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Abstract: 
 The transient motion and the heat transfer of a viscous incompressible fluid contained 

between two concentric spheres, maintained at different temperatures and rotating about a common 
axis with different angular velocities is considered numerically when the angular velocities are 
arbitrary functions of time.  The resulting flow pattern, temperature distribution, and heat transfer 
characteristics are presented for the various cases including exponential and sinusoidal angular 
velocities.  Interesting effect of long delays in heat transfer of a large portion of the fluid in the annulus 

is observed because of the angular velocities of the corresponding spheres. 
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Nomenclatures 

 
b 0/ RRi= 
c coefficient 

Pc specific heat at constant pressure 
d coefficient 
e coefficient 

Ek Eckert number 
f coefficient 
)(ηF function 
)(ηG function 
)(ηH function 

Pe Peclet  number 
Pr Prandtl number 
φθ ,,r spherical coordinates 

0r reference value 

Re Reynolds number 

iR inner sphere radii 

0R outer sphere radii 

T temperature 

iT inner sphere temperature 

0T outer sphere temperature 

φθ vvvr ,, velocity components 
 

 Greeks 
α thermal diffusivity 
γ function 



τ non-dimensional time 
λ function 
η similarity parameter 
ν kinematic viscosity 
ψ stream function 
ω angular velocity 

0ω reference value 

Ω angular momentum function 

iΩ inner sphere angular  velocity 

0Ω outer sphere angular velocity 

0iΩ =0/ΩΩ i 
 

1- Introduction 
 The transient motion of an incompressible viscous fluid and its heat transfer in a rotating 
spherical annuli is considered numerically when the spheres are concentric and their angular velocities 
about a common axis of rotation are arbitrarily-prescribed functions of time.  Such motions may be 
described in terms of a pair of coupled non-linear partial differential equations in three independent 
variables.  Note that the energy equation is linear when velocity field is known. 
 Available theoretical works concerning such problems are primarily of a boundary-layer or 
singular-perturbation character considered by Howarth [1], Proudman [2], Lord & Bowden [3], Fox 
[4], Greenspan [5], Carrier [6] and Stewartson [7].  The first numerical study of time-dependent 
viscous flow between two rotating spheres has been presented by Pearson [8] in which the cases of one 
(or both) spheres is given an impulsive change in angular velocity starting from a state of either rest or 
uniform rotation.  Munson and Joseph [9] have considered the case of steady motion of a viscous fluid 
between concentric rotating spheres using perturbation techniques for small values of Reynolds number 
and a Legendre polynomial expansion for larger values of Reynolds numbers.  Thermal convection in 
rotating spherical annuli has been considered by Douglass, Munson and Shaughnessy [10] in which the 
steady forced convection of a viscous fluid contained between two concentric spheres which are 
maintained at different temperatures and rotate about a common axis with different angular velocities is 
studied.  Approximate solutions to the governing equations are obtained in terms of a regular 
perturbation solution valid for small Reynolds number and a modified Galerkian solution for moderate 
Reynolds numbers.  Viscous dissipation is neglected in their study and all fluid properties are assumed 
constant.  A study of viscous flow in oscillatory spherical annuli has been done by Munson and 
Douglass [11] in which a perturbation solution valid for slow oscillation rates is presented and 
compared with experimental results.  Another interesting work is the study of the axially symmetric 
motion of an incompressible viscous fluid between two concentric rotating spheres done by Gagliardi 
et al. [12].  This work involves the study of the steady state and transient motion of a system consisting 
of an incompressible, Newtonian fluid in an annulus between two concentric, rotating, rigid spheres.  
The primary purpose of their research is to study the use of an approximate analytical method for 
analyzing the transient motion of the fluid in the annulus and spheres which are started suddenly due to 
the action of prescribed torques and also the study by Jen-Kang Yang et al. [13] and the finite element 
study by Ni and Nigro [14].   The problems include the case where one or both spheres rotate with 
prescribed constant angular velocities and the case in which one sphere rotates due to the action of an 
applied constant or impulsive torque.  Also, Bar-Yoseph et al. [15] consider the problem of mixed-
convection of rotating fluids in spherical annuli in which they focus on the formation of various 
secondary flow patterns in the meridional plane using the Galerkin finite element method.  The thermal 
effects on axisymmetric vortex breakdown in a spherical gap is also has been considered by Arkadyev 
et al. [16] in which the influence of a temperature field on the vortex breakdown phenomenon is 
examined using a finite element formulation.  The physical system considered is the spherical annulus 
between two concentric spheres with radii ratio 1:2 which is filled with a Boussinesq fluid and the 
outer sphere is stationary and hot while the inner sphere rotates and is at a lower temperature.  The 
other work to mention is the study of axisymmetric vortex breakdown for generalized Newtonian fluid 
contained between rotating spheres by Bar-Yoseph el al. [17] with the purpose of providing a more 
complete understanding of the secondary flow structure of dilute suspensions in rotating systems.  The 
physical system considered is the spherical annulus between two concentric spheres, radii 1:2 which is 
filled with a Boussinesq generalized Newtonian fluid and the walls of the spherical annulus are held at 
uniform but different temperatures.  A weak penalty finite element formulation is also used in this 



problem.  Besides, there are many studies considering natural convection.  These are including: 
Laminar natural convection about an isothermally heated sphere at small Grashof number by, Fendell 
[18], Natural convection between two concentric spheres-transition towards a multicellular flow by, 
Caltagirone et al. [19], Natural convection between concentric spheres at low Rayleigh numbers by, 
Mack et al. [20], Natural convection between concentric spheres by, Garg [21], Transient natural 
convection heat transfer between concentric spheres by, Chu et al. [22], Transient natural convection 
heat transfer between concentric and vertically eccentric spheres by, Chiu et al. [23], and Transient 
natural convection heat transfer of fluids with variable viscosity between concentric and vertically 
eccentric spheres by, Wu et al. [24]. 
 The study of transient motion and heat transfer of an incompressible viscous fluid filling the 
annuli of two concentric spheres rotating with any prescribed function of time angular velocity has not 
been considered in the literature.  In the present study a numerical solution of unsteady momentum and 
energy equations is presented for viscous flow between two concentric rotating spheres maintained in 
different temperatures which are rotating with time-dependent angular velocities.  Results for some 
example functions including exponential and sinusoidal angular velocities are presented when the outer 
sphere initially starts rotating with a constant angular velocity and the inner sphere starts rotating with a 
prescribed time-dependent function.  Similar physical and geometrical configurations are used in 
engineering systems and designs like centrifuges and fluid gyroscopes and also are important in 
geophysics and nuclear reactor design, thermal energy storage cells, and solar energy collectors.  Other 
applications of the configuration used in this problem are in meteorological instrumentations where 
such apparatus and equipments are used to obtain quantitative information about the weather.  Accurate 
prediction of steady state heat transfer rates and temperature distribution is required in these 
engineering design problems.  For some engineering applications such as gyroscopes, the prediction of 
transient temperature distribution and heat transfer rate from initial state to steady state is very 
important, references [8-11].  Sinusoidal rotation of the spherical containers are seen in all the mixers 
used in different types of industry and their stopping and starting movements are usually accomplished 
in exponential manners.  
 
 
 2- Problem Formulation 
  The geometry of the spherical annulus considered is indicated in Fig. 1.  A Newtonian, 
viscous, incompressible fluid fills the gap between the inner and outer spheres which are of radii 

iR and oR  and with constant surface temperatures iT and oT and rotate about a common axis with 

angular velocities iΩ  and oΩ , respectively.  The components of velocity in directions r ,θ , and φ  

are rv , θv , and φv , respectively.  These velocity components for incompressible flow and in meridian 
plane satisfy the continuity equation and are related to stream function ψ  and angular momentum 
function Ω  in the following manner: 
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Since the flow is assumed to be independent of the longitude,φ , the non-dimensional Navier-Stokes 
equations  and energy equation can be written in terms of the stream function and the angular velocity 
function as follows:  
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in which the non-dimensional Reynolds number ( Re ), Prandtl number ( Pr ), Peclet number ( Pe ), 
and Eckert number ( Ek ) are defined as: 
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The following non-dimensional  parameters have been used in the above equations and then the 
asterisks have been omitted: 
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in which or and oω are reference values.  The non-dimensional boundary and initial conditions for the 
above governing equations are: 
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where,  
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These governing equations along with the related boundary and initial conditions are solved 

numerically in the next section. 
 
3- Computational Procedure 
 The two equations governing the fluid motion show that each is describing the behavior of one 
of the dependent variables Ω andψ .  On the other hand, these two equations are coupled only through 
nonlinear terms.  To solve the problem numerically, the momentum equations were discretized by the 
finite-difference method using implicit-explicit schemes, which is a stabilizing technique.  Number of 
iterations for the case of Re=1000, for example, and a time-step of 0.01 are about 23000 which on a 
Pentium 4 computer takes around 48 hours to solve momentum and energy equations.  Because of the 
known velocity field from momentum equations, the energy equation is linear and is solved here 
without neglecting any terms.  In each time step (n+1), the value of the dependent variables are 
estimated from their values at previous time steps (n), (n-1), and (n-2) and after using them in 
difference equations and repeating this, until the desired convergence is obtained.  This will lead to the 
corrected values at this time step.  This procedure is applied for the next time step. 

 The flow field considered is covered with a regular mesh, see Fig. 2.  To solve the system of 
linear difference equations, a tri- diagonal method is used in both directions randθ, Press et al. [25].  

Direct substitution of previous values of dependent variables by new calculated values can provoke 
instability in numerical calculations, in general.  To overcome this problem, a weighting procedure is 
used in which the optimum weighting factor depends on Reynolds number of the flow. The bigger the 
Reynolds number the smaller value of each quantity is added to its previous value, at each iteration 
(bigger weighting factor).  Convergence is assumed when the ratio of every one of quantities for the 

last two approximations differed from unity by less than 510− at all values of independent variable.  A 
mesh independence study has been demonstrated in Figures 3 and 4.  In this mesh-study, the conditions 

of flow and heat transfer fields are: Re =10, Pr =10, Ek=0, and ioΩ=0.  As it can be seen, the 
difference between the contours of ψ function for the coarse grid (case (a), with mesh size 25*12) and 

the fine grid (case (b) with mesh size 40*20) is almost large (about 12%), but the difference between 
case (c) (with grid size 45*25) and case (d) (with grid size 50*25) is really negligible (less than 
0.03%).  Hence the numerical solution is mesh-independent for cases c or d and even b.  For the results 
presented in our solution, a 50*25 mesh grid has been selected though a 40*20 mesh would have been 

fine.  The mesh sizes mentioned above are in θ x r  directions.  The contours of temperature has also 
been drawn for mesh sizes from case (a), 25*12 to case (d), 50*25 in Fig. 4.  In this case no significant 
differences between these cases can be seen and that is because the energy equation is linear and its 

solution has much less complexities compared with momentum equation.   
The final results obtained in each case are exactly the results of the work of Pearson [1967] 

and Munson et al. [1971] for the Navier-Stokes equations and energy equation.  To verify the validity 
of the numerical procedure used in this work, the numerical results of research studies such as Ref. [8-
10], see Table 1, has been reproduced with the same flow parameters.   These results which are very 
close to our results obtained in these references are shown in Fig. 5.  

 In our study these results have been obtained with a lot less computational complexities since 
they have been reached by solving an ordinary differential system of equations.  

In this work the sphere angular velocity has been considered a function of time and to apply 
this time-function to the program, at the beginning of each time step the average of that time step has 
been calculated and used for the sphere angular velocity function.  Therefore, for each considered time 
step the sphere velocity is defined and assumed continuous at each cross section.   
 
4- Presentation of Results 
 If the bounding spherical surfaces were stationary, there would be no fluid motion and the 
temperature distribution would simply be due to conduction.  Any rotation of the bounding spheres sets 
up a primary flow (ω ) around the axis of rotation.  This relative motion induces an unbalanced 
centrifugal force field which drives the secondary flows (ψ ) in the meridian plane.  Thus, if the 
bounding spheres are of unequal temperatures, this secondary flow produces forced convection within 
the annulus, resulting in a temperature distribution which is different from the pure conduction 
distribution.  The relative magnitudes of the secondary flow and forced convection effects depend upon 



the parameters involved, including those concerning the geometry of the flow and those concerning the 
dynamics of the flow such as oiio ΩΩ=Ω / , oiio RRR /= , Prandtl number and Reynolds number.  
These secondary flows known as vortex have clockwise or counterclockwise motion depending upon 
whether the outer sphere or the inner sphere is dominant, as far as the secondary flow is concerned.  To 
have a better understanding of the effect of secondary flows on temperature distribution, the contours 
of ( cTT − ) are also presented in this study which show the difference between actual temperature and 

the pure conduction case.  Here, cT  depends only on r .  The cases considered here include time-
dependent angular velocities which are exponential and sinusoidal.  Results for velocity and 
temperature fields are presented for cases when the outer sphere is rotating with a constant angular 
velocity and the inner sphere starts rotating with the prescribed function of time angular velocities.  
These presentations are only at some selected time values.   

The velocity fields for the particular case of inner sphere angular 
velocity, )1( τ−−=Ω Expio , and outer sphere rotating with constant angular velocity are presented 

in Figures 6 and 7 for Reynolds number Re = 1000 and at selected time values.  At the beginning 
when the vortices (ψ  contours) are formed, it is seen that the annulus space is under the effect of both 
spheres which are dominating the flow field.  A clockwise vortex close to outer sphere and a 
counterclockwise vortex close to the inner sphere is formed, Fig. 6(a) and Fig. 6(b).  As the inner 
angular velocity decreases with time, its effect on the secondary flow diminishes.  During this time the 
clockwise vortex grows considerably and after some time there is only one big counterclockwise vortex 
which indicates that the outer sphere is dominating the flow.  As it is seen from the Figures 6(c) and 
6(d), the flow pattern tends towards the situation that the inner sphere is stationary, as one expects.  
Contours of ω  for different time values are shown in Figure 7.  Since the Reynolds number is large 
these contours get closer to inner sphere at the equator.  In fact for large Reynolds numbers 
(approximately larger than Re =300), this secondary flow causes a considerable change in peripheral 
velocity (primary flow velocity profile).  In general, the fluid particles in the vicinity of the equator 
move towards the inner sphere, and return back towards the axis of rotation.  As a result a secondary 
distribution of peripheral velocity forms which affects the flow in meridian plane again.  As time 
advances and if the Reynolds number is large, in the corner region between the outer sphere and 
equator line the angular velocity contours move inwards and those contours in the vicinity of axis of 
rotation move outwards.  This effect can be described by considering the distribution of angular 
momentum.  The rotation of the outer sphere provides a certain amount of angular momentum for the 
system that by flow in meridian plane and by Coriolis forces and nonlinear advection is redistributed.  
The fact that the total angular momentum of the azimuthal flow must be conserved by upward and 
downward moving fluid shows that the rotation of the upward moving elements of fluid (near pole) 
slow down and rotation of the downward moving elements of fluid (near equator) speed up. 

The contours of T and ( cTT − ) for the inner angular velocity of )1( τ−−=Ω Expio , 

Re =1000, Pr =10, and Ek = 0 are shown in Figures 8 and 9.  At the outset when both spheres 
dominate the flow, the diffusion of heat from the outer sphere into the field takes place approximately 
in steady manner but as the rotation effect of the inner sphere becomes weak then the temperature field 
grows considerably from the vicinity of the equator and affects the whole field.  As far as ( cTT − ) 
contours, it is seen that at the beginning when the flow is forming, the difference between the actual 
temperature and the pure conduction temperature can be seen only in the region near the outer sphere 
but as time passes this difference becomes larger because of convection.  It is obvious that this 
difference shows itself in the form of positive and negative numbers.  The contours near the pole are 
negative and the contours near the equator are positive.  This is because the clockwise flow which is 
formed by the rotation of the outer sphere would transfer the heat of this sphere into the field and 
towards the equator and the inner sphere.  On the contrary, as it moves along the inner sphere and 
rotation axis, it transfers the inner sphere coldness towards the outer sphere and the pole.  As a result, 
in the vicinity of the pole there are temperatures which are lower than pure conduction case and in the 
vicinity of the equator there are temperatures which are higher than pure conduction case.  As 
evidenced in Fig. 8, it is interesting to note that the angular velocities of spheres can cause long delays 
in heat transfer of the fluid in large areas of the annulus around the poles.  

Figures 10 and 11 present the T and ( cTT − ) contours for the same conditions as in Figures 

8 and 9 except for Pr =1.  As it is seen in this case, the heat diffuses faster because the heat diffusion 
mechanism by conduction is stronger than the diffusion of heat by convection and also as the inner 



sphere rotates, a counterclockwise vortex is formed which curbs the heat convection and its transfer to 
the field.  Therefore, when the Prandtl number is lower, then the temperature field grows faster.  This 
can be seen in Figure 11 where the contours are steadier.  The difference between Figures 12 and 13 
compare to Figures 10 and 11is in the Eckert number.  Eckert number is related to viscous dissipation 
which is the gradients of velocity that show their effect as a source of heat in energy equation.  This 
source, in fact, expresses the conversion of kennetic energy to heat energy which causes the 
temperature of the flow field to rise.  This effect (gradients of velocity) is seen in Figure 12 in which 
the temperature field has more expansion compared to Figure 10.  Looking at Figures 12 and 13, this 
difference is much clearer.  These velocity gradients are the reason for the difference between the 
actual temperature and the case of pure conduction and can be seen better at the vicinity of inner sphere 
in Figures 12(a) and 12(b) compare to Figures 10 (a) and 10 (b).   Also, as it is expected, the 
temperatures are higher when the dissipation terms are not omitted, such as in Ref. [10]. 

Figures 14 –17 have been drawn for inner angular velocity, )
2

sin(2 τπ=Ω io  for 

Re =1000, Pr =10, and Ek =0 and in two consecutive periods (second and third) for the sine 
function.  As known, the sine function oscillates between –1 and 1.  In these figures the second and 
third periods after the sinusoidal movement have been considered.  Inner sphere angular velocity in 
Figures 14 (a) -14 (d) is approximately =Ω io 0.0214, 1.998, -0.0214, and-1.998, respectively.  The 
time values selected in these figures are when the inner sphere velocity has come to an important 
change, meaning that it has been considered immediately after a change of acceleration.  For example, 
for the time value between the case (a) and just before the case (b) the inner sphere acceleration is 
positive and the time value at (b) is the starting point of negative acceleration for this sphere.  As it is 
seen from Figure 15, the angular velocity of the fluid elements in the vicinity of the inner sphere is also 
dependent on the past accelerations.  This is because the inner sphere has a sinusoidal oscillation and, 
for example, at τ =4.01 when the inner sphere velocity is 0.0214 (a small positive value) but it is seen 
that the fluid elements in its boundaries have negative angular velocity because in the one quart of the 
previous period the inner sphere has negative angular velocity.  Therefore, as the outer sphere 
containing a constant velocity has a continuous and steady effect on the entire  flow field, the inner 
sphere having an oscillating velocity between –2 and 2 (periodic acceleration of positive and negative) 
induces an unsteady and oscillatory type of effect on the layers in the vicinity of the inner sphere. 

The T and ( cTT − ) contours for the inner angular velocity of )
2

sin(2 τπ=Ω io  are 

depicted in Figures 16-17 for Re =1000, Pr =10, and Ek =0.  Similar types of discussions as in 
Figures 8 and 9 apply here as well.  Also the delay in heat transfer of the fluid in large portions of 
annulus can be seen in Figure 16(h). 

 
 
 
   

5- Conclusions 
        

 A numerical study of flow and heat transfer of a viscous incompressible fluid within a 
rotating spherical annulus has been investigated when the spheres have time-dependent prescribed 
values of angular velocities.  The characteristics of the flow and temperature fields are strongly 
dependent on the values of the various dimensionless parameters considered.  The characteristics of 
angular velocity and temperature distribution for small Reynolds numbers are similar which is expected 
since in this situation there is a balance between convection and diffusion of momentum and heat.  At 
small Reynolds numbers the secondary flow or the vortices which cause forced convection are weak 
and thus the effect of convection and therefore the intensity of their local heat transfer do not exhibit 
considerable difference from the pure conduction.  But for large Reynolds numbers some deviations are 
seen in angular velocity and temperature distributions which indicate the effect of secondary flow on 
the primary flow.  Since we have considered the case with time-dependent angular velocities, therefore 
the relative velocities of the spheres are functions of time.  Applying these angular velocities, shear 
layers are formed in the vicinity of the spheres which get thicker because of viscous diffusion effect 
and depending on the flow conditions one or two circulations are formed in meridian plane.   
Interesting effect of long delays in heat transfer of a large portion of the fluid in the annulus is observed 

because of the angular velocities of the corresponding spheres. 
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                                                       Figure1: Spherical annulus 
 
 
 

 
                                                        Figure 2:  Mesh size 

 
 

 
 



1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

10

11

1215

15 4.5095E-04
14 4.2088E-04
13 3.9082E-04
12 3.6075E-04
11 3.3068E-04
10 3.0062E-04
9 2.7055E-04
8 2.4048E-04
7 2.1041E-04
6 1.8035E-04
5 1.5028E-04
4 1.2021E-04
3 9.0147E-05
2 6.0080E-05
1 3.0013E-05

ψ

 
a 

1

1

2

2

3

3

4

4

5

5

6

7

7 8
9

9

10
11

12

13

15

15 4.9703E-04
14 4.6389E-04
13 4.3076E-04
12 3.9762E-04
11 3.6449E-04
10 3.3135E-04
9 2.9822E-04
8 2.6508E-04
7 2.3195E-04
6 1.9881E-04
5 1.6568E-04
4 1.3254E-04
3 9.9406E-05
2 6.6270E-05
1 3.3135E-05

ψ

 
b 

1

1

1

2

2

3

3

4

4

5

5

6

7
7

8

8

9

10

11

12

13

15 5.1266E-04
14 4.7848E-04
13 4.4430E-04
12 4.1012E-04
11 3.7593E-04
10 3.4175E-04
9 3.0757E-04
8 2.7339E-04
7 2.3921E-04
6 2.0503E-04
5 1.7084E-04
4 1.3666E-04
3 1.0248E-04
2 6.8299E-05
1 3.4117E-05

ψ

 
c 

1

1

2

2

2

3

3

4
5

6

7

7

8

8

9

10 1112

15

15 5.1254E-04
14 4.7837E-04
13 4.4419E-04
12 4.1001E-04
11 3.7584E-04
10 3.4166E-04
9 3.0748E-04
8 2.7331E-04
7 2.3913E-04
6 2.0495E-04
5 1.7077E-04
4 1.3660E-04
3 1.0242E-04
2 6.8244E-05
1 3.4067E-05

ψ

 
d 

 
Fig. 3: contours of stream function for various mesh-size grid 
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                                 Fig. 4: contours of temperature for various mesh-size grid 
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Figure 5: Velocity (or stream function) and temperature distribution for  Re = 50, Pr = 10, Ek = 0  
and  Ωio= -3 at t = 55.01 

 
 

 
Table1.  

                  Results of References [8-10] for Re = 50, 3−=Ω io, and Pr = 10. 
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                                   Figure 6: Contours of ψ for Re=1000 and Ωio= - Exp(1-t). 
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                              Figure 7: Contours of ω for Re=1000 and Ωio= - Exp(1-t). 
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                       Figure 8: Contours of T for Re=1000, Pr=10, Ek=0 and Ωio= - Exp(1-t). 
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            Figure 9: Contours of (T-Tc) for Re=1000, Pr=10, Ek=0 and Ωio= - Exp(1-t). 
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                           Figure 10: Contours of T for Re=1000, Pr=1, Ek=0 and Ωio= - 
Exp(1-t). 
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                Figure 11: Contours of (T-Tc) for Re=1000, Pr=1, Ek=0 and Ωio= - Exp(1-
t). 
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                Figure 12: Contours of T for Re=1000, Pr=1, Ek=0.001 and Ωio= - Exp(1-t). 
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           Figure 13: Contours of (T-Tc) for Re=1000, Pr=1, Ek=0.001 and Ωio= - Exp(1-
t). 
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                         Figure 14: Contours of ψ for Re=1000, and Ωio= 2 sin (π/2)t. 
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                        Figure 15: Contours of ω for Re=1000, and Ωio= 2 sin (π/2)t. 
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                     Figure 16: Contours of T for Re=1000, Pr=10, Ek=0, and Ωio= 2 sin 
(π/2)t. 
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           Figure 17: Contours of (T-Tc) for Re=1000, Pr=10, Ek=0, and Ωio= 2 sin 
(π/2)t. 

 
 
 
 
 
 
 
 
 
 
 
 
  


