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ABSTRACT 

In this paper, a scheme based on Essentially Nonoscillating (ENO) has been developed 
into an implicit finite volume procedure, which uses pressure as a working variable. The 
boundedness criteria determined from ENO schemes. This numerical process is used for 
solution of Euler equations on a nonorthogonal mesh with collocated finite volume 
formulation. The developed scheme is applied to the computation of steady subsonic and 
transonic flows over a bump-in-channel geometry as well as to the transient shock-tube 
problem. The results of the ENO scheme are compared with analytical and other 
computations published in literature. 
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INTRODUCTION 
The numerical solution of the transonic and supersonic flows is usually carried out by time-marching 
schemes that solve the set of the coupled system of equations governing the flux of mass, momentum, 
and energy, using accurate high-resolution total variation diminishing (TVD) [1] scheme employing 
Roe’s Riemann solver[2]. On the other hand, simulation of incompressible fluid flows with 
engineering interest are usually pursued with finite volume formulation, using primitive variables in 
conjunction with some variant of the semi-implicit pressure-correction method [3]. In this method the 
momentum equations are solved in a segregated fashion while an equation for the pressure field or 
pressure-correction field is derived combining the discrete momentum and continuity equations so that 
the pressure field is driven towards a level where the continuity equation over each control volume is 
satisfied to any prescribed level [3-5]. Because this procedure in its standard form results in an elliptic 
equation for pressure ( or pressure correction ) it cannot cope with the hyperbolic nature of the signal 
propagation in compressible transonic or supersonic flows. By contrast those methods that are very 
efficient for computation of compressible hyperbolic flows become increasingly ill conditioned as 
Mach number decreases. Although some remedy for convergence stagnation exists such as artificial 
compressibility or preconditioning, in practice, these techniques are not well suited for computations 
of flows with extensive regains of low Mach numbers.  

Several attempts have been made by incompressible fluid flow numerical researchers, towards the 
unification of numerical methods developed for incompressible and compressible flows. The main 
goal consists in the development of methods for computation of flows at all Mach numbers by 
extending the pressure-correction formulation to ensure shock-capturing properties.  Leonard [6] has 
generalized the formulation of the high-resolution flux limiter schemes using what is called the 
normalized variable formulation (NVF). Many schemes based on the NVF has been developed in 
pressure-based method, for example SMART scheme[7], SFCD scheme[8], SOUCUP scheme[9], 
STOIC scheme[10], SBIC scheme base on variable and flux limiter[11,12]. Issa and Javareshkian [13] 
implemented a high resolution TVD scheme with characteristic-variables-based flux limiters into a 
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pressure-based finite volume method. Batten et al.[14] utilized the TVD approach and adopted a time 
marching technique. The TVD and NVD schemes do not have oscillation at discontinuities because 
they are switched to first order scheme. The ENO scheme is presented for the first time by Harten et. 
al [15]. The ENO scheme do not have a Gibbs-like phenomenon O(1) at discontinuities, yet they may 
occasionally produce small spurious oscillations on the level O( rh ) of the truncation error. Kobayashi 
and Pereira [11] introduced an ENO scheme into pressure-correction solution procedures for the flux 
calculation, which they incorporated into a steady-state solution method.  

The objection of this paper is to extend an Essentially Non-oscillating (ENO) scheme to the 
computation of steady-state and transient flows in pressure-based method. The developed scheme is 
applied to the computation of steady subsonic and transonic flows over a bump-in-channel geometry 
as well as to the transient shock-tube problem. The results of the ENO scheme are compared with 
other computations published in literatures. 

 
GOVERNING EQUATION 
The basic equations, which describe conservation of mass, momentum, and scalar quantities, can be 
expressed in Cartesian tensor form as: 
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The stress tensor and scalar flux vector are usually expressed in terms of basic dependent 
variables. The stress tensor for a Newtonian fluid is: 
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The scalar flux vector is usually given by the Fourier-type law: 
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DISCRETIZATION 
The discretizations of the above differential equations are carried out using a finite-volume approach. 
First, the solution domain is divided into a finite number of discrete volumes or “cells “, where all 
variables are stored at their geometric centers (see e.g. Fig.1). The equations are then integrated over 
all the control volumes by using the Gaussian theorem. The development of the discrete expressions to 
be presented is affected with reference to only one face of the control volume, namely, e , for the sake 
of  brevity. For any variable φ  (which may now also stand for the velocity components), the result of 
the integration yields: 
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Where I ’s are the combined cell-face convection cI and diffusion DI fluxes. The diffusion flux 
is approximated by central differences and can be written for cell-face e of the control volume in 
Fig.(1) as:  

                                                          φ−φ−φ= eEpe
D
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Where φ
eS stands for cross derivative which arising from mesh non-orthogonality. The 

discretization of the convective flux, however, requires special attention and is the subject of the 
various schemes developed. A representation of the convective flux for cell-face ‘e’ is: 
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The expression for the eI  by the ENO scheme is dealt with later. The discretized equations 
resulting from each approximation take the form:  
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where a’s are the convection-diffusion coefficients. 
 
CONVECTIVE FLUXES 
The expression for the mass, momentum, and energy fluxes in Eq.(8) are determined by an essentially 
non-oscillatory (ENO) scheme. To evaluate flux, the second-order accurate piecewise linear 
reconstruction of the Riemann variable is applied on each control volume followed by solution of the 
Riemann problem. A piecewise polynomial is supposed by the distribution of the Riemann variable 
inside each control volume, and the limiters are applied on the Riemann variable gradients. In order to 
calculate the convective fluxes on the left and right of cell-face, the conservative variables are 
calculated on cell-faces. Then the flux at the interface by solving the Riemann problem with right and 
left values is evaluated. The characteristic variables and Roe's approximate Riemann solver are used 
for computation of the inviscid flux. In general, the expression can be written as: 
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Lu  and Ru can be calculated in a same approach. As an example, Lu for the crosses face e is 
calculated as follows: 
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By Roe average method, iL  are calculated in direction of normal vector of e surface for interested 
cells. M stands for the min mod function: 
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Where )(asign  is using function. The same approach is used for other sides (w, n, s) of cells. 
 

SOLUTION ALGORITHM 
Most contemporary pressure-based methods employ a sequential iteration technique in which the 
different conservation equations are solved one after another. The common approach taken in 
enforcing continuity is by combining the equation for continuity with those of momentum to derive an 
equation for pressure or pressure-correction. The PISO algorithm is used in this work.  
 
RESULTS 
Both two-dimensional steady and one-dimensional transient flows are computed and the results are 
compared either with existing numerical solutions obtained by others or with the analytic solutions 
when they are available. The test cases chosen are the normal benchmarks to which methods such as 
the one presented here are applied. The first case is that of the classical shock tube problem and the 
second is the bump-in-channel case. 

Fig. 2 shows the spatial distribution of velocity, density, Mach number and pressure ratio, along 
the shock tube at a given instant in time in a shock-tube for an initial pressure of 10. The results of 
computation on a mesh of 100 nodes are compared with the analytic solution. It can be seen that the 
shock is sharply captured, and the contact discontinuity is better resolved and oscillation is not 
relatively produced for the ENO scheme. 

The second case is transonic flow over 10% thick bump on a channel wall. For this test, 
stagnation pressure oP , stagnation temperature oT  and the inlet angle are specified. At the outlet, the 
static pressure is fixed for subsonic outlet flows. Slip boundary conditions are used on the upper and 
lower walls. A non-uniform grid of 2698 ×  in which the grid lines are closely packed in and near the 
bump region is shown in Fig.3.  

The results of transonic flow with inlet Mach number equal to 1.4 over a 10% thick bump are 
shown in Fig. 4. The pressure ratio distribution on the upper and lower surfaces for present scheme are 
compared with the TVD [12] prediction.  The agreement between the two solutions is remarkable, thus 
once again verifying the validity of the ENO scheme in pressure-based algorithm. 

 
CONCLUSION 
A pressure-based implicit procedure is described. It incorporates a ENO scheme. The developed 
scheme is applied to both transient and steady state flows and the results are in well agreements with 
other schemes. 

 
 

 
 

Fig.1, Finite volume and storage arrangement 
 

 



          6th Conference of Iranian Aerospace Society, Feb 2007, 

 5 

0 2 4 6 8 10
X (m)

0

50

100

150

200

250

300

350
V

el
oc

ity
Exact
ENO2

                
0 2 4 6 8 10X (m)

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Exact
ENO2

 
 

                            a) Velocity                                                                                 b) Density 
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                      c) Mach Number                                                        d )  Pressure ratio distribution                                                                
 
 

Fig. 2, Shock-tube results for an initial pressure ratio 
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Fig. 3, Geometry 
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Fig. 4,  Transonic flow over 10% thick bump, inlet ∞M =0.675 

 
REFERENCES 

[1] Harten A. “High Resolution Schemes for Hyperbolic Conservation Laws“ Journal of 
Computational Physics, Vol. 49, pp. 357-393, (1983)  

[2] Roe, P.L. “Approximate Riemann Solver, parameter Vectors and Difference Schemes 
“Journal of Computational Physics, Vol. 43, (1981) 

[3] Patankar, S. V. and Spalding, D. B. “A Calculation Pressure for Heat, Mass and Momentum 
Transfer in Three-Dimensional Parabolic Flows,” International Journal of Heat and Mass Transfer, 
Vol. 15, pp.1782, (1972) 

[4] Van Doormaal, J. P., and Raithby, G. D. “Enhancement of the SIMPLE Method for Prediction 
Incompressible Fluid Flows”, Numerical Heat Transfer, Vol. 7, p.147, (1984) 

[5]  Issa, R.I. “Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting,” 
Journal of Computational physics, Vol.62, pp. 182-188 ,( 1985) 

 [6] Leonard B.P., “Simple High-Accuracy Resolution Program for convective modeling of 
discontinuities”, International Journal for Numerical Methods in Fluids, Vol.8, pp.1291-1318, (1988) 

[7]  Gaskell P.H. & Lau A.K.C., “Curvature-Compensated convective Transport: SMART, a new 
boundedness-preserving transport algorithm”, International Journal for Numerical Methods in Fluid, 
Vol.8, pp.617-641, (1988) 

[8]  H. Ziman, A computer Prediction of  Chemically Reacting Flows in Strirred Tanks, PhD 
thesis, University of London, (1990) 

[9] Zhu J. & Rodi W., Low Dispersion and Bounded Convection Scheme, Computer Methods in 
Applied Mechanics and Engineering, Vol. 92, pp.87-96, (1991) 

[10]  Darwish M.S., A New High-Resolution Scheme based on the normalize variable 
Formulation, Numerical Heat Transfer, Part B, Vol.24, pp.353-371, (1993) 

[11] Djavareshkian, M. H. A New NVD Scheme in Pressure-Based Finite-Volume Methods, 14th 
Australasian Fluid Mechanics conference, Adelaide University, Adelaide, 10-14 December 2001, 
pp.339-342, Australia 

[12]  Widermann A. and Iwamoto J., “A Multigrid TVD Type schems for computing inviscid and  
viscous flows”, Computers Fluids Vol.23, No.5,pp.711-735,( 1994,) 

[13] Issa  R.I. and Javareshkian M.H., “Pressure-Based Compressible Calculation Method 
Utilizing Total Variation Diminishing Schemes”, AIAA Journal, Vol.36, No.9, pp.16521657, (1998) 

[14] Batten P., Lien, F. S. and Leschziner M. A., “A Positivity-Preserving Pressure-Correction 
Method”, Proceedings of 15th International Conf. On Numerical Methods in Fluid Dynamics, 
Monterey, CA, 1996 

[15] Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R., “Uniformly High Order Accurate 
Essentially Non-oscillatory schemes, III”, J. Computational Physics, Vol.71, No.2, pp.231-303, (1987) 

[16] Kobyashi M. H., and Pereira J. C. F., “Characteristic-Based Pressure Correction at all 
Speed”, AIAA Journal, Vol.34, No.2, pp.272-280, (1996) 


