters from each
other.
Example: We consider a data set G with 20 triangular
fuzzy  data  [11].  Intuitively,  the  number  of  clusters  that  is
suitable for data set G is two (Fig. 12).

      Fig. 12. Data set G with 20 triangular fuzzy data.
If  we  run  our  algorithm  on  these  fuzzy  numbers,  a

dendrogram is formed and we can easily extract the clusters
from that, by removing the highest link of dendrogram or
via inconsistency coefficient measure by selecting threshold
between 1.5465 and 2.9078 (Here we use the mean of them
so threshold equal to ).22715.22/)9078.25465.1( =+  In this
state ET, FCM and AFCN gave the same results.

Now,  we  repeat  these  algorithms  on  this  data  set  after
adding a noisy sample to it. We add a point (100; 0.71;
1.79) to the data set G. The added point is far away from
the  other  TFNs so  that  it  can  be  regarded as  an  outlier.  In
this case we reach the following dendrogram.

 Fig. 13. Fuzzy dendrogram for data set G
        with a noisy sample

Table  8  shows  the  clustering  results  of  ET,  FCM  and
AFCN  after  adding  a  noisy  sample.  So  we  have  three
clusters C1,  C2 and  C3 that are distinguished in Fig. 13,

104 5 6 8

B
A

1

2 3 7 9 11 12 13

D C E F
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because the inconsistency coefficient of two levels of
dendrogram are higher than threshold (Note that threshold
is 2.22715). Table 8 shows that FCM cannot tolerate noisy
samples, AFCN is better than FCM but ET is the best
because the noisy samples are classified in the separate
clusters and the noisy samples cannot change the other
clusters.

Table 8: Clustering results in data set g with a
noisy sample using FCM, AFCN, ET.

6 Conclusions
In this paper we described a new approach for clustering

fuzzy data. So far a few papers have presented methods to
cluster fuzzy data that are based on fuzzy c-means
algorithm. Here we open a new point of view to cluster
fuzzy data based on hierarchical clustering methods. In this
approach computing the distance between fuzzy data and
drawing fuzzy dendrogram, lead to forming clusters. The
experimental results demonstrated the major advantage of
ET in comparison with similar methods that is fault tolerant
against noisy samples. Furthermore the fuzzy dendrogram
can present us a general view of the relation between the
fuzzy data that help us to cluster them more accurately. ET
is a very suitable clustering algorithm for fuzzy samples.
The nature of this method is illustrative and clear so that we
can guesstimate dispersion of clusters, with a glance at
dendrogram. A future work might be presenting ET based
on Median algorithm and building a new classifier based on
this method.
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