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Iterative technique is used to solve Boltzmann transport equation for calculating temperature and 
doping dependencies of electron mobility in ZnO and SiC materials. The two-mode nature of the polar 
optic phonons is considered jointly with deformation potential acoustic, piezoelectric, ionized impurity 
and electron-plasmon scattering. Band non-parabolicity, admixture of p functions, arbitrary degeneracy 
of the electron distribution, and the screening effects of free carriers on the scattering probabilities are 
incorporated. It is shown that electron-plasmon scattering affects substantially the low-field electron 
mobility in bulk ZnO and SiC. It is found that the electron mobility decreases monotonically as the 
temperature increases from 300 - 600 K. The low temperature value of electron mobility increases 
significantly with increasing doping concentration. The iterative results are in fair agreement with other 
recent calculations obtained using the relaxation-time approximation and experimental methods.  
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INTRODUCTION 
 
Zinc oxide and sillicon carbide are of potential interest as 
a suitable materials for high temperature, high power 
electronic devices either as the active material or as a 
suitable substrate for epitaxial growth of group III-nitride 
compounds (Hamdani, 1997). Prior to advances in vapor-
phase growth yielding high quality bulk of ZnO and SiC 
cystals [Look, 2005]; practical applications for these 
materials were limited to those requiring only oriented 
ploycrystallities or powder [Kim, 1999]. With those large, 
direct band gap and wurtzite crystal structure, ZnO and 
SiC are similar to GaN. Furthermore, due to its relatively 
close match in lattice constants, it may be used as a 
substrate for GaN and AlN epitaxy (Tsukazaki et al., 
2005). As a consequence, there is renewed interest in the 
properties of ZnO and SiC relevant for device 
applications (Makino et al., 2001). The low-field electron 
mobility is one of the most important parameters that 
determine the performance of a field-effect transistor. The 
purpose of the present paper is to calculate electron 
mobility for various temperatures and ionized-impurity 
concentrations. The formulation itself applies only to the 
central Γ valley conduction band. We have also consider 
band non-parabolicity, admixture of p- type valence-band 
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wave functions, degeneracy of the electron distribution to 
any arbitrary degree, and the screening effects of free 
carriers on the scattering probabilities [Bellotti et al., 
1999]. All the relevant scattering mechanisms, including 
the two-mode nature of the polar optic phonon and 
electron-plasmon scattering are taken into account. The 
Boltzmann equation is solved iteratively for our purpose, 
jointly incorporating the effects of all the scattering 
mechanisms [Look et al., 1998]. Our calculated results 
are compared with the available experimental data on 
both temperature and the free electron concentration 
dependence of mobility [Chen et al., 1998]. 
This paper is organized as follows. Details of the iterative 
model, the electron scattering mechanism which have 
been used and the electron mobility calculations are pre-
sented in section 2 and the results of iterative calcula-
tions carried out on ZnO structure are interpreted in 
section 3. 
 
 
MODEL DETAILS 
 
To calculate mobility, we have to solve the Boltzmann 
equation to get the modified probability distribution 
function under the action of a steady electric field. Here 
we have adopted the iterative technique for solving the 
Boltzmann   transport   equation.  Under  the  action  of  a  
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steady field, the Boltzmann equation for the distribution 
function can be written as 
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Where (∂ f/∂ t)coll represents the change of distribution 
function due to the electron scattering. In the steady-state 
and under application of a uniform electric field the 
Boltzmann equation can be written as 
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Consider electrons in an isotropic, non-parabolic conduc-
tion band whose equilibrium Fermi distribution function is 
f0(k) in the absence of electric field. Note the equilibrium 
distribution f0(k) is isotropic in k space but is perturbed 
when an electric field is applied. If the electric field is 
small, we can treat the change from the equilibrium 
distribution function as a perturbation which is first order 
in the electric field. The distribution in the presence of a 
sufficiently small field can be written quite generally as 
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Where θ is the angle between k and F and f1(k) is an 
isotropic function of k, which is proportional to the 
magnitude of the electric field. f(k) satisfies the Boltz-
mann equation 2 and it follows that: 
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In general there will be both elastic and inelastic scat-
tering processes. For example impurity scattering is 
elastic and acoustic and piezoelectric scattering are 
elastic to a good approximation at room temperature. 
However, polar and non-polar optical phonon scattering 
are inelastic. Labeling the elastic and inelastic scattering 
rates with subscripts el and inel respectively and 
recognizing that, for any process i, seli(k’, k) = seli(k, k’) 
equation 4 can be written as 
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Note the first term in the denominator is simply the 
momentum relaxation rate for elastic scattering. Equation 
5 may be solved iteratively by the relation 
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Where f 1n (k) is the perturbation to the distribution 
function after the n-th iteration. It is interesting to note that 
if the initial distribution is chosen to be the equilibrium 
distribution, for which f 1 (k) is equal to zero, we get the 
relaxation time approximation result after the first 
iteration. We have found that convergence can normally 
be achieved after only a few iterations for small electric 
fields. Once f 1 (k) has been evaluated to the required 
accuracy, it is possible to calculate quantities such as the 
drift mobility µ, which is given in terms of spherical 
coordinates by 
 

kdfk

kdfFk

Fm 3
0

0

2

0

3
1

3

*

)21/(

3
�

�
∞

∞
+

=
α

µ �

   (7) 
 
Here, we have calculated low field drift mobility in ZnO 
and SiC structures using the iterative technique. In the 
following sections electron-phonon electron-impurity, and 
electron-plasmon scattering mechanisms will be dis-
cussed. 
 
 

Deformation potential scattering 
 
The acoustic modes modulate the inter atomic spacing. 
Consequently, the position of the conduction and valence 
band edges and the energy band gap will vary with 
position because of the sensitivity of the band structure to 
the lattice spacing. The energy change of a band edge 
due to this mechanism is defined by a deformation 
potential and the resultant scattering of carriers is called 
deformation potential scattering. The energy range 
involved in the case of scattering by acoustic phonons is 
from zero to vk�2  , where v is the velocity of sound, since 
momentum conservation restricts the change of phonon 
wave vector to between zero and  2k, where k is the 
electron wave vector. Typically, the average value of k is 
of the order of 107 cm-1 and the velocity of sound in the 
medium is of the order of 105 cms-1. Hence, vk�2  ∼ 1 
meV, which is small compared to the thermal energy at 
room temperature. Therefore, the deformation potential 
scattering by acoustic modes can be considered as an 
elastic process except at very low temperature. The 
deformation potential scattering rate with either phonon 
emission or absorption for an electron of energy E in a 
non-parabolic band is given by Fermi's golden rule as 
[Moglestue, 1993; Jacoboni, 1989] 
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Where Dac is the acoustic deformation potential, ρ is the 
material density and α is the non-parabolicity coefficient. 
The formula clearly shows that the acoustic scattering 
increases with temperature. 
 
 
Piezoelectric scattering 
 
The second type of electron scattering by acoustic modes 
occurs when the displacements of the atoms create an 
electric field through the piezoelectric effect. This can 
occur in the compound semiconductors such as the III-V 
and II-VI materials including ZnO and SiC which in fact 
have a relatively large piezoelectric constant. The 
piezoelectric scattering rate for an electron of energy E in 
an isotropic, parabolic band has been discussed by 
Ridley [Ridley, 1997] who included the modification of the 
Coulomb potential due to free carrier screening. The 
screened Coulomb potential is written as 
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Where εs is the relative dielectric constant of the material 
and q0 is the inverse screening length, which under non-
degenerate conditions is given by  
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Where n is the electron density. The expression for the 
scattering rate of an electron in a non-parabolic band 
structure retaining only the important terms can be written 
as [Moglestue, 1993; Jacoboni, 1989]: 
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Where Kav is the dimensionless so called average 
electromechanical coupling constant. 
 
 
Polar optical phonon scattering 
 
The dipolar electric field arising from the opposite dis-
placement of the negatively and positively charged atoms 
provides a coupling between the electrons and the lattice 
which results in electron scattering. This type of scat-
tering is called   polar  optical  phonon  scattering  and  at  
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room temperature is generally the most important scat-
tering mechanism for electrons in III-V semiconductors, 
and this is also the case in ZnO and SiC despite the fact 
that the optical phonon energy is particularly high at ∼ 93 
meV which suppresses the phonon population and also 
electrons must reach that energy before phonon emission 
is possible. The scattering rate due to this process for an 
electron of energy E in an isotropic, non-parabolic band is 
(Moglestue, 1993; Jacoboni, 1989) 
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Where Nop is the phonon occupation number and the 
upper and lower cases refer to absorption and emission, 
respectively. For small electric fields, the phonon 
population will be very close to equilibrium so that the 
average number of phonons is given by the Bose-
Einstein distribution. 
 
 
Non-polar optical phonon scattering 
 
Non-polar optical phonon scattering is similar to defor-
mation potential scattering, in that the deformation of the 
lattice produces a perturbing potential but in this case the 
deformation is carried by optical vibrations. The non-polar 
optical phonon scattering rate in non-parabolic bands is 
given by [Moglestue, 1993; Jacoboni, 1989] 
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Where Dod is the optical deformation potential and 

opEE ω�±= '
is the final state energy phonon absorption 

(upper case) and emission (lower case).  
 
 
Impurity scattering 
 
This scattering process arises as a result of the presence 
of impurities in a semiconductor. The substitution of an 
impurity atom on a lattice site will perturb the periodic 
crystal potential and result in scattering of an electron. 
Since the mass of the impurity greatly exceeds that of an 
electron and the impurity is bonded to neighboring atoms, 
this scattering is very close to being elastic. Ionized 
impurity scattering is dominant at low temperatures 
because, as the thermal velocity of the electrons de-
creases, the effect of long-range Coulombic interactions 
on their motion is increased. The electron scattering by 
ionized impurity centres has been  discussed  by  Brooks- 
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Herring (Chattopadhyay, 1981) who included the modify-
cation of the Coulomb potential due to free carrier 
screening. The scattering rate for an isotropic, non-
parabolic band structure is given by [Moglestue, 1993; 
Jacoboni, 1989] 
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Where ni is the impurity concentration, q0 is the screening 
length and ks is the dielectric constant of the material. 
 
 
Electron-plasmon scattering 
 
The electron-plasmon interaction Hamiltonian can be 
written in random phase approximation as (Di, 1991; 
Mansour, 1991) 
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kc , kc  are the creation and annihilation 

operators for plasmons and electrons, respectively. The 
matrix element 
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Where 
)(qpω

 is the dispersion relation for plasmons, q 
and k are the plasmon and electron momenta, 
respectively, e and m* are the charge and effective mass 
of an electron, ε the background dielectric constant, and 
Ω the real-space volume. The first term in parentheses in 
equation 15 describes the plasmon absorption process 
which obeys the energy conservation law as 
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Where εk is the energy of electron with momentum k. In a 
similar manner, the plasmon emission process, in accor-
dance with the second term in parentheses in equation 
15, is governed by the energy conservation law which 
can be written as 
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Note that equation 17 describes the emission of plasmon 
with momentum -q. To impart a more conventional form to 
the energy conservation law, repalce the variable of sum- 

 
 
 
 
mation q in terms governing the plasmon emission in 
equation 1 by -q. Then we can rewrite equation 15 as 
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The notation of equation 15 leads to the following form of 
the energy conservation law for the emission processes 
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From the Fermi Golden rule, we can calculate the 
electron-plasmon scattering rates for emission We and 
absorption Wa 
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Where k and k' are electron momenta in an initial state 
i

 and a final state
f

, respectively. Here and further 
the upper signs in formulae correspond to the plasmon 
emission, whereas the lower ones do to the plasmon 
absorption. By using equation 15 and the energy 
conservation requirements in the forms of equations 18 
and 20 which are consistent with this notation of Hint, 
equation 21 becomes 
 

[ ]
{ }�

+

×±−Ω
=

abqemq

pkqkq
ae

NN

qM
dq

kW
)(;)1(

)(
8

2
)(

2
3

,

ωεεδ
ππ �

�

��

  (22) 
                                               
Where Nq is the Bose-Einstein distribution function for 
plasmons. The integration bounds with respect to q are 
defined from the following conditions 
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Where kf is the electron momentum at the Fermi surface. 
 
 
RESULTS 
 
The electron-plasmon scattering is included only in the 
low effective mass Γ valley. So, we have just taken into 
account the temperature and electron concentration 
dependence of the electron mobility in the Γ valley, which 
arises due to the different scattering mechanisms. The 
electron mobility as a function of temperature in bulk ZnO 
and SiC materials for various types of scattering mecha-
nisms   such   as  ionized  impurity,  acoustic  phonon  via  
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Figure 1. Calculated electron mobility in bulk ZnO and SiC as a function of temperature 
assuming a donor   concentration of 1022 m-3 without the electron-plasmon scattering. 
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Figure 2. Calculated electron mobility in bulk ZnO and SiC as a function of temperature assuming a donor 
concentration of 1022 m-3 with the electron-plasmon scattering. 

 
 
 
deformation potential and polar optical phonon but 
without electron-plasmon scattering effect is shown in 
Figure 1. 

As it is seen, the decrease  in  electron  mobility  at  low  

temperature is caused in part by ionized impurity scat-
tering versa the step reduction at higher temperature is 
due to large optical phonon scattering. 

Figure 2 shows again the variation of  electron  mobility  
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Figure 3. Calculated low-field electron drift mobility in bulk ZnO and SiC as a function of different 
donor concentration at room temperature including the electron-plasmon scattering in 
comparison with experimental report. 
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Figure 4. Calculated low-field electron drift mobility in bulk ZnO and SiC as a function of 
different donor concentration at room temperature without the electron-plasmon 
scattering in comparison with experimental report. 

 
 
 
as a function of temperature adding electron-plamon 
scattering effect. As it can be seen, inclusion of the 
electron-plasmon scattering leads to the effecive heating 
of the hot-electron system. The calculated results for SiC 
are in comparison to the Liu et al. (2000) (experimental 
report which shows good agreements). 

Figures 3 and 4 show the calculated variation of the 
electron mobility as a function of the donor concentration 
in bulk ZnO and SiC crystal structure at room tempe-
rature with and without inclusion of electron-plasmon 
scattering effect, respectively. It can be seen that in both 
cases there is a fair agreement with the Liu  et  al.  (2000)  



 
 
 
 
(experimental report). Also the figures show that the 
mobility does   not vary   monotonically   between    donor  
concentrations of 1021 and 1024 m-3 due to the depen-
dence of electron-plasmon scattering on donor concen-
tration, but shows a maximum near 1021 m-3 for both 
structures.  
 
 
Conclusion 
 
The computed low-field electron mobility in bulk ZnO and 
SiC materials show that SiC has superior electron trans-
port properties. It is shown that including the electron-
plasmon scattering effect increase the electron mobility of 
two structures by 10%, and Ohmic mobility drops by the 
same percent. This is caused by combined effects of 
effective heating of electron gas by electron-plasmon 
scattering and predominantly forward peaked momentum 
relaxation for all electron momentum.  
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