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ABSTRACT 
 
In this paper, a pressure-based finite volume procedure is developed in an aerodynamic 
flow simulation on C- mesh. The boundedness criteria for this procedure are determined 
from the SBIC, Second and Blending Interpolation Combine, scheme which are used to 
solve the Euler equations on a nonorthogonal mesh.  The results of this scheme on C 
and H meshes are compared with another numerical solution and experiment data for 
the cases of invisicd transonic flow around airfoil NACA0012. 
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INTRODUCTION 
 
Leonard (1) has generalized the formulation of the high-resolution flux limiter schemes 
using what is called the normalized variable formulation (NVF). The NVF methodology 
has provided a good framework for development of high-resolution schemes that 
combine simplicity of implementation with high accuracy and boundedness. Gaskell 
and Lau(2) introduced SMART scheme that is combined with first and high order 
interpolation procedures based on NVD. The SFCD scheme was represented by 
Ziman(3) . Zhu and Rodi(4) introduced SOUCUP scheme. Darwish(5) developed STOIC 
scheme that is integrated from high order interpolation procedure to control convective 
term. 
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Most of NVD methods use different differencing schemes through the solution domain. 
This procedure includes some kind of switching between the differencing schemes. 
Switching introduced additional non-linearity and instability in to the computation. The 
worst case is that instead of a single solution for steady state problem, the differencing 
scheme creates two or more unconverged solution with the cyclic switching between 
them. In that case it is impossible to obtain a converged solution and convergence stalls 
at some level. The SBIC scheme was introduced by Javareshkian(6)  ; it is integrated 
from central interpolation and first and second order interpolation procedures.  
 
The objective of this paper is to develop the SBIC scheme in C-mesh and to compare 
the results of the SBIC scheme in the context of an existing finite-volume procedure 
that uses C and H meshes and an implicit solver, to solve the Euler equations utilizing 
the pressure correction type of solution algorithm for calculation of external transonic 
flow. 
 
 
GOVERNING EQUATIONS 
 
The basic equations, which describe conservation of mass, momentum and scalar 
quantities, can be expressed in Cartesian tensor form as 
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The stress tensor and scalar flux vector are usually expressed in terms of basic 
dependent variable. The stress tensor for a Newtonian fluid is 
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The scalar flux vector  usually given by the Fourier-type law: 
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DISCRETIZATION 
 
The discretization of the above differential equations is carried out using a finite-volume 
approach. First, the solution domain is divided into a finite number of discrete volumes 
or cells, where all variables are stored at their geometric centers (see e.g. Fig.1). The 
equations are then integrated over all the control volumes by using the Gaussian 
theorem. The discrete expressions are presented affected with reference to only one face 
of the control volume, namely, e , for the sake of brevity. 
 For any variable φ  (which may  also stand for the velocity components), the result of 
the integration yields 
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where I ’s are the combined cell-face convection cI and diffusion DI fluxes. The 
diffusion flux is approximated by central differences and can be written for cell-face e  
of the control volume in Fig. (1) as:  
                                                 φ−φ−φ= eEpe

D
e S)(DI                                        (7) 

where φ
eS stands for cross derivative arising from mesh nonorthogonality. The 

discretization of the convective flux, however, requires special attention and is the 
subject of the various schemes developed. A representation of the convective flux for 
cell-face e  is: 
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the value of eφ  is not known and should be estimated by interpolation, from the values 
at neighboring grid points. The expression for the eφ  is determined by the SBIC 
scheme, that is based on the NVD technique, used for interpolation from the nodes E, P 
and W. The expression can be written as 
                                                    eWEWe φφφφφ ~).( −+=                                              (9) 

the functional relationship used in SBIC (6)  scheme for eφ
~  is illustrated in Fig.2 and is 

given by: 
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the limits on  the selection of K  could be determined in the following way. Obviously 
the lower limit is 0=K , which would represent switching between upwind and central 
differencing. This is not favorable because; it is essential to avoid the abrupt switching 
between the schemes in order to achieve the converged solution. The value of K  should 
be kept as low as possible in order to achieve the maximum resolution of the scheme.  
 
With higher-order schemes, the evaluation of eφ may involve a large number of 
neighboring grid points. Therefore, in order to simplify the solution of the resulting 
system of algebraic equations, a compacting procedure is usually used. The deferred 
correction procedure of Rubin and Khosla (7) adapted in this work, is based on replacing 
the convective flux at control volume face by an equivalent flux given by 
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where the superscript U  denotes values obtained by  the first-order upwind scheme, and 
eφ  represents cell face value computed by SBIC scheme. With the preceding 

assumption, each discretized equation contains five unknowns (in two dimensions), and 
the matrix of coefficients of the resulting system of equations is pentadiagonal and 
always diagonally dominates since it is formed using the first order upwind scheme.  
The final form of the discretized equation from each approximation is given as:  
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where 'A s are the convection-diffusion coefficients. The term '
φS  in Eq. (11) contains 

quantities arising from non-orthogonality, numerical dissipation terms and external 
sources, and Pt φδρδυ )/(  of the old time-step/iteration level (for time dependent 
equation). For the momentum equations it is easy to separate out the pressure-gradient 
source from the convected momentum fluxes. dcS  is the contribution due to the adapted 
deferred correction procedure. 
 
SOLUTION ALGORITHM 
   
Most contemporary pressure-based methods employ a sequential iteration technique in 
which the different conservation equations are solved one after another. The common 
approach taken in enforcing continuity is by combining the equation for continuity with 
those of momentum to derive an equation for pressure or pressure-correction. The PISO 
algorithm is used in this work. 
  
 
RESULTS  
 
 Computational results are shown in followed figures for a baseline series of test cases. 
The results are compared with existing numerical solutions obtained by others.  Figure 5 
displays part of the C and H grids used for the present computation. The value of K in 
SBIC method for all cases is 0.2 .  
 
The first case considered is transonic flow around an NACA 0012 airfoil at a freestream 
mach number of M=0.85, angle of attack α=0 deg. The far-field boundary placed at 17 
chord lengths away from the airfoil surface and 20 chord lengths away from the leading 
and trailing edges for H grid and a grid with 116× 149 nodes is used in this test. For C 
grid, the far-field boundary placed at 15 chord lengths away from the airfoil surface and 
a grid with 500× 80 nodes is used. The distribution of pressure coefficients on the upper 
surface of airfoil for C and H meshes and contours of pressure coefficient are shown in 
Figure 6(a) and 6(b) respectively. The present results are compared with those of 
Jameson and Yoon(8) .  It can be seen that the computed results show good agreement. A 
sharp discontinuity is achieved successfully for both shock strength and location and the 
mesh is not so effect on the results. Also aerodynamic coefficients for this case are 
presented in table 1. Accuracy of these coefficients is good.  
 
The second case is transonic flow around NACA0012 airfoil at M=0.85, α=1 deg and a 
150× 149 nodes for H grid. The number of nodes for the C grid is the same of previous 
case. For this case distribution of pressure coefficient on the upper and lower surface of 
airfoil for C and H meshes and contours of pressure coefficient are shown in Figures 
7(a) and 7(b) respectively. The results are compared with those of Zhou(9) . Also 
aerodynamic coefficients for this case are presented in table 2. The results of the SBIC 
scheme with H mesh show that the lower surface shocks are captured better than C-grid.  
Third case is for M=0.8,α=1.25 deg and with the same previous grid for C and H 
meshes. The distribution of pressure coefficient on the upper and lower surface of airfoil 
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and contours of pressure coefficient are shown in Figures 8(a) , 8(b) .  In this case 
results are compared with those of Anderson (10). Also aerodynamic coefficients for this 
case are presented in table 3. It can be seen that the results (especially shock gradients) 
of the SBIC scheme with H mesh are better than the result of this scheme with C-mesh.  
 
 
CONCULSION 
 
 In this paper, the SBIC scheme has been develped in the context of an existing finite-
volume procedure that uses nonorthgonal C mesh, and a pressure correction type of 
solution algorithm for accurate simulation of external transonic compressible inviscid 
flows. The results of the proposed algorithm with C and H meshes are compared with 
another published results. These comparison show although simulation with H mesh 
take more than time but the results of SBIC scheme on H-mesh are more accurate. Also 
the agreement between the results of the present work with anther numerical and 
experimental data is remarkable. 
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 Figure 1- Typical grid – point cluster      Figure 2- Node valuse in the normalized     

       and control volume                                   variable approach                          . 
 
 

 

  

 

 

 
.                 Figure 4 – Normalized variable diagram (NVD)or  SBIC scheme  
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Figure 5- Part of the C and H grids used for the NACA 0012 airfoil 
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Figure 6–(a) Surface pressure coefficient  distribution  (b) Pressure coefficient contours 

for α=0 and M=0.85 
 
 
  
 
 
 
 
 
 
 
 
 

                                           (a)                                                                  (b) 
Figure 7-(a) Surface pressure coefficient  distribution  (b) Pressure coefficient contours 

for α=1 and M=0.85. 
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Figure 8-(a)  Surface pressure coefficient  distribution (b) Pressure coefficient contours 
for α =1.25 and M=0.8. 

 

Table 1. Aerodynamic coefficients NACA0012:  M = 0.85, α = 0 

CMCDCLMethod 
0 0.0471 0 Rizzi[8] 
0 0.0559 0 Zhou & Davidson[9] 

0.001 0.047 -0.002 SBIC(C grid) 
0 0.049 0 SBIC(H grid)[11] 

  
 

Table 2. Aerodynamic coefficients NACA0012: M = 0.85, α =1 
CM CDCLMethod 

-0.1393 0.06040.3938 Pulliam [12] 

-0.1282 0.06620.3890 Zhou & Davidson [9] 

- 0.04180.3520 Dervieux & Debiez [13] 

- 0.05820.3861 Jameson & Martinelli [14] 

-0.1166 0.05760.3700 SBIC(C grid) 

-0.119 0.05840.331 SBIC(H grid)[11] 
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Table 3. Aerodynamic coefficients NACA0012 M = 0.8, α= 1.25 

Method CL CD CM 
Rizzi [8] 0.3513 0.023 -0.0377 

Caughey [15] 0.3695 0.0237 -0.0432 

Pulliam [12] 0.3618 0.0236 -0.0411 

Zhou & Davidson 
[9] 0.3575 0.022 -0.0375 

Jameson & 
Martinelli[14] 0.3654 0.0232 - 

SBIC(C grid) 0.3281 0.0255 -0.0320 

SBIC(H grid)[11] 0.334 0.025 -0.041 

  


