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ABSTRACT 
In this paper, a scheme based on Uniformally Nonoscillating (UNO) has been developed into an 
implicit finite volume procedure, which uses pressure as a working variable. The boundedness 
criterion is determined from UNO schemes. The numerical process is used for solution of Euler 
equations on a nonorthogonal mesh with collocated finite volume formulation. The developed scheme 
is applied to the computation of steady supersonic flow over a bump-in-channel geometry as well as to 
the transient shock-tube problem. The results of the UNO scheme are compared with analytical and 
other computations published in literature. 
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1. INTRODUCTION 
In computational fluid dynamics (CFD), great research efforts have been devoted to the 
development of accurate and efficient numerical algorithms suitable for solving flow in the 
various Reynolds and Mach number regimes. Several attempts have been made by 
incompressible fluid flow numerical researchers, towards the unification of numerical 
methods developed for incompressible and compressible flows. The main goal consists in the 
development of methods for computation of flows at all Mach numbers by extending the 
pressure-correction formulation to ensure shock-capturing properties.  Leonard [1] has 
generalized the formulation of the high-resolution flux limiter schemes using what is called 
the normalized variable formulation (NVF). Many schemes based on the NVF has been 
developed in pressure-based method, for example SMART scheme[2], SFCD scheme[3], 
SOUCUP scheme[4], STOIC scheme[5], SBIC scheme base on variable and flux limiter[6,7]. 
Issa and Javareshkian [8] implemented a high resolution TVD scheme with characteristic-
variables-based flux limiters into a pressure-based finite volume method. Batten et al.[9] 
utilized the TVD approach and adopted a time marching technique. The TVD and NVD 
schemes do not have oscillation at discontinuities because they are switched to first order 
scheme. The ENO scheme is presented for the first time by Harten et. al [10]. The ENO 
scheme do not have a Gibbs-like phenomenon O(1) at discontinuities, yet they may 
occasionally produce small spurious oscillations on the level O( rh ) of the truncation error. 
Kobayashi and Pereira [11] introduced an ENO scheme into pressure-correction solution 
procedures for the flux calculation, which they incorporated into a steady-state solution 
method.  

The objection of this paper is to extend an Uniformally Nonoscillating (UNO) scheme in 
pressure-based method. The developed scheme is applied to the computation of steady 
supersonic flow over a bump-in-channel geometry as well as to the transient shock-tube 
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problem. The results of the UNO scheme are compared with other computations published in 
literatures. 
 
2. GOVERNING EQUATION 
The basic equations, which describe conservation of mass, momentum, and scalar quantities, 
can be expressed in Cartesian tensor form as: 
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The stress tensor and scalar flux vector are usually expressed in terms of basic dependent 
variables. The stress tensor for a Newtonian fluid is: 
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The scalar flux vector is usually given by the Fourier-type law: 
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3. DISCRETIZATION 
The discretizations of the above differential equations are carried out using a finite-volume 
approach. First, the solution domain is divided into a finite number of discrete volumes or 
“cells “, where all variables are stored at their geometric centers (see e.g. Fig.1). The 
equations are then integrated over all the control volumes by using the Gaussian theorem. The 
development of the discrete expressions to be presented is affected with reference to only one 
face of the control volume, namely, e , for the sake of  brevity. For any variable φ  (which 
may now also stand for the velocity components), the result of the integration yields: 
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Where I is the combined cell-face convection cI and diffusion DI fluxes. The diffusion flux is 
approximated by central differences and can be written for cell-face e of the control volume in 
Fig.(1) as:  
                                                        φ−φ−φ= eEpe
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Where φ
eS stands for cross derivative arising from mesh non-orthogonality. The discretization 

of the convective flux, however, requires special attention and is the subject of the various 
schemes developed. A representation of the convective flux for cell-face ‘e’ is: 
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The expression for the c
eI  by the UNO scheme is dealt with later. The discretized equations 

resulting from each approximation take the form:  
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Where a’s are the convection-diffusion coefficients. 
 

 
4. CONVECTIVE  FLUXES 
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The expression for the mass, momentum and energy fluxes is determined by the UNO scheme 
used for interpolation from nodes at the neighbouring points. The expression can be written 
for cell face “ e ” as: 
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Where eeR φ  is a dissipation term, based on the characteristic field decomposition of the flux 
difference. The quantity eR  stands for the right eigenvector matrix, while eφ is a vector 
containing the components of the anti-diffusive flux terms. According to Yee et al. (1985), a 
spatially second-order upwind formula for the components of eφ  is given by: 
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The eiganvalues of the Jacobian matrix are denoted by a . The spatial increments of the 
characteristic variables α  are obtained by: 
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For γ  one can take (Yee et al.,1985): 
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The function ψ  is required to prevent non-physical solutions such as expansion shocks and 
introduces a small amount of viscosity. Following the suggestion of Harten and Hyman 
(1983), it is taken as: 
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Where ε  is an arbitrarily small number. The most important factor in Eq.(11) is the flux-
limiter , g , which determines the accuracy and TVD-property of the scheme. This factor may 
be defied in any way chosen. For the present work, the MINMOD  limiter due to Harten (1983) 
is used; thus,   
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where  
                                        )](,min[,0().(),( xsignyxMaxxsignyxMINMOD =                                 (16) 
 
5. SOLUTION ALGORITHM 
Most contemporary pressure-based methods employ a sequential iteration technique in which 
the different conservation equations are solved one after another. The common approach 
taken in enforcing continuity is by combining the equation for continuity with those of 
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momentum to derive an equation for pressure or pressure-correction. The PISO algorithm is 
used in this work.  
 
6. RESULTS 
Both two-dimensional steady and one-dimensional transient flows are computed and the 
results are compared either with existing numerical solutions obtained by others or with the 
analytic solutions when they are available. The test cases chosen are the normal benchmarks 
to which methods such as the one presented here are applied. The first case is that of the 
classical shock tube problem and the second is the bump-in-channel case. 
Fig. 2 shows the spatial distribution of velocity, density, Mach number and pressure ratio, 
along the shock tube at a given instant in time in a shock-tube for an initial pressure of 10. 
The results of computation on a mesh of 100 nodes are compared with the analytic solution. It 
can be seen that the shock is sharply captured, and the contact discontinuity is better resolved 
and oscillation is not relatively produced for the UNO scheme. 
The second case is supersonic flow over 4% thick bumps on a channel wall. For this test, at 
the inlet of the domain all flow variables are specified. At the outlet, all the flow variables are 
given by extrapolation for supersonic velocity. Slip boundary conditions are used on the upper 
and lower walls. A non-uniform grid of 3090×  in which the grid lines are closely packed in 
and near the bump region is shown in Fig. 3. 
The results of supersonic flow with inlet Mach number equal to 1.4 over a 4% thick bump are 
shown in Fig. 4. The Mach number and pressure ratio distribution on the upper and lower 
surfaces for present scheme are compared with the TVD [8] prediction.  The agreement 
between the two solutions is remarkable, thus once again verifying the validity of the UNO 
scheme in pressure-based algorithm. 
 
7. CONCLUSION 
A pressure-based implicit procedure is described. It incorporates an UNO scheme. The 
developed scheme is applied to both transient and steady state flows and the results are in well 
agreements with other schemes. 
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Fig.1: Finite volume and storage arrangement 
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                              a) Velocity                                                                 b) Density 
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Figure 2: Shock-tube results for an initial pressure ratio 
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Figure 3: Geometry 
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                  Fig 4(a) Mach number distribution                    Fig 4 (b ) Pressure ratio on lower wall 
 

 
 

Fig. 4.  Supersonic flow over 4% thick bump, inlet ∞M =1.4  

 


