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This report reviews the feasibility of two-dimensional hydrodynamic models in bulk
SiC and ZnO semiconductor materials. Although the single-gas hydrodynamic model
is superior to the drift-diffusion or energy balance model, it is desirable to direct the
efforts of future research in the direction of multi-valley hydrodynamic models. The
hydrodynamic model is able to describe inertia effects which play an increasing role in
different fields of micro and optoelectronics where simplified charge transport models
like the drift-diffusion model and the energy balance model are no longer applicable.
Results of extensive numerical simulations are shown for SiC and ZnO materials, which
are in fair agreement with other theoretical or experimental methods.
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1. Introduction

Wide-bandgap semiconductors, such as SiC and ZnO, have come to the forefront in

the past decade because of an increasing need for short-wavelength photonic devices

and high-power, high-frequency electronic devices, and because of breakthroughs in

high-quality growth of these materials. SiC and ZnO semiconductor materials have

not received much attention, probably because these materials have been perceived

as being useful only in their polycrystalline form. Indeed, polycrystalline SiC and

ZnO have found numerous applications in diverse areas such as facial powders,

piezoelectric transducers, varistors, phosphors, and transparent conducting films.

Recently, however, large area bulk growth has been achieved,1 and, furthermore,

several epitaxial methods have produced excellent materials.2–6

Semiconductor device modeling includes a wide range of areas in solid state

physics, applied and computational mathematics. Transport of carriers in semicon-

ductors under an applied electric field was first explained as a combination of drift

due to the field, and diffusion due to concentration gradients. In the presence of

high fields that change rapidly over small distances, the drift-diffusion equations,

however, lose thier validity and non-local and hot-carrier effects begin to domi-

nate device performance. In effect, apart from carrier density and velocity, carrier
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energy (or equivalently, temperature) needs to be considered because the carriers

are not in thermal equlibrium with the lattice. In SiC and ZnO materials which are

used for high-speed device design,7,8 inertia effects play an important role since the

impulse and energy relaxation times of the electron gas are close to the picosecond

range. The most elaborate and practicable approach for the description of charge

transport in semiconductors used for device simulation would be the Monte Carlo

method.9–11 The advantage of this technique is a complete picture of carrier dy-

namics with reference to microscopic material parameters, e.g. effective masses and

scattering parameters. But the method is still considered to be very time consuming

and hence not economical to be used by device designers.

Besides the simplest concept which is the traditional drift-diffusion model, there

is a much more rigorous approach to the problem, namely the so-called hydrody-

namic model. The hydrodynamic model we are interested in is an extension of the

drift diffusion equations. It consists of a set of Euler equations with certain source

terms and a Poisson equation for the electrical potential.12–15 This model is capa-

ble of capturing some important features of semiconductor devices which are not

accounted for in the classical drift-diffusion model.

This paper is organized as follows. In Sec. 2, we give a short definition of the

hydrodynamic model for wurtzite SiC in comparison with ZnO structure. It is

emphasized that a analysis of the physical features of the charge carrier transport

models is the basis for a clear understanding of their limits of applicability. In

Sec. 3, the two-valley hydrodynamic model in SiC and ZnO crystal structures are

interpreted.

2. Model and Basic Equations

Single-gas hydrodynamic equations have been carried out to simulate the electron

transport properties in bulk SiC and ZnO materials. We have used an analytical

band structure model consisting of two non-parabolic ellipsoidal valleys (Γ and U

valleys in wurtzite structure). The equations for each valley are, however, coupled

through collision terms since electrons can scatter between two different valleys. The

corresponding relaxation rates may be of the order of a picosecond and are therefore

relatively large. This is why we have to implement at least a two-valley hydrody-

namic model. Reliable extensive two-valley simulations have been performed only

for the one-dimensional case so far due to the large amount of equations and pa-

rameters involved in such a model. The hydrodynamic model equations consist of

the continuity equation

∂n

∂t
+ ∇ · j = 0 . (1)

For unipolar devices it is possible to neglect charge carrier generation and recom-

bination term so the momentum balance equations is given by

∂p

∂t
+ (∇p)v + (p∇)v = −enE− ∇(nkT )−

p

τp

, (2)
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or alternatively (only for the x-component)

∂[m∗(ε′)nvx]

∂t
+ ∇[m∗(ε′)nvxv] = −qnEx −

∂(nkT )

∂x
−

m∗(ε′)nvx

τp(ε′)
, (3)

and the energy balance equation is

∂ε

∂t
+ ∇(vε) = −qnvE− ∇(nkTv) − ∇(−k∇T ) −

ε − 3
2
nkTL

τε(ε′)
, (4)

where n, ε (ε′ = ε/n), and v are the electron density, the electron energy density

(average electron energy) and the electron drift velocity, respectively. vx is the x-

component of the electron drift velocity and p = m∗nv is the momentum density.

Corresponding equations are valid for the y and z components. T is the electron

temperature and ε′0 = 3/2kTL is the average thermal equilibrium energy of elec-

trons, where TL is the lattice temperature. The electronic current density j inside

the active device is j = −nev, so the total current density is

jt = −nev + ε0εr

∂E

∂t
. (5)

The momentum relaxation time τp(ε
′) is related to the mobility of the electrons via

µ(ε′) = e/m∗(ε′)τp(ε
′), and the energy relaxation time τε(ε

′) describes the exchange

of energy between the heated electron gas and the lattice. τp and τε and the effective

electron mass m∗ are assumed to be functions of the mean electron energy.

The hydrodynamic equations, together with Poisson’s equation

∆φ = −∇E = −
e

ε0εr

(N+
d − n) (6)

form a complete set of equations that can be used to solve for the electron density,

velocity, energy and electric field for given boundary conditions. A closing relation

for the mean electron energy ε′, the electron temperatute T and velocity v is

ε′ =
1

2
m∗(ε′)v2 +

3

2
kT + βU (ε′)∆EΓU . (7)

The last term in Eq. (7) accounts for the fact that a minimum energy of about

∆EΓU = 1.5 eV is necessary to excite an electron from central Γ-valley to the nearest

upper valley in both SiC and ZnO structures. βU is the relative fraction of electrons

in the U -valley for the stationary homogeneous case. The term βU (ε′)∆EΓU is often

neglected, but this may lead to an overestimation of the electron temperature of

more than 1000 K at high energies.

Due to using a single-gas approximation for the hydrodynamic model, the elec-

tron temperature has been calculated from the total electron energy and electron

drift velocity. The transition from the two-gas model to the single-gas approxima-

tion has to be done carefully, therefore here a short discussion of the problem has
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been presented. The effect of the non-parabolicity of the energy band took into

account the Kane model,16

γ(k) = E(k)[1 + αiE(k)] =
~

2

2

[

k2
x + k2

y

m∗
⊥

+
k2

z

m∗
‖

]

, (8)

where m∗
⊥ and m∗

‖ are the transverse and longitudinal effective masses at the band

edge and αi is the non-parabolicity coefficient of the ith valley. The electron velocity

in a non-parabolic valley is given by

v =
1

~

∂Ek

∂k
=

~k

m∗

1
√

1 + 4αγ(k)
, (9)

which implies that crystal velocity v and crystal momentum p = ~k are related by

p = m∗v
√

1 + 4αγ(k) . (10)

In the single particle two-valley model, the probability βΓ that an electron resides in

the central Γ-valley is a function of the applied constant homogeneous electric field

or a function of the mean electron energy. The probability of finding the electron in

an upper U -valley is then βU = 1−βΓ. The values of the average electron velocities

in the different valleys can be obtained, so it is reasonable to define the average

electron velocity by

v = βΓvΓ + βUvU . (11)

The average electron momentum p is given by

p = m∗v = mΓβΓvΓ + mUβUvU . (12)

Thus the electron mass which must be used in the hydrodynamic model in order

to relate average electron velocity and electron momentum is calculated by

m∗ =
mΓβΓvΓ + mUβUvU

βΓvΓ + βUvU

. (13)

Important parameters used throughout the calculations are listed in Tables 1 and

2. Band edge energies, electron effective masses and non-parabolicities are derived

from empirical pseudopotential calculations.17–20 In our simulated model time dis-

cretization is used for all the hydrodynamic equations by forward Euler differencing

method. The discretization is always written down only for the x-component of vec-

torial quantities in the sequel, since the corresponding expressions for y-components

are easy to drive. The simplest method for assigning charged particles to cells

is the nearest-grid-point scheme in which the total charge found in a cell is as-

signed to the midpoint of that cell. After each sampling Poisson’s equation is solved

and the electric field is updated. Poisson’s equation is solved by a combined fast

Fourier transform21,22 and Buneman cyclic reduction method23,24 developed by

Walmsley and Abram.25 This calculational scheme is integrated with a capacity
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Table 1. Important band structure parameters used for SiC and ZnO materials.

Valley Egap (eV) †m‖
†m⊥ Nonparabolicity (eV−1)

SiC Γ 3.2 0.22 0.45 0.323

U 5.3 0.9 0.7 0.6

ZnO Γ 3.43 0.27 0.4 0.66

U 5.6 0.75 0.9 0.05

†, ‖ denotes parallel to the (0001)c-axis and ⊥ perpendicular to (0001)c-axis.

Table 2. Material parameter selections for SiC and ZnO.

SiC ZnO

Density ρ (kgm−3) 3200 6500

Sound velocity vs (ms−1) 1373 6400

Low-frequency dielectric constant εs 9.7 8.2

High-frequency dielectric constant ε∞ 6.5 3.7

Acoustic deformation potential D (eV) 15 15

Polar optical phonon energy ~ωpo (eV) 0.012 0.072

Energy band gap (eV) 3.2 3.43

matrix approach26 that facilitates the use of individual rectangular regions to form

more complicated structures. Poisson’s equation is expressed in discrete form as a

set of three-point finite difference equations.

After setting all the material and device parameters, the simulation is started

in a state of charge neutrality everywhere in the device. The simulated particles

are distributed appropriately among all the mesh cells to achieve the required neu-

trality. In the two-dimensional device models used here there is no variation of

electron density or electric field normal to the x–y plane and scalar quantities at a

timestep like electron density nt
i,j , energy εt

i,j , temperature T t
i,j and potential φt

i,j ,

are located at the center of the cells, whereas vectorial quantities like the electric

field components Et
x;i+ 1

2
,j
, Et

y;i+j+ 1

2

or the velocity components vt
x;i+ 1

2
,j
, vt

y;i+j+ 1

2

are always calculated first at midpoint between the scalar quantities. For example,

we can define for electric field the intermediate value as

Ex;i,j =
1

2
(Ex;i− 1

2
,j + Ex;i+ 1

2
,j) . (14)

The fundamental quantities are calculated using boundary conditions at each

timestep. For example, the momentum balance equation is discretized in the
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following form:

pt+1

x;i+ 1

2
,j
− pt

x;i+ 1

2
,j

∆t
= −qnt

i+ 1

2
,j
Et

x;i+ 1

2
,j
−

k

∆x
(nt

i+1,jT
t
i+1,j − nt

i,jT
t
i,j)/nt

i+ 1

2
,j

− (pt
x;i+ 1

2
,j
vx;i+ 1

2
,j − pt

x;i− 1

2
,j
vx;i− 1

2
,j)/∆x

− (pt
x;i+ 1

2
,j
vy;i,j+ 1

2
,j − pt

x;i+ 1

2
,j−1

vy;i,j− 1

2

/∆y

− pt
x;i+ 1

2
,j
/τ t

p;i+ 1

2
,j

, (15)

where px;i+ 1

2
,j ≥ 0 and py;i,j+ 1

2

≥ 0 and the same discretization are used in the

y-direction of the electron velocity as well. From the momentum density we can

obtain the new particle current density by

jt+1

x;i+ 1

2
,j

= pt+1

x;i+ 1

2
,j
/m∗

i+ 1

2
,j

, (16)

and the momentum density at (i,j) is extrapolated from neighboring points in the

direction of the electron flow x-component

pt+1
x;i,j =

3

2
pt+1

x;i− 1

2
,j
−

1

2
pt+1

x;i− 3

2
,j

: pt+1

x;i+ 1

2
,j
≥ 0 ,

pt+1
x;i,j =

3

2
pt+1

x;i+ 1

2
,j
−

1

2
pt+1

x;i+ 3

2
,j

: pt+1

x;i+ 1

2
,j
≤ 0 ,

(17)

and finally we have

vt+1
x;i,j = pt+1

x;i,j/nt
i,j/m∗t

i,j , (18)

vt+1

x;i+ 1

2
,j

= jt+1

x;i+ 1

2
,j
/nt

i+ 1

2
,j
/m∗t

i+ 1

2
,j

. (19)

The electron temperature is related to the energy density by the relation εt
i,j =

3
2
nt

i,jkT t
i,j+

1
2
m∗

i,jn
t
i,j(v

2t
x;i,j+v2t

y;i,j)+βt
U ;i,j∆EΓU and is assumed to be the dependent

variable. The upwind discretization of the energy balance equation is given by

εt+1
i,j − εt

i,j

∆t
= −ent

i,j(v
t+1
x;i,jE

t
x;i,j + vt+1

y;i,jE
t
y;i,j) −

εt
i,j −

3
2
nt

i,jkTL

τ t
ε;i,j

− (jt
x;e,i+ 1

2
,j
− jt

x;e,i− 1

2
,j
)/∆x − (jt

x;p,i+ 1

2
,j
− jt

x;p,i,i− 1

2
,j
)/∆x

− (jt
x;h,i,j+ 1

2

− jt
x;h,i− 1

2
,j
)/∆x − (jt

y;e,i,j+ 1

2
,j
− jt

y;e,i,j− 1

2

)/∆y

− (jt
y;p,i,j+ 1

2

− jt
y;p,i,j− 1

2

)/∆y − (jt
y;h,i,j+ 1

2

− jt
y;h,i,j− 1

2

)/∆y , (20)

where the energy current density is defined as

jt
x;e,i+ 1

2
,j

= vt+1

x;i+ 1

2
,j
εt
i+ 1

2
,j

, (21)

jt
x;p,i+ 1

2
,j

= kjt+1

x;i+ 1

2
,j
T t

i+ 1

2
,j

, (22)
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and

jt
x;h,i+ 1

2
,j

= kt
i+ 1

2
,j
(T t

i+1,j − T t
i,j)/∆x . (23)

Using the calculated mean electron energy, the other electron transport parameters

are also updated. Also, using the particle current density j = nv, the current

continuity equation is discretized in a conservative way as

nt+1
i,j − nt

i,j

∆t
= −(jt

x;,i+ 1

2
,j
− jt

x;i− 1

2
,j
)/∆x − (jt

y;,i+j+ 1

2

− jt
y;i,j− 1

2

)/∆y . (24)

The particles that leave cell (i, j) in the x-direction enter cell (i + 1, j) and

analogously for the y-direction.

3. Simulation Results

Figure 1 shows the average energy of an electron in a constant homogeneous electric

field for SiC in comparison to the ZnO structure. For each data point, the electron

was scattered one million times (including so-called self-scattering), therefore the

resulting curve is already quite smooth. It can be seen that initially, kinetic energy

increases with the electric field, due to the large proportion of electrons in the low

mass central Γ valley of both crystal structures. However, as the field increases, the

electrons transfer to higher valley with higher mass and increased scattering which

causes a substantial reduction in the rate of increase of average kinetic energy. The

detailed differences in the behavior of the average electron energy with field for the

two crystal structures is simply due to the different band structure features.

In order to complete the set of data which is necessary for hydrodynamic sim-

ulation, the electron velocity-field characteristics and energy relaxtion times are
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Fig. 1. Total average electron kinetic energy as a function of applied electric field in bulk SiC
and ZnO at room temperature with Nd = 1017 cm−3.



Final Reading
September 10, 2009 8:57 WSPC/147-MPLB 02091

2814 H. Arabshahi, R. Rokn-Abadi & S. Golafroz

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

2.5

 

 

 SiC
 ZnO
 SiC-Experiment

D
ri

ft
 v

el
oc

ity
 (

* 
10

5  m
s-1

 )

Electric field (* 10
5
 Vm

-1
)

Fig. 2. Comparison of calculated steady state electron drift velocity in bulk SiC and ZnO with
experiment results for SiC at room temperature with Nd = 1017cm−3.27,28
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Fig. 3. Energy relaxation times for SiC and ZnO at room temperature with Nd = 1017 cm−3.

depicted in Figs. 2 and 3 for both SiC and ZnO structures. The characteristic

shape of the velocity curve can be explained by the the fact that at high energies

the electrons jump into the higher valley where the electrons have a lower mobility

than in the central Γ valley. The simulations suggest that the peak drift velocity

for SiC is 2.2× 105 ms−1, while that for ZnO is ∼ 2× 105 ms−1. At higher electric

fields, intervalley optical phonon emission dominates, causing the drift velocity to

saturate at around 1.5 × 105 ms−1 for both structures. The threshold field for the

onset of significant scattering into satellite conduction band valleys is a function of

the intervalley separation and the density of electronic states in the satellite valleys.

Comparison of our simulation results with experimental results measured by Khan
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Fig. 4. Fractional occupation of the central Γ and satellite U valleys of SiC as a function of applied
electric field using the non-parabolic band model at room temperature with Nd = 1017 cm−3.
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Fig. 5. Fractional occupation of the central Γ and satellite U valleys of ZnO as a function of ap-
plied electric field using the non-parabolic band model at room temperature with Nd = 1017 cm−3.

et al. for SiC in Fig. 1 shows a good agreement. From Figs. 4 and 5, which show

the fractional occupancy of the available valleys as a function of applied field, the

threshold fields are found to be 2× 107 Vm−1 for SiC and 3.5× 107 Vm−1 for the

ZnO structure.

Also, from Fig. 6, it can be seen that intervalley transfer is substantially larger

in the SiC than the ZnO structure, due to the combined effect of a lower Γ-valley

effective mass, lower satellite valley separation and reduced phonon scattering rate

within the Γ-valley, but significant intervalley phonon scattering at a threshold field

of 2 × 107 Vm−1.

Figures 6 and 7 show the calculated electron drift velocity in ZnO and SiC as

a function of electric field strength for temperatures of 300, 450 and 600 K. The
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Fig. 6. Calculated electron steady state drift velocity in bulk ZnO as a function of applied electric
field at various lattice temperatures and assuming a donor concentration of 1017cm−3. The peak
drift velocity decreases by about 32% while the threshold field increases by same percentage as
the lattice temperature increases from 300 to 600 K.
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Fig. 7. Calculated electron steady state drift velocity in bulk SiC as a function of applied electric
field at various lattice temperatures and assuming a donor concentration of 1017 cm−3. The peak
drift velocity decreases by about 25% while the threshold field increases by same percentage as
the lattice temperature increases from 300 to 600 K.

decrease in drift mobility with temperature at low fields is due to increased in-

travalley polar optical phonon scattering whereas the decrease in velocity at higher

fields is due to increased intra and intervalley scattering. It can be seen from the

figures that the peak velocity also decreases and moves to higher electric field as

the temperature is increased. This is due to the general increase of total scatter-

ing rate with temperature, which suppresses the electron energy and reduces the

population of the satellite valleys. This latter effect is apparent from the fact that

the electron population in the Γ-valley is higher in the ZnO material as shown in

Fig. 8. Comparison of electron transport properties in wurtzite ZnO (Fig. 6) and
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Fig. 8. Fraction of electrons in the Γ valley of ZnO and SiC materials as a function of applied
electric field using the non-parabolic band model at room temperature with Nd = 1017 cm−3.

SiC (Fig. 7) shows that the change in peak velocity of ZnO from 300 K to 600 K is

a reduction of about 32% whereas for SiC it is about 25%. Therefore, the electron

velocity in SiC is less sensitive to temperature than in ZnO, and SiC devices are

expected to be more tolerant to self-heating and high ambient temperature.

4. Conclusions

The calculated steady state electron transport in wurtzite SiC and ZnO materials

using a hydrodynamic equation approach has been demonstrated. Our simulation

results show that due to the high electron drift velocity in the two structures we

can use these materials for device applications in high-power and high-temperature

performance. The velocity-field characteristics of the materials show similar trends,

reflecting the fact that these semiconductors have satellite valley effective densities

of states several times greater than the central Γ-valley.
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